Skip to main content

Reactive Oxygen Species and Antimicrobial Defenses of Invertebrates: A Bivalve Model

  • Chapter
Phylogenetic Perspectives on the Vertebrate Immune System

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 484))

Abstract

Reactive oxygen species (ROS) are cytotoxic agents produced by many phagocytic cells in response to membrane perturbations such as receptor-ligand interactions and phagocytosis. These agents are used to defend against infectious diseases by virtue of their antimicrobial properties. The initial ROS generated, the superoxide anion (O2-), is spontaneously or enzymatically converted to hydrogen peroxide (H2O2), which can give rise to even more toxic products, such as hydroxyl radical (•0H), hypochlorous acid (HOCI), and singlet oxygen (1O2). The ROS are toxic in their own right or may exert increased antimicrobial activity in concert with lysosomal hydrolases and/or reactive nitrogen species (RNS). Phagocyte activation triggers the assembly of a membrane-associated enzyme NADPH oxidase, which produces O from molecular oxygen and NADPH. Over-production of ROS by blood cells can overwhelm antioxidant defenses leading to various manifestations of oxidative stress. Human beings with genetic abnormalities in NADPH oxidase present with recurrent bacterial and fungal infections, granulomatous infiltration of many organs, and early deaths characteristic of chronic granulomatous disease (Bridges, Berendes and Good, 1959).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adema C.M., van der Knaap W.P.W., Sminia T. Molluscan hemocyte-mediated cytotoxicity: the role of reactive oxygen intermediates. Rev. Aquat. Sci. 1991;4:201–223.

    Google Scholar 

  • Adema C.M., van Deutekom-Mulder E.C., van der Knapp W.P.W., Smina T. NADPH-oxidase activity: the probable source of reactive oxygen intermediate generation in hemocytes of the gastropod Lymnea stagnalis. J. Leukoc. Biol. 1993;54:379–383.

    PubMed  CAS  Google Scholar 

  • Albrecht D., Jungi T.W. Luminol-enhanced chemiluminescence induced in peripheral blood-derived human phagocytes: obligatory requirement of myeloperoxidase exocytosis by monocytes. J. Leukoc. Biol. 1993;54:300–306.

    PubMed  CAS  Google Scholar 

  • Anderson R.S. “Modulation of blood cell mediated oxyradical production in aquatic species: implications and applications.” In Aquatic Toxicology: Molecular,Biochemical, and Cellular Perspectives, D.C. Malins and G.K. Ostrander, eds. Boca Raton: Lewis Publishers, 1994.

    Google Scholar 

  • Anderson R.S. “Production of reactive oxygen intermediates by invertebrate hemocytes: immunological significance.” In New Directions in Invertebrate Immunology, K. Söderhäll, G. Vasta and S. Iwanaga, eds. Fair Haven, NJ: SOS Publications, 1996.

    Google Scholar 

  • Anderson R.S. Perkinsus marinus secretory products modulate superoxide anion production by oyster (Crassostrea virginica) hemocytes. Fish Shellfish Immunol. 1999;9:51–60.

    Article  Google Scholar 

  • Anderson R.S. Lack of hemocyte chemiluminescence stimulation by Perkinsus marinus in oysters Crassostrea virginica with dermo disease. J. Aquat. Animal Health. In press.

    Google Scholar 

  • Anderson R.S., Brubacher L.L., Ragone Calvo L.M., Burreson E.M., Unger M.A. Effect of in vitro exposure to tributyltin on generation of oxygen metabolites by oyster hemocytes. Environ. Res. 1997;74:84–90.

    CAS  Google Scholar 

  • Anderson R.S., Brubacher L.L., Ragone-Calvo L., Unger M.A., Burreson E.M. Effects of tributyltin and hypoxia on the progression of Perkinsus marinus infections and host defence mechanisms in Crassostrea virginica (Gmclin). J. Fish Dis. 1998;21:371–379.

    Article  CAS  Google Scholar 

  • Anderson R.S., Burreson E.M., Paynter K.T. Defense responses of hemocytes withdrawn from Crassostrea virginica infected with Perkinsus marinus. J. Invertebr. Pathol. 1995;66:82–89.

    Article  Google Scholar 

  • Anderson R.S., Mora L.M., Thomson S.A. Exposure of oyster macrophages to particulate brass suppresses luminol-augmented chemiluminescence. Toxicologist 1994a;12:391.

    Google Scholar 

  • Anderson R.S., Mora L.M., Thomson S.A. Modulation of oyster (Crassostrea virginica) hemocyte immune function by copper, as measured by luminol-enhanced chemiluminescence. Comp. Biochem. Physiol. 1994b;108C:215–220.

    CAS  Google Scholar 

  • Anderson R.S., Oliver L.M., Jacobs D. Immunotoxicity of cadmium for the eastern oyster (Crassostrea virginica [Gmelin, 1791]): effects on hemocyte chemiluminescence. J. Shellfish Res. 1992;11:31–35.

    Google Scholar 

  • Anderson R.S., Paynter K.T., Burreson E.M. Increased reactive oxygen intermediate production by hemocytes withdrawn from Crassostrea virginica infected with Perkinsus marinas. Biol. Bull. 1992;183:476–481.

    Article  Google Scholar 

  • Anderson R.S., Unger M.A., Burreson E.M. Enhancement of Perkinsus marinus disease progression in TBT-exposed oysters (Crassostrea virginica). Mar. Environ. Res. 1996;42:177–180.

    CAS  Google Scholar 

  • Austin K.A., Paynter K.T. Characterization of the chemiluminescence measured in hemocytes of the Eastern oyster, Crassostrea virginica. J. Exp. Zool. 1995;273:461–471.

    Article  Google Scholar 

  • Babior B.M. Oxidants from phagocytes: agents of defense and destruction. Blood 1984;64:959–966. Baier-Anderson C., Anderson R.S. The effect of pentachlorophenol on NADPH production in oyster hemocytes: immunomodulatory consequences. J. Shellfish Res. 1996;15:498–499.

    Google Scholar 

  • Baier-Anderson C., Anderson R.S. The effect of pentachlorophenol on pyridine nucleotide production in oyster hemocytes: NADPH and immunomodulatio. J. Shellfish Res. 1997;16:111–114.

    Google Scholar 

  • Bramble L.H., Anderson R.S. A comparison of the chemiluminescent response of Crassostrea virginica and Morone saxatilis phagocytes to zymosan and viable Listonella anguillarum. Dev. Comp. Immunol. 1998;22:55–61.

    CAS  Google Scholar 

  • Bramble L.H., Anderson R.S. Lack of involvement of reactive oxygen species in the bactericidal activity of Crassostrea virginica hacmocytes in contrast to Morone saxatilis phagocytes. Fish Shellfish Immunol. 1999;9:109–123.

    Article  Google Scholar 

  • Bridges R.A., Berendes H., Good R.A. A fatal granulomatous disease of childhood. Amer. J. Dis. Child. 1959;97:387.

    CAS  Google Scholar 

  • Bushek D., Allen S.K., Alcox K.A., Gustafson R., Ford S. Dose response of the eastern oyster, Crassostrea virginica, to cultured cells of Perkinsus marinus, the agent of Dermo disease. J. Shellfish Res. 1994;13:313.

    Google Scholar 

  • Chu F.-L.E., Hale R.C. Relationship between pollution and susceptibility to infectious disease in the Eastern oyster, Crassostrea virginica. Mar. Environ. Res. 1994;38:243–256.

    CAS  Google Scholar 

  • Chu F.-L.E., Volety A.K., Lingenfelser J.T., Hale R.C. Modulation of hemocyte activities in oysters (Crassostrea virginica) upon exposure to PAHs. SETAC Abstract Book, 17th Annual Meeting, SETAC Press, Pensacola, FL. p 150.

    Google Scholar 

  • Coles J.A., Farley S.R., Pipe R.K. Alterations of the immune response of the common marine mussel Mytilus edulis resulting from exposure to Cadmium. Dis. Aquat. Org. 1995;22:59–65.

    CAS  Google Scholar 

  • Connors V.A., Lodes M.J., Yoshino T.P. Identification of a Schistosoma mansoni sporocyst execretorysecretory antioxidant molecule and its effect on superoxide production by Biomphalaria glabrata hemocytes. J. Invertebr. Pathol. 1991;58:387–395.

    Article  PubMed  CAS  Google Scholar 

  • Connors V.A., Yoshino T.P. In vitro effect of larval Schistosoma mansoni cxecretory-secretory products on phagocytosis-stimulated superoxide production in hemocytes from Biomphalaria glabrata. J. Parasitol. 1990;76:895–902.

    Article  PubMed  CAS  Google Scholar 

  • Dyrynda E.A., Law R.J., Dyrynda P.E.J., Kelly C.A., Pipe R.K., Graham K.L., Ratcliffe N.A. Modulations in cell-mediated immunity of Mytilus edulis following the `Sea Empress’ oil spill. J. Mar. Biol. Assoc. UK 1997;77:281–284.

    Article  Google Scholar 

  • Dyrynda E.A., Pipe R.K., Burt G.R., Ratcliffe N.A. Modulations in the immune defenses of mussels (Mytilus edulis) from contaminated sites in the UK. Aquat. Toxicol. 1998;42:169–185.

    CAS  Google Scholar 

  • Fisher W.S., Oliver L.M., Sutton E.B., Manning C.S., Walker W.W. Exposure of eastern oysters to tributyltin increases the severity of Perkinsus marinas disease. J. Shellfish Res. 1995;14:265–266.

    Google Scholar 

  • Fisher W.S., Wishkovsky A., Chu F.-L.E. Effects of tributyltin on defense-related activities of oyster hemocytes. Arch. Environ. Contam. Toxicol. 1990;19:354–360.

    CAS  Google Scholar 

  • Hervio D., Bachère E., Mialhe E., Grizel H. Chemiluminescent responses of Ostrea edulis and Crassostrea gigas to Bonamia ostrea (Ascetospora). Dev. Comp. Immunol. 1989;13:449.

    Google Scholar 

  • LaPeyre J.F. (1993): Studies on the oyster pathogen Perkinsus marinus (Apicomplexa): interactions with host defenses of C. virginica and C. gigas, and in vitro propagation. Ph.D. Dissertation, The College of William and Mary, Gloucester Point, VA.

    Google Scholar 

  • LaPeyre J.F., Chu F.-L.E., Vogelbein W.K. In vitro interaction of Perkinsus marinus with hemocytes from eastern and Pacific oysters, Crassostrea virginica and Crassostrea gigas. J. Shellfish Res. 1992;11:200.

    Google Scholar 

  • Larson K.G., Roberson B.S., Hetrick F.M. Effect of environmental pollutants on the chemiluminescence of hemocytes from the American oyster Crassostrea virginica. Dis. Aquat. Org. 1989;6:131–136.

    Google Scholar 

  • LeGall G., Bachère E., Mailhe E. Chemiluminescence analysis of the activity of Pecten maximus hemocytes stimulated with zymosan and host-specific Rickettsiales-like organisms. Dis. Aquat. Org. 1991;11:181–186.

    Google Scholar 

  • LeGall G., Bachère E., Mialhe E., Grizel H. Zymosan and specific-rickettsia activation of oxygen free radicals production in Pecten maximus hemocytes. Dev. Comp. Immunol. 1989;13:448.

    Google Scholar 

  • Noël D., Bachère E., Mialhe E. Phogocytosis associated chemiluminescence of hemocytes in Mytilus edulis (Bivalvia). Dev. Comp. Immunol. 1993;17:483–493.

    Google Scholar 

  • Oliver L.M., Sutton E.B., Fisher W.S. Effects of tributyltin exposure on oyster (Crassostrea virginica) defense functions. J. Shellfish Res. 1995;14:274.

    Google Scholar 

  • Pipe R.K., Coles J.A. Environmental contaminants influencing immune function in marine bivalve molluscs. Fish Shellfish Immunol. 1995;5:581–595.

    Article  Google Scholar 

  • Pipe R.K., Coles J.A., Thomas M.E., Fossato V.U., Pulsford A.L. Evidence for environmentally derived immunomodulation in mussels from the Venice Lagoon. Aquat. Toxicol. 1995;32:59–73.

    CAS  Google Scholar 

  • Roszell L.E., Anderson R.S. Effects of pentachlorophenol on the chemiluminescent response of phagocytes from two estuarine species. Toxicologist 1992;12:392.

    Google Scholar 

  • Tam P.E., Hinsdill R.D. Screening for immunomodulators: effects of xenobiotics on macrophage chemiluminescence in vitro. Fund. Appl. Toxicol. 1990;14:542–553.

    Article  CAS  Google Scholar 

  • Volety A.K., Chu F.-L.E. Suppression of chemiluminescence of eastern oyster (Crassostrea virginica) hemocytes by the protozoan parasite Perkinsus marinus. Dev. Comp. Immunol. 1995;19:135–142.

    CAS  Google Scholar 

  • Winstead J.T., Couch J.A. Enhancement of protozoan pathogen Perkinsus marinus infections in American oysters Crassostrea virginica exposed to the chemical carcinogen n-nitrosodicthylamine (DENA). Dis. Aquat. Org. 1988;5:205–213.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anderson, R.S. (2001). Reactive Oxygen Species and Antimicrobial Defenses of Invertebrates: A Bivalve Model. In: Beck, G., Sugumaran, M., Cooper, E.L. (eds) Phylogenetic Perspectives on the Vertebrate Immune System. Advances in Experimental Medicine and Biology, vol 484. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1291-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1291-2_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5481-9

  • Online ISBN: 978-1-4615-1291-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics