Skip to main content

Quantum Well Optical Switching Devices

  • Chapter
Confined Electrons and Photons

Part of the book series: NATO ASI Series ((NSSB,volume 340))

Abstract

First we will introduce quantum wells by discussing their basic physics, their structure, fabrication technologies, and their elementary linear optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • For an introductory summary of quantum well optical physics and devices, see D. A. B. Miller, “Optoelectronic applications of quantum wells”, Optics and Photonics News 1, No. 2, pp 7-15, February 1990.

    Google Scholar 

  • For a longer treatment of the physics, see D. A. B. Miller, D. S. Chemla, and S. Schmitt-Rink, “Electric Field Dependence of Optical Properties of Semiconductor Quantum Wells: Physics and Applications”, and D. S. Chemla, S. Schmitt-Rink, and D. A. B. Miller, “Nonlinear Optical Properties of Semiconductor Quantum Wells”, both chapters in “Optical Nonlinearities and Instabilities in Semiconductors”, ed. H. Haug, (Academic Press, Boston, 1988)

    Google Scholar 

  • For an extensive discussion of quantum well optical physics see S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Linear and nonlinear optical properties of semiconductor quantum wells”, Advances in Physics 38, 89-188 (1989)

    Google Scholar 

  • For an extended discussion of band structure and states in quantum wells, see G. Bastard, “Wave mechanics applied to semiconductor heterostructures”, (Les Editions de Physique, Les Ulis, France)

    Google Scholar 

  • For extended treatments of quantum well optoelectronic devices see D. A. B. Miller, “Quantum Well Optoelectronic Switching Devices”, International Journal of High Speed Electronics 1, 19–46 (1990)

    Article  Google Scholar 

  • D. A. B. Miller, “Quantum Well Self Electrooptic-Effect Devices”, Optical and Quantum Electronics 22, S61–S98 (1990).

    Article  Google Scholar 

References

  1. see, e.g., A. Y. Cho, “Advances in molecular beam epitaxy (MBE)”, Journal of Crystal Growth 111, 1–13 (1991)

    Article  Google Scholar 

  2. see, e.g., K. Furuya, and Y. Miyamoto, “GaInAsP/InP organometallic vapor phase epitaxy for research and fabrication of devices”, Int. J. High Speed Electronics 1, 347–367 (1990)

    Article  Google Scholar 

  3. see, e.g., W. T. Tsang, “Progress in chemical beam epitaxy”, J. Crystal Growth 105, 1–29 (1990)

    Article  Google Scholar 

  4. For a recent discussion of envelope function models, including discussion of the boundary conditions, see M. G. Burt, “The justification for applying the effective-mass approximation to microstructures”, J. Phys: Condens. Matter 4, 6651–6690 (1992)

    Google Scholar 

  5. see, e.g., C. Weisbuch, “Fundamental properties of III-V semiconductor two-dimensional quantized structures: the basis for optical and electronic device applications”, in “Semiconductors and Semimetals”, vol. 24, ed. R. Dingle (Academic Press, New York, 1987), pp 1–117

    Google Scholar 

  6. D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures”, IEEE J. Quantum Electron. 20, 265–275 (1984)

    Article  Google Scholar 

  7. S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures”, Phys. Rev. B 32 6601–6609 (1985)

    Google Scholar 

  8. P. W. Smith, Y. Silberberg, and D. A. B. Miller, “Mode locking of semiconductor diode lasers using saturable excitonic nonlinearities”, J. Opt. Soc. Am. B2, 1228–1236 (1985).

    Google Scholar 

  9. Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding-pulse mode-locked multiple quantum well lasers”, Appl. Phys. Lett. 58, 1253–1255 (1991).

    Article  Google Scholar 

  10. U. Keller, G. W. ’t Hooft, W. H. Knox, and J. E. Cunningham, “Femtosecond pulses from a continuously self-starting passively mode-locked Ti:sapphire laser”, Optics Lett. 16, 1022–1024 (1991)

    Article  Google Scholar 

  11. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the bandgap of quantum well structures”, Phys. Rev. B 32, 1043–1060 (1985)

    Google Scholar 

  12. D. A. B. Miller, J. S. Weiner, and D. S. Chemla, “Electric-field dependence of linear optical properties of quantum well structures: waveguide electroabsorption and sum rules”, IEEE J. Quantum Electron. QE-22, 1816–1830 (1986)

    Article  Google Scholar 

  13. G. D. Boyd, D. A. B. Miller, D. S. Chemla, S. L. McCall, A. C. Gossard, and J. H. English, “Multiple quantum well reflection modulator”, Appl. Phys. Lett. 50, 1119–1121 (1987)

    Article  Google Scholar 

  14. see, e.g., M. Whitehead, A. Rivers, G. Parry, and J. S. Roberts, “A very low voltage, normally-off asymmetric Fabry-Perot reflection modulator”, Electronics Lett. 26, 1588–1590 (1990)

    Article  Google Scholar 

  15. A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation”, IEEE J. Quantum Electron. 27, 2281–2295 (1991)

    Article  Google Scholar 

  16. J. A. Cavaillès, D. A. B. Miller, J. E. Cunningham, P. Li Kam Wa, and A. Miller, “Simultaneous measurements of electron and hole sweep-out from quantum wells and modeling of photoinduced field screening dynamics”, IEEE J. Quantum Electron. 28, 2486–2497 (1992)

    Article  Google Scholar 

  17. G. D. Boyd, J. A. Cavaillès, L. M. F. Chirovsky, and D. A. B. Miller, “Wavelength dependence of saturation and thermal effects in multiple quantum well modulators”, Appl. Phys. Lett. 63, 1715–1717 (1993)

    Article  Google Scholar 

  18. J. S. Weiner, D. A. B. Miller, and D. S. Chemla, “Quadratic electro-optic effect due to the quantum-confined Stark effect in quantum wells”, Appl. Phys. Lett. 50, 842–844 (1987)

    Article  Google Scholar 

  19. J. E. Zucker, K. L. Jones, M. G. Young, B. I. Miller, and U. Koren, “Compact directional coupler switches using quantum well electrorefraction”, Appl. Phys. Lett. 55, 2280–2282 (1989)

    Article  Google Scholar 

  20. D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, and W. Wiegmann, “The quantum well self-electrooptic effect device: optoelectronic bistability and oscillation, and self linearized modulation”, IEEE J. Quantum Electron. QE-21, 1462–1476 (1985)

    Article  Google Scholar 

  21. D. A. B. Miller, “Quantum-well self-electrooptic effect devices”, Optical and Quantum Electron. 22, S61–S98 (1990)

    Article  Google Scholar 

  22. A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, and L. M. F. Chirovsky, “Symmetric self-electrooptic effect device: optical set-reset latch, differential logic gate, and differential modulator/detector”, IEEE J. Quantum Electron. 25, 1928–1936 (1989)

    Article  Google Scholar 

  23. M. E. Prise, “Optical computing using self-electro-optic effect devices” in “Digital Optical Computing”, ed. R. A. Athale, SPIE Critical Reviews of Optical Science and Technology, CR35, 3–27 (1990).

    Google Scholar 

  24. M. E. Prise et al., “Optical digital processor using arrays of symmetric self-electro-optic-effect devices”, Appl. Optics, 30, 2287–2296 (1991).

    Article  Google Scholar 

  25. H. S. Hinton and D. A. B. Miller, “Free-Space Photonics in Switching”, AT&T Technical Journal, 71, No. 1 (Jan/Feb), 84–92 (1992).

    Google Scholar 

  26. F. B. McCormick, T. J. Cloonan, F. A. P. Tooley, A. L. Lentine, J. M. Sasian, J. L. Brubaker, R. L. Morrison, S. L. Walker, R. J. Crisci, R. A. Novotny, S. J. Hinterlong, H. S. Hinton, and E. Kerbis, “Six-stage digital free-space optical switching network using symmetric self-electro-optic-effect devices”, Appl. Optics 32, 5153–5171 (1993).

    Article  Google Scholar 

  27. A. L. Lentine, D. A. B. Miller, J. E. Henry, J. E. Cunningham, and L. M. F. Chirovsky, “Multistate self-electrooptic effect devices”, IEEE J. Quantum Electron. 25, 1921–1927 (1989)

    Article  Google Scholar 

  28. A. L. Lentine, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. F. Chirovsky, and L. A. D’Asaro, “Optical logic using electrically connected quantum well PIN diode modulators and detectors”, Appl. Optics 29, 2153–2163 (1990)

    Article  Google Scholar 

  29. D. A. B. Miller, “Novel analog self-electrooptic-effect devices”, IEEE J. Quantum Electron. 29, 678–698 (1993).

    Article  Google Scholar 

  30. E. A. de Souza, L. Carraresi, G. D. Boyd, and D. A. B. Miller, “Analog differential self-linearized quantum-well self-electro-optic-effect modulator”, Optics Lett. 18, 974–976 (1993)

    Article  Google Scholar 

  31. D. A. B. Miller, “Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters”, Optics Lett. 14, 146–148 (1989)

    Article  Google Scholar 

  32. D. A. B. Miller, M. D. Feuer, T. Y. Chang, S. C. Shunk, J. E. Henry, D. J. Burrows, and D. S. Chemla, “Field-effect transistor self-electrooptic effect device: integrated photodiode, quantum well modulator and transistor”, IEEE Phot. Tech. Lett. 1, 61–64 (1989)

    Article  Google Scholar 

  33. L. A. D’Asaro, L. M. F. Chirovsky, E. J. Laskowski, S. S. Pei, T. K. Woodward, A. L. Lentine, R. E. Leibenguth, J. W. Focht, J. M. Freund, G. G. Guth, and L. E. Smith, “Batch fabrication and Operation of GaAs-AlGaAs field-effect transistor-self-electrooptic effect device (FET-SEED) smart pixel arrays”, IEEE J. Quantum Electron. 29, 670–677 (1993)

    Article  Google Scholar 

  34. A. L. Lentine, F. B. McCormick, T. J. Cloonan, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, and H. S. Hinton, “A five stage free-space switching network using arrays of FET-SEED switching nodes”, Conference on Lasers and Electrooptics, May 2–7, 1993, Baltimore, Maryland, Postdeadline Paper CPD24 (Optical Society of America, 1993)

    Google Scholar 

  35. K. W. Goossen, G. D. Boyd, J. E. Cunningham, W. Y. Jan, D. A. B. Miller, D. S. Chemla, and R. M. Lum, “GaAs-AlGaAs multiquantum well reflection modulators grown on GaAs and silicon substrates”, IEEE Photonics Tech. Lett. 1, 304–306 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miller, D.A.B. (1995). Quantum Well Optical Switching Devices. In: Burstein, E., Weisbuch, C. (eds) Confined Electrons and Photons. NATO ASI Series, vol 340. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1963-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1963-8_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5807-7

  • Online ISBN: 978-1-4615-1963-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics