Skip to main content

The Role of MHC Class II Molecules in the Pathogenesis and Prevention of Type I Diabetes

  • Chapter
Mechanisms of Lymphocyte Activation and Immune Regulation VIII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 490))

Abstract

Although strong associations, and genetic linkage between the Human Leukocyte Antigen (HLA) complex and susceptibility to a wide variety of autoimmune diseases has been documented for the last 30 years, the mechanisms by which genes in the major histocompatibility complex (MHC) mediate susceptibility to autoimmunity remain poorly understood.’ While the primary functions of the MHC Class I and Class II molecules—antigen presentation of peptides to the receptors on T-cells, and T-cell positive and negative selection in the thymus—are now well documented and at least partially delineated, the precise molecular mechanisms by which particular alleles of MHC Class I or Class II molecules increase or decrease susceptibility to autoimmune diseases have not yet been worked out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Tisch and H.O. McDevitt, Insulin-dependent diabetes mellitusCell85, 291–297 (1996).

    Article  PubMed  CAS  Google Scholar 

  2. Acha-Orbea and H.O. McDevitt, The first external domain of the non-obese diabetic mouse class II I-AB chain is uniqueProc. Natl. Acad. Sci.84(8), 4591–4595 (1987).

    Google Scholar 

  3. R. Tisch, X. Yang, S. M. Singer, R.S. Liblau, L. Fugger, and H.O. McDevitt, Immune response to glutamic acid decarboxylase correlates with insulitis onset in non-obese diabetic miceNature366(640), 72–75 (1993).

    Article  PubMed  CAS  Google Scholar 

  4. D.L. Kaufman, M. Clare-Saizler, J. Tian, T. Forsthuber, G. S. P. Ting, P. Robinson, M. A. Atkinson, E. E. Sercarz, A. J. Tobin, and P. V. Lehmann, Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetesNature366(6450), 69–72 (1993).

    Article  PubMed  CAS  Google Scholar 

  5. D. Daniel and D. R. Wegmann, Protection of nonobese diabetic mice from diabetes by intranasal or subcutaneous administration of insulin peptide B-(9–23)Proc. Natl. Acad. Sci.93, 956–960 (1996).

    Article  PubMed  CAS  Google Scholar 

  6. I. R. Cohen, Autoimmunity to chaperonins in the pathogenesis of arthritis and diabetesAnmu. Rev. Immunol.9:567–589 (1991).

    Article  Google Scholar 

  7. R. Tisch, R. S. Liblau, X-D. Yang, P. Liblau, and H. O. McDevitt, Induction of GAD 65-specific regulatory T-cells inhibits ongoing autoimmune diabetes in nonobese diabetic miceDiabetes47(6), 1570–1577 (1998).

    Article  PubMed  Google Scholar 

  8. R. Tisch, B. Wang, and D. V. Serreze, Induction of glutamic acid decarboxylase 65-specific Th2 cells and suppression of autoimmune diabetes at late stages of disease is epitope dependent, J.Immunol.163(3), 1178–1187 (1999).

    PubMed  CAS  Google Scholar 

  9. M. A. Atkinson, N. K. Maclaren, and R. Luchetta, Insulitis and diabetes in NOD mice reduced by prophylactic insulin therapyDiabetes39(8), 933–937 (1990).

    Article  PubMed  CAS  Google Scholar 

  10. D. Elias, T. Reshef, O. S. Birk, R. van der Zee, M. D. Walker, and I. R. Cohen, Vaccination against autoimmune mouse diabetes with a T-cell epitope of the human 65kDa heat shock proteinProc. Natl. Acad Sci.88(8), 3088–3091 (1991).

    Article  PubMed  CAS  Google Scholar 

  11. J-W. Yoon, C-S. Yoon, H-W. Lim, Q. Q. Huang, Y. Kang, K. H. Pyun, K. Hirasawa, R. S. Sherwin, H-S. Jun, Control of autoimmune diabetes in NOD Mice by GAD expression or suppression in B cellsScience284(5417), 1183–1187 (1999).

    Article  PubMed  CAS  Google Scholar 

  12. C-C. Chao, H-K. Sytwu, E. L. Chen, J. Toma, and H. O. McDevitt, The role of MHC class II molecules in susceptibility to type I diabetes: identification of peptide epitopes and characterization of the T cell repertoireProc. Natl. Acad. Sci.96(16), 9299–9304 (1999).

    Article  PubMed  CAS  Google Scholar 

  13. S. M. Singer, R. Tisch, X-D. Yang, H-K. Sytwu, R. S. Liblau, and H. O. McDevitt, Prevention of diabetes in NOD mice by a mutated I-Ab transgeneDiabetes47(10), 1570–1577 (1998).

    Article  PubMed  CAS  Google Scholar 

  14. G. Rammensee, T. Friede, and S. Stevanoviic, MHC ligands and peptide motifs: first listingImmunogenetics41(4), 178–228 (1995).

    Article  PubMed  Google Scholar 

  15. O. Kanagawa, S. M. Martin, B. A. Vaupel, E. Carrasco-Marin, and E. R. Unanue, Autoreactivity of T cells from nonobese diabetic mice: an I-A g7-dependent reactionProc. Natl. Acad. Sci.95(4), 1721–1724 (1998).

    Article  PubMed  CAS  Google Scholar 

  16. W. M. Ridgway, M. Fasso, A. Lanctot, C. Garvey, and C. G. Fathman, Breaking self-tolerance in nonobese diabetic mice, JExp. Med.183(4), 1657–1662 (1996).

    Article  PubMed  CAS  Google Scholar 

  17. N. R. Pritchard, A. J. Cutler, S. Uribe, S. J. Chadban, B. J. Morley, and K. G. C. Smith, Autoimmune-prone mice share a promoter haplotype associated with reduced expressino and function of the Fc receptor FcyRIICurr Bio110:227–230 (2000).

    Article  Google Scholar 

  18. O. Rolandsson, E. Hagg, C. Hampe, E. P. Sullivan Jr., M. Nilsson, G. Jansson, G. Hallmans, and A. Lernmark, Glutamate decarboxylase (GAD65) and tyrosine phosphatase-like protein (IA-2) autoantibodies index in a regional population is related to glucose intolerance and body mass indexDiabetologia42(5), 555–559 (1999).

    Article  PubMed  CAS  Google Scholar 

  19. M. Congia, S. Patel, A. P. Cope, S. De Virgiliis, and G. Sonderstrup, T cell epitopes of insulin defined in HLA-DR4 transgenic mice are derived from preproinsulin and proinsulinProc. Natl. Acad. Sci.95(7), 3833–3838 (1998).

    Article  PubMed  CAS  Google Scholar 

  20. A. E. Herman, R. Tisch, S. D. Patel, S. L. Parry, J. Olson, J. A. Noble, A. P. Cope, B. Cox, M. Congia, and H. O. McDevitt, Determination of autoantigenic peptides presented by the diabetes-associated HLA-DQ8 class II molecule identifies a motif and responses in individuals with typeIdiabetes,J. Immunol.163:6275–6282 (1999).

    PubMed  CAS  Google Scholar 

  21. R. S. Abraham and C. S. David, Identification of HLA-class-II-restricted epitopes of autoantigens in transgenic miceCurr. Opin. Immunol.12(1), 122–129 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

McDevitt, H. (2001). The Role of MHC Class II Molecules in the Pathogenesis and Prevention of Type I Diabetes. In: Gupta, S. (eds) Mechanisms of Lymphocyte Activation and Immune Regulation VIII. Advances in Experimental Medicine and Biology, vol 490. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1243-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1243-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5458-1

  • Online ISBN: 978-1-4615-1243-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics