Skip to main content

Determination of the Geometric and Spectral Characteristics of BNCT Beam (Neutron and Gamma-Ray)

  • Chapter
Frontiers in Neutron Capture Therapy

Abstract

Knowledge of the basic parameters of the BNCT epithermal neutron beam is one of the essential conditions ensuring the beam optimal therapeutic use. It is necessary for us to have appropriate tools for determining the beam geometry, absolute values of the dosimetry quantities and spectral characteristics for both neutrons and gamma rays. As far as the Czech BNCT project1 is concerned, the following set of the detectors is used:

  • the beam geometry—the radial and angular distributions of the beam: Semiconductor detector with natural Li converter—thermal and epithermal (with Cd) neutrons, 238U and 232Th fission chambers—fast neutrons Semiconductor detector—gamma rays

  • the dosimetry values of the beam: Activation foils—the fast, epithermal and thermal neutron fiuence rates, neutron spectrum, Bonner spheres—the fast, epithermal and thermal neutron fluence rates, neutron spectrum, Al-P glass TLD—the gamma absorbed dose,

  • Spectral beam values: Scintillation spectrometer—the fast neutron spectrum Hydrogen proportional spectrometer the fast neutron spectrum Scintillation spectrometer—the gamma ray spectrum

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burian J., Marek M., Rataj J., Prokes K., Petruzelka L., Mares V., and Stopka P.: The BNCT facility at NRI reactor in the Czech Republic, Proceedings of 7th Int. Symp. On NCT for Cancer, Zurich, Sept. 1996, Elsevier, Vol. I, p. 391.

    Google Scholar 

  2. Marek M.: Small Si-Li Detectors for Thermal Neutron On-line Measurements, J. The Safety of Nuclear Energy, 3 (41), 7/8, p. 165–168, 1995.

    CAS  Google Scholar 

  3. Marek M., and Burian J.: Free beam and phantom dosimetry methods for boron neutron capture therapy, J. Nucleon, 1 (1994), 25–27.

    Google Scholar 

  4. ASTM Designation E 944–89: Standard Guide for Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance.

    Google Scholar 

  5. Tichy M.: The Program BASACF. PC Version. Description and User’s Guide. Institute of Radiiation Dosimetry, Prague, March 1990.

    Google Scholar 

  6. Marek M.: PC Version of SAND II Code, NRI 9451 R,D, September 1991.

    Google Scholar 

  7. Kocherov N.P., and McLaughlin P.K.: The International Reactor Dosimetry FILE (IRDF-90), IAEA-NDS-141, Rev. 2, October 1993, IAEA, Vienna.

    Google Scholar 

  8. Zijp W.L., et al.: Cross-section Library DOSCROS84 (in a 640 group structure of the SAND-II type), ECN-160, October 1984, Petten.

    Google Scholar 

  9. “MCNP- A General Monte Carlo N-Particle Transport Code (Version 4A)”, LA-12625, J.F. Briesmeister, Ed., Los Alamos National Laboratory (1993).

    Google Scholar 

  10. ENDF-201, ENDF/B-VI Summary Documentation, edited by Rose P.F., Brookhaven National Laboratory Report BNL-NCS-1741, fouth edition, October 1991.

    Google Scholar 

  11. Spurny F.: Methods of outside irradiation dosimetry and their application (in Czech). PhD thesis. Czechoslovak Academy of Sciences, Prague, 1984.

    Google Scholar 

  12. Marek M.: Fast neutron scintillation spectrometer with Stilbene crystal (in Czech). PhD thesis. Czechoslovak Academy of Sciences. Prague. 1990.

    Google Scholar 

  13. Johnson R.H.: Improvements in the differentiation method of spectrum unfolding, J. Nuclear Instrumentation and Methods, 179, 301–307, 1981.

    Article  CAS  Google Scholar 

  14. Jansky B.: Fast neutron spectra measurements with proportional counters, Fast neutron spectra reference (in Czech), PhD thesis, Nuclear Research Institute, Rez, 1991.

    Google Scholar 

  15. Kuchtevic V.I., Trykov O.A., and Trykov L.A.: Scintillation spectrometer with single crystal (in Russian), Atomizdat, Moskow, 1971.

    Google Scholar 

  16. FH 41 Radiameter, Health Physics Instruments, Eberline Instruments GmBH, Erlangen, Germany.

    Google Scholar 

  17. Kaita K., Seren T., and Auterinen I.: First Characterisation of the Finnish Epithermal Neutron Beam Using Activation Detectors, Proceedings of 7th Int. Symp. On NCT for Cancer, Zurich, Sept. 1996, Elsevier, Vol. I.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marek, M., Viererbl, L., Burian, J., Jansky, B. (2001). Determination of the Geometric and Spectral Characteristics of BNCT Beam (Neutron and Gamma-Ray). In: Hawthorne, M.F., Shelly, K., Wiersema, R.J. (eds) Frontiers in Neutron Capture Therapy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1285-1_54

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1285-1_54

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5478-9

  • Online ISBN: 978-1-4615-1285-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics