Skip to main content

Models of Neuronal Bursting Behavior: Implications for In-Vivo Versus In-Vitro Respiratory Rhythmogenesis

  • Chapter
Frontiers in Modeling and Control of Breathing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 499))

Abstract

Neonatal in-vitro preparations can generate respiratory-like oscillations based on the intrinsic bursting or pacemaker properties in some neurons within the medullary preBötzinger complex (PBC)1-3. This discovery provided a basis for a hybrid pacemaker-network theory that suggests that pacemaker PBC neurons form a kernel of the central pattern generator and hence provide a necessary contribution to the genesis of the respiratory rhythm4. However, it is controversial whether a pacemaker-based mechanism necessarily operates in vivo. Specifically, the pacemaker-based models face principal problems in providing explanations to systems-level phenomena such as an independent regulation of respiratory phases, respiratory reflexes (e.g. the Hering-Breuer reflex), various phase resetting phenomena. On the other hand, the network theories and models based on in-vivo data can explain these phenomena5,6, but demand the respiratory phase transitions to be based on the reciprocal inhibitory interactions between respiratory neurons. Therefore, the network-based models have so far been unable to explain a pacemaker-driven rhythm recorded in vitro which is resistant to blockade of synaptic inhibition7. The current state of knowledge in the field requires a comprehensive computational study of the relationships between in-vivo and in-vitro data. The objective of this study was to explore the concept that the respiratory network can generate a breathing pattern by either a network or a hybrid pacemaker-network mechanism, which is state-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. M. Johnson, J. C. Smith, G. D. Funk, and J. L. Feldman, Pacemaker behavior of respiratory neurons in medullary slices from neonatal rat. J. Neurophysiol. 72, 2598–2608 (1994).

    PubMed  CAS  Google Scholar 

  2. N. Koshiya and J. C. Smith, Neuronal pacemaker for breathing visualized in vitro. Nature 400 (6742), 360363 (1999).

    Google Scholar 

  3. J. C. Smith, H. Ellenberger, K. Ballanyi, D. W. Richter, and J. L. Feldman, Pre-Bötzinger complex: a brain stem region that may generate respiratory rhythm in mammals. Science 254, 726–729 (1991).

    Article  PubMed  CAS  Google Scholar 

  4. J. C. Smith, in: Neurons, Networks, and Motor Behavior, edited by P. Stain, S. Grillner, A. I. Selverston, and D. G. Stuart (MIT Press, Cambridge, MA, 1997), pp. 97–104.

    Google Scholar 

  5. I. A. Rybak, J. F. R. Paton, and J. S. Schwaber, Modeling neural mechanisms for genesis of respiratory rhythm and pattern: II. Network models of the central respiratory pattern generator, J. Neurophysiol. 77, 2007–2026 (1997).

    PubMed  CAS  Google Scholar 

  6. I. A. Rybak, J. F. R. Paton, and J. S. Schwaber, Modeling neural mechanisms for genesis of respiratory rhythm and pattern: III. Comparison of model performances during afferent nerve stimulation, J. Neurophysiol. 77,2027–2039 (1997).

    PubMed  CAS  Google Scholar 

  7. X. M. Shao and J. L. Feldman, Respiratory rhythm generation and synaptic inhibition of expiratory neurons in pre-Bötzinger complex: differential roles of glycinergic and gabaergic neural transmission, J. Neurophysiol. 77,1853–1860 (1997).

    PubMed  CAS  Google Scholar 

  8. R. J. Butera, J. R. Rinzel, and J. C. Smith, Models of respiratory rhythm generation in the pre-Bötzinger complex: I. Bursting pacemaker neurons, J. Neurophysiol. 82, 382–397 (1999).

    Google Scholar 

  9. C. R. French, P. Sah, K. J. Buckett, and P. W. Gage, A voltage-dependent persistent sodium current in mammalian hippocampal neurons, J. Gen. Physiol. 95, 1139–1157 (1990).

    Article  PubMed  CAS  Google Scholar 

  10. E. Nattie, CO2, brainstem chemoreceptors and breathing, Progr. in Neurobiol. 59, 299–331 (1999).

    Article  CAS  Google Scholar 

  11. W. M. St.-John, Rostral medullary respiratory neuronal activity of decelebrated cats in eupnea, apneusis and gasping, Resp. Physiol. 116, 47–65 (1999).

    Article  Google Scholar 

  12. J. E. Melton, S. C. Kadia, Q. P. Yu, J. A. Neubauer, and N. H. Edelman, Respiratory and sympathetic activity during recovery from hypoxic depression and gasping in cats, J. Appl. Physiol. 80, 1940–1948 (1996).

    Article  PubMed  CAS  Google Scholar 

  13. A. K. Hammarström and P. W. Gage, Inhibition of oxidative metabolism increases persistent sodium current in rat CA1 hippocampal neurons, J. Physiol. 510, 735–741 (1998).

    Article  PubMed  Google Scholar 

  14. I. C. Solomon, N. H. Edelman, and J. A. Neubauer, Pre-Bötzinger complex functions as a central hypoxia chemosensor for respiration in vivo, J. Neurophysiol. 83, 2854–2868 (2000).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rybak, I.A., St John, W.M., Paton, J.F.R. (2001). Models of Neuronal Bursting Behavior: Implications for In-Vivo Versus In-Vitro Respiratory Rhythmogenesis. In: Poon, CS., Kazemi, H. (eds) Frontiers in Modeling and Control of Breathing. Advances in Experimental Medicine and Biology, vol 499. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1375-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1375-9_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5522-9

  • Online ISBN: 978-1-4615-1375-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics