Skip to main content

Hierarchical Cascades and the Single Fracture

Percolation and Seismic Detection

  • Chapter
Fractals in Petroleum Geology and Earth Processes

Abstract

The growing scarcity of water and petroleum, as well as the critical importance of establishing secure waste deposits that will not contaminate ground water, has focused attention on the technological and scientific difficulties of quantifying flow processes through porous or fractured media. Fractures and fracture networks are often the major conduits through which fluids and contaminants flow. Fracture networks are composed of associations of single fractures. In this sense, single fractures can be viewed as the primary building blocks. Before tackling the complex problem of flow through fracture networks, it is therefore essential to understand the physical properties of this basic unit, the single fracture, especially with regards to the effect of external perturbations such as stress on the flow properties of single fractures. Furthermore, it will be particularly useful if seismic methods can be used to predict the flow properties of intact fractures, without the need for expensive invasive coring and laboratory tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambegaoker, V., Halperin, B. I., and Langer, J. S., Hopping conductivity in disordered systems, Phys. Rev. B4, 2612–2620 (1971).

    ADS  Google Scholar 

  • Bandis, S. C., Lumsden, A. C., and Barton, N. R., Fundamentals of rock joint deformation, Internat. J. Rock Mech. Mining Sci. Geomech. Abstr. 20, 6, 249–268 (1983).

    Article  Google Scholar 

  • Barton, N., Bandis, S., and Bakhtar, K., Strength, deformation and conductivity coupling of rock joints, Internat. J. Rock Mech. Mining Sci. Geomech. Abstr. 22, 3, 121–140 (1985).

    Article  Google Scholar 

  • Brown, S. R., Fluid flow through rock joints: the effect of surface roughness, J. Geophys. Res. 92, 1337–1347 (1987a).

    Article  ADS  Google Scholar 

  • Brown, S. R., A note on the description of surface roughness using fractal dimension, Geophys. Res. Lett. 14, 11, 1095–1098 (1987b).

    Article  ADS  Google Scholar 

  • Brown, S. R., Transport of fluid and electric current through a single fracture, J. Geophys. Res. 94, B7, 9429–9438 (1989).

    Article  ADS  Google Scholar 

  • Brown, S. R., and Scholz, C. H., Closure of random elastic surfaces in contact, J. Geophys. Res. 90, 5531–5545.

    Google Scholar 

  • Brown, S. R., and Scholz, C. H., Closure or rock joints, J. Geophys. Res. 91, 4939–4948 (1986).

    Article  ADS  Google Scholar 

  • Brown, S. R., Kranz, R. L., and Bonner, B. P., Correlation between the surfaces of natural rock joints, Geophys. Res. Lett. 13, 1430–1434 (1986).

    Article  ADS  Google Scholar 

  • Chen, D. W., Zimmerman, R. W., and Cook, N. G. W., The effect of contact area on the permeability of fractures, in: Proceedings of the 30th U. S. Symposium on Rock Mechanics, Morgantown, W. Va., June 19–22, 1989, 81–88.

    Google Scholar 

  • Cook, N. G. W., Natural joints in rock: Mechanical, hydraulic and seismic behavior and properties under normal stress, Internat. J. Rock Mech. Mining Sci. Geomech. Abstr. 29, 3, 198–223 (1992).

    Article  Google Scholar 

  • Cook, A.-M., Myer, L. R., Cook, N. G. W., and Doyle, F. M., The effects of tortuosity on flow through a natural fracture, in: Proceedings of the 31st U. S. Rock Mechanics Symposium, Boulder, Colorado, June, 1990, A.A. Balkema Publishers, Rotterdam, 371–378 (1990).

    Google Scholar 

  • Duncan, N., and Hancock, K. E., The concept of contact stress in assessment of the behavior of rock masses as structural foundations, in: Proceedings of First Congress of the International Society for Rock Mechanics, Lisbon, 2, 487–492 (1966).

    Google Scholar 

  • Engelder, T., and Scholz, C. H., Fluid flow along very smooth joints at effective pressures up to 200 megapascals, in: Mechanical Behavior of Crustal Rocks, The Handin Volume, American Geophysical Union Monograph 24, pp. 147–152 (1981).

    Chapter  Google Scholar 

  • Feder, J., Fractals, Plenum Press, New York (1988).

    MATH  Google Scholar 

  • Gale, J. E., Comparison of coupled fracture deformation and fluid flow models with direct measurements of fracture pore structure and stress—flow properties, in: Proceedings, Rock Mechanics: Proceedings of the 28th U.S. Symposium, Tucson, Arizona, pp. 1213–1222, June 1987, University of Arizona (1987).

    Google Scholar 

  • Gale, J. E., and Raven, K. G., Effects of sample size on the stress—permeability relationship for natural fractures, Lawrence Berkeley Laboratory Report, LBL-11865 (SAC-48), Berkeley, California (1980).

    Google Scholar 

  • Gangi, A. F, Variation of whole and fractured porous rock permeability with confining pressure, Internat. J. Rock Mech. Mining Sci. Geomech. Abstr. 15, 249–257 (1978).

    Article  Google Scholar 

  • Gentier, S., Billaux, D, and van Vliet, L., Laboratory testing of the voids of a fracture, Rock Mech. Rock Eng. 22, 149–157 (1989).

    Article  ADS  Google Scholar 

  • Goodman, R. E., Methods of Geological Engineering, West Publishing, St. Paul, Minn., 170–173 (1976).

    Google Scholar 

  • Greenwood, J. A., and Williamson, J. B. P., Contact of nominally flat surfaces, Proc. R. Soc, London Ser. A 295, 300–319 (1966).

    Article  ADS  Google Scholar 

  • Greenwood, J. A., and Tripp, J. H., The contact of two nominally flat rough surfaces, Proc. Inst. Mech. Eng. 185, 625–633 (1971).

    Google Scholar 

  • Hakami, E., Water flow in single rock joints, Ph.D. thesis, Lulea University of Technology, Sweden, p. 99 (1988).

    Google Scholar 

  • Hesler, G. J., III, Zheng, Z., and Myer L. R., In-situ fracture stiffness determination, Rock Mechanics Contributions and Challenges: 31st U. S. Rock Mechanics Symposium, 405–411 (1990).

    Google Scholar 

  • Hopkins, D. L., and Cook, N. G. W, Fracture stiffness and aperture as a function of applied stress and contact geometry, in: Proceedings, Rock Mechanics: Proceedings of the 28th U. S. Symposium, Tucson, Arizona, June 1987, University of Arizona, pp. 673–680 (1987).

    Google Scholar 

  • Hopkins, D. L., Cook, N. G. W, and Myer, L. R., Normal joint stiffness as a function of spatial geometry and surface roughness, Internal Symposium on Rock Joints, A. A. Balkema Publishers, pp. 203–210 (1990).

    Google Scholar 

  • Iwai, K., Fundamentals of fluid flow through a single fracture, Ph.D. thesis, Berkeley, University of California (1976).

    Google Scholar 

  • Jaeger, J. C, and Cook, N. G. W, Fundamentals of Rock Mechanics, Chapman and Hall, London (1979).

    Book  Google Scholar 

  • Kendall, K., and Tabor, D., An ultrasonic study of the area of contact between stationary and sliding surfaces, Proc. R. Soc, London, Ser. A, 323, 321–340 (1971).

    Article  ADS  Google Scholar 

  • King, M. S., Myer, L. R., and Rezowalli, J. J., Experimental studies of elastic-wave propagation in a columnar-jointed rock mass, Geophys. Prospecting 34, 1185–1199 (1986).

    Article  ADS  Google Scholar 

  • Kitsunezaki, C., Behavior of plane waves across a plane crack, J. Mining College Akita Univ., Ser. A 6, 173–187 (1983).

    Google Scholar 

  • Kleinberg, R. L., Chow, E. Y., Plona, T. J., Orton, M., and Canady, W. J., Sensitivity and reliability of fracture detection techniques for borehole application, J. Petroleum Tech. 34, 657–663 (1982).

    Google Scholar 

  • Kranz, R. L., Frankel, A. D., Engelder, T., and Scholz, C. H., The permeability of whole and jointed Barre granite, Internat. J. Rock Mech. Mining Sci. Geomech. Abstr. 16, 225–234 (1979).

    Article  Google Scholar 

  • Long, J. C. S., Karasaki, K., Davey, A., Peterson, J., Lansfeld, M., Kemeny, J., and Martel, S., An inverse approach to the construction of fracture hydrology models conditioned by geophysical data, Internat. J. Rock Mech. Mining Sci. Geomech. Abstr. 28, 121–142 (1991).

    Article  Google Scholar 

  • Mandelbrot, B. B., The Fractal Geometry of Nature, W.H. Freeman and Company, New York (1983).

    Google Scholar 

  • Martel, S. J., and Peterson, J. E., Jr., Interdisciplinary characterization of fracture systems at the US/BK site, Grimsel Laboratory, Switzerland, Internat. J Rock Mech. Mining Sci. Geomech. Abstr. 28, 295–323 (1991).

    Article  Google Scholar 

  • Martin, C. D., Davison, C. C., and Kozak, E. T, Characterizing normal stiffness and hydraulic conductivity of a major shear zone in granite, Rock Joints, Stephansson ed, A.A. Balkema, Rotterdam, 549–556 (1990).

    Google Scholar 

  • Medlin, W. L., and Marsi, L., Laboratory experiments in fracture propagation, Soc. Petroleum Eng. J. 24, 256–268 (1984).

    Google Scholar 

  • Mindlin, R. D., Waves and vibrations in isotropic planes, in: Structural Mechanics (J. W Goodier and W. J. Hoff, eds.), Pergamon Press, 199 (1960).

    Google Scholar 

  • Moreno, L., Tsang, Y. W., Tsang, C. F., Hale, F V., and Neretnieks, I., Flow and tracer transport in a single fracture: A stochastic model and its relation to some field observations, Water Resources Res. 24, 2033–2048 (1988).

    Article  ADS  Google Scholar 

  • Morris, R. L., Grine, D. R., and Arkfeld, T. E., Using compressional and shear acoustic amplitude for the location of fractures, J. Petroleum Tech. 16, 623–632 (1964).

    Google Scholar 

  • Muralidahr, K., and Long, J. C. S., in: Flow and Transport Through Unsaturated Fractured Rock (D. D. Evans, and T. J. Nicholson, eds.), Geophysical Monograph 42, Washington, D.C., American Geophysical Union, pp. 115–120 (1987).

    Google Scholar 

  • Murty, G. S., A theoretical model for the attenuation and dispersion of Stoneley waves at the loosely bonded interface of elastic half spaces, Phys. Earth Planet. Int. 11, 65–79 (1975).

    Article  ADS  Google Scholar 

  • Myer, L. R., Hydromechanical and seismic properties of fractures, 7th International Congress on Rock Mechanics 1, 397–404 (1991).

    Google Scholar 

  • Myer, L. R., Hopkins, D., and Cook, N. G. W., Effects of contact area of an interface on acoustic wave transmission characteristics, 26th U. S. Rock Mechanics Symposium 1, 565–572 (1985).

    Google Scholar 

  • Neuzil, C. E., and Tracy, J. V., Flow through fractures, Water Resources Res. 17, 191–199 (1981).

    Article  ADS  Google Scholar 

  • Nolte, D. D., Invariant fixed point in stratified continuum percolation, Phys. Rev. A 40, 4817–4819 (1989).

    Article  ADS  Google Scholar 

  • Nolte, D. D., Pyrak-Nolte, L. J., and Cook, N. G. W., Fractal flow paths in rock and the approach to percolation (abstract), EOS (Amer. Geophys. Union Trans.) 67, 871 (1986).

    Google Scholar 

  • Nolte, D. D., Pyrak-Nolte, L. J., and Cook, N. G. W., The fractal geometry of flow paths in natural fractures in rock and the approach to percolation, Pure Appl. Geophys. 131, 271 (1989).

    Article  Google Scholar 

  • Nolte, D. D., and Pyrak-Nolte, L. J., Stratified continuum percolation: scaling geometry of hierarchical cascades, Phys. Rev. A 44, 6320–6333 (1991).

    Article  ADS  Google Scholar 

  • Olkiewicz, A., Gale, J. E., Thorpe, R., and Paulsson, B., Geology and fracture system at Stripa, Lawrence Berkeley Laboratory Report, LBL-8907 (SAC-21), Berkeley, California (1979).

    Book  Google Scholar 

  • Patir, N., and Cheng, S., An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication, J. Lubrication Technol. 100, 12–17 (1978).

    Article  Google Scholar 

  • Pollack, M., A percolation treatment of D.C. hopping conduction, J. Non-Crystalline Solids 11, 1–24 (1972).

    Article  ADS  Google Scholar 

  • Pyrak, L. J., Seismic visibility of fractures, Ph.D. thesis, Berkeley, University of California (1988).

    Google Scholar 

  • Pyrak-Nolte, L. J., and Cook, N. G. W., Elastic interface waves along a fracture, Geophys. Res. Lett. 14, 1107–1110 (1987).

    Article  ADS  Google Scholar 

  • Pyrak-Nolte, L. J., Myer, L. R., Cook, N. G. W., and Witherspoon, P.A., Hydraulic and mechanical properties of natural fractures in low permeability rock, in: Proceedings, International Society for Rock Mechanics, 6th International Congress on Rock Mechanics, Montreal, Canada, August 1987, 1, 225–231, A. A. Balkema, Rotterdam.

    Google Scholar 

  • Pyrak-Nolte, L. J., Cook, N. G. W., and Nolte, D. D., Fluid percolation through single fractures, Geophys. Res. Lett. 15, 1247–1250 (1988).

    Article  ADS  Google Scholar 

  • Pyrak-Nolte, L. J., Myer, L. R., and Cook, N. G. W., Transmission of seismic waves across single natural fractures, J. Geophys. Res. 95, 8617–8638 (1990).

    Article  ADS  Google Scholar 

  • Pyrak-Nolte, L. J., Feasibility of using Wood’s metal porosimetry techniques to measure the fracture void geometry of cleats in coal, Topical Report Gas Research Institute, GRI-91/0373 (1991).

    Google Scholar 

  • Pyrak-Nolte, L. R., and Nolte, D. D., Frequency dependence of fracture stiffness, Geophys. Res. Lett. 19, 325–328 (1992).

    Article  ADS  Google Scholar 

  • Rasmussen, T. C, Computer simulation model of steady fluid flow and solute transport through three-dimensional networks of variably saturated, discrete fractures, in: Flow and Transport Through Unsaturated Fractured Rock (D. D. Evans, and T. J. Nicholson, eds.), Geophysical Monograph 42, pp. 107–114, Washington D.C., American Geophysical Union (1987).

    Google Scholar 

  • Sato, K., Watanabe, K., and Kotajima, N., Fundamental study on flow resistance in rock fissures, Soils and Foundations (Japan), 24, 1–8 (1986).

    Article  Google Scholar 

  • Schoenberg, M., Elastic wave behavior across linear slip interfaces, J. Acoust. Soc. Am. 68, 1516–1521 (1980).

    Article  ADS  MATH  Google Scholar 

  • Schrauf, T. W., and Evans, D. D., Laboratory studies of gas flow through a single natural fracture, Water Resources Res. 22, 1038–1050 (1986).

    Article  ADS  Google Scholar 

  • Shapiro, A. M., and Nicholas, J. R., Assessing the validity of the channel model of fracture aperture under field conditions, Water Resources Res. 25, 817–828 (1989).

    Article  ADS  Google Scholar 

  • Shklovskii, B. I., and Efros, A. L., Impurity band and conductivity of compensated semiconductors, Soviet Physics-JETP 33, 468–474 (1971).

    ADS  Google Scholar 

  • Silliman, S. E., An interpretation of the difference between aperture estimates derived from hydraulic and tracer tests in a single fracture, Water Resources Res. 25, 2275–2283 (1989).

    Article  ADS  Google Scholar 

  • Stauffer, D., Introduction to Percolation Theory, Taylor and Francis, London (1985).

    Book  MATH  Google Scholar 

  • Stesky, R. M., Electrical conductivity of brine-saturated fractured rock, Geophysics 51, 1585–1593 (1986).

    ADS  Google Scholar 

  • Swan, G., Determination of stiffness and other joint properties from roughness measurements, Rock Mech. Rock Eng. 16, 19–38 (1983).

    Article  ADS  Google Scholar 

  • Tsang, Y. W., and Witherspoon, P. A., The dependence of fracture mechanical and fluid flow properties on fracture roughness and sample size, J. Geophys. Res. 88, 2359–2366 (1983).

    Article  ADS  Google Scholar 

  • Tsang, Y. W., The effect of tortuosity on fluid flow through a single fracture, Water Resources Res. 20, 1209–1215 (1984).

    Article  ADS  Google Scholar 

  • Tsang, Y. W., and Tsang, C. F., Channel model of flow through fractured media, Water Resources Res. 23, 467–479 (1987).

    Article  ADS  Google Scholar 

  • Tsang, Y. W., and Witherspoon, P. A., The dependence of fracture mechanical and fluid flow properties on surface roughness and sample size, J. Geophys. Res. 88, 2359–2366 (1983).

    Article  ADS  Google Scholar 

  • Tsang, Y. W, and Tsang, C. F., Flow channeling in a single fracture as a two-dimensional strongly heterogeneous permeable medium, Water Resources Res. 25, 2076–2080 (1989).

    Article  ADS  Google Scholar 

  • Voss, R. F, Fractals in nature: From characterization to simulation, in: The Science of Fractal Images (H. O. Peitgen, and D. Saupe, eds.), Springer-Verlag, New York, pp. 21–70 (1988).

    Chapter  Google Scholar 

  • Wang, J., and Narasimhan, T., Fractal and statistical characterization of rough fractures, in: Proceedings, Second Berkeley Symposium on Topics in Petroleum Engineering, Berkeley, Lawrence Berkeley Laboratory, University of California, March 9–10, 1988, LBL-24337, pp. 33–38 (1988).

    Google Scholar 

  • Wang, J. S. Y, Narasimhan, T. N., and Scholz, C. H., Aperture correlation of a fractal fracture, J. Geophys. Res. 93, 2216–2224 (1988).

    Article  ADS  Google Scholar 

  • Walsh, J. B., Seismic wave attenuation in rock due to friction, J. Geophys. Res. 71, 2591–2599 (1966).

    Article  ADS  Google Scholar 

  • Walsh, J. B., Effect of pore pressure and confining pressure on fracture permeability, Internat. J. Rock Mech. Mining Sci. Geomech. Abstr. 18, 429–435 (1981).

    Article  Google Scholar 

  • Walsh, J. B., and Grosenbaugh, M. A., A new model for analyzing the effect of fractures on compressibility, J. Geophys. Res. 84, 3532 (1979).

    Article  ADS  Google Scholar 

  • White, J. E., Underground Sound, Application of Seismic Waves, Elsevier, New York (1983).

    Google Scholar 

  • Witherspoon, P. A., Amick, C. H., Gale, J. E., and Iwai, K., Observations of a potential size effect in experimental determination of the hydraulic properties of fractures, Water Resources Res. 15, 1142 (1979).

    Article  ADS  Google Scholar 

  • Witherspoon, P. A., Wang, J. S. Y, Iwai, K., and Gale, J. E., Validity of cubic law for fluid flow in a deformable rock fracture, Water Resources Res. 16, 1016–1024 (1980).

    Article  ADS  Google Scholar 

  • Yang, G., Cook, N. G. W, and Myer, L. R., Network modeling of flow in natural fractures, in: Proceedings, Rock Mechanics: Proceedings of the 30th U. S. Symposium, Morganstown, West Virginia, June 19–22, 1989, University of West Virginia (1989).

    Google Scholar 

  • Yoshioka, N., and Scholz, C. H., Elastic properties of contacting surfaces under normal and shear loads: Comparison of theory with experiment, J. Geophys. Res. 94, 17691–1770 (1989).

    Article  ADS  Google Scholar 

  • Yu, T. R., and Telford, W. M., An ultrasonic system for fracture detection in rock faces, Canad. Mining Metallurgy Bull. 66, 96–101 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pyrak-Nolte, L.J., Nolte, D.D., Cook, N.G.W. (1995). Hierarchical Cascades and the Single Fracture. In: Barton, C.C., La Pointe, P.R. (eds) Fractals in Petroleum Geology and Earth Processes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1815-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1815-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5733-9

  • Online ISBN: 978-1-4615-1815-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics