Skip to main content

Leukemic Cell Insensitivity to Cyclophosphamide and other Oxazaphosphorines Mediated by Aldehyde Dehydrogenase(s)

  • Chapter
Clinically Relevant Resistance in Cancer Chemotherapy

Part of the book series: Cancer Treatment and Research ((CTAR,volume 112))

Abstract

“Acquired” insensitivity to cyclophosphamide and theroxazaphosphorines, e.g., 4-ydroperoxycyclophosphamide (4HC), mafosfamide, ifosfamide and 4-hydroperoxyifosfamide, on the part of the leukemias for which these agents are used is encountered all too often clinically. Increased detoxification of the oxazaphosphorines catalyzed by relatively elevated levels of any of several aldehyde dehydrogenases (ALDHs) present in target (malignant) cells could, at least in some cases, account for the relative insensitivity to these agents. Presently, however, there is no direct evidence (as would be provided by a prospective study, or even retrospective analysis, comparing [1] therapeutic responses to therapeutic strategies of which an oxazaphosphorine is a part with [2] cellular levels of relevant ALDH activity) to support that notion. By the same token, there is little direct evidence disputing it. Herein summarized is the indirect evidence consistent, as well as inconsistent, with the aforementioned possibility

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hempel J, von Bahr-Lindstrom H, Minyall H. Aldehyde dehydrogenase from human liver: primary structure of the cytoplasmic isoenzyme. Eur J Biochem, 141:21–35, 1984.

    Article  PubMed  CAS  Google Scholar 

  2. Hsu LC, Tani K, Fujiyoshi Tet al.Cloning of cDNAs for human aldehyde dehydrogenases 1 and 2. Proc Natl Acad Sci USA, 82:3771–3775, 1985.

    Article  PubMed  CAS  Google Scholar 

  3. Rongnoparut P, Weaver S. Isolation and characterization of a cytosolic aldehyde dehydrogenase-encoding cDNA from mouse liver. Gene, 101:261–265, 1991.

    Article  PubMed  CAS  Google Scholar 

  4. Bhat PV, Labrecque J, Boutin JMet al.Cloning of a cDNA encoding rat aldehyde dehydrogenase with high activity for retinal oxidation. Gene, 166:303–306, 1995.

    Article  PubMed  CAS  Google Scholar 

  5. Kathmann EC, Lipsky JJ. Cloning of a cDNA encoding a constitutively expressed rat liver cytosolic aldehyde dehydrogenase. Biochem Biophys Res Commun, 236:527–531, 1997.

    Article  PubMed  CAS  Google Scholar 

  6. Smith MA, Ries LAG, Gurney JG, Ross JA. Leukemia. In: Cancer incidence and Survival Among Children and Adolescents: United States SEER (Surveillance, Epidemiology, and End Results) Program, 1975–1995. LAG Ries LA Smith JG Gurney, et al. (eds.), Bethesda, MD:National Cancer Institute, NIH Pub, No. 99–4649:17–34, 1999.

    Google Scholar 

  7. Ries LAG, Eisner MP, Kosary CLet al.(eds.) SEER (Surveillance, Epidemiology, and End Results) Cancer Statistics Review, 1973–1997. Bethesda, MD:National Cancer Institute 2000.

    Google Scholar 

  8. Sladek NE. Metabolism and pharmacokinetic behavior of cyclophosphamide and related oxazaphosphorines. In: Anticancer Drugs: Reactive Metabolism and Drug Interactions, G Powis (ed.), Pergamon Press, United Kingdom, 79–156, 1994.

    Google Scholar 

  9. Gamcsik MP, Dolan ME, Andersson BS, Murray D. Mechanisms of resistance to the toxicity of cyclophosphamide. Curr Pharm Design, 5:587–605, 1999.

    CAS  Google Scholar 

  10. Sladek NE. Aldehyde dehydrogenase-mediated cellular relative insensitivity to the oxazaphosphorines. Curr Pharm Design, 5:607–625, 1995.

    Google Scholar 

  11. Sophos NA, Pappa A, Ziegler IL, Vasiliou V. Aldehyde dehydrogenase gene superfamily: the 2000 update. Chem-Biol Interact, 130132:323–337, 2001.

    Article  Google Scholar 

  12. Sladek NE. Oxazaphosphorine-specific acquired cellular resistance. In: Drug Resistance in Oncology. BA Teicher (ed.), Marcel Dekker, New York, NY, 375–411, 1993.

    Google Scholar 

  13. Hilton J. Deoxyribonucleic acid crosslinking by 4-hydroperoxycyclophosphamide in cyclophosphamide-sensitive and -resistant L1210 cells. Biochem Pharmacol, 33:1867–1872, 1984.

    Article  PubMed  CAS  Google Scholar 

  14. Hilton J. Role of aldehyde dehydrogenase in cyclophosphamide-resistant L1210 leukemia. Cancer Res, 44:5156–5160, 1984.

    PubMed  CAS  Google Scholar 

  15. Sladek NE, Landkamer GJ. Restoration of sensitivity to oxazaphosphorines by inhibitors of aldehyde dehydrogenase activity in cultured oxazaphosphorine-resistant L1210 and cross-linking agent-resistant P388 cell lines. Cancer Res, 45:1549–1555, 1985.

    PubMed  CAS  Google Scholar 

  16. Kohn FR, Landkamer GJ, Mantheyet al.Effect of aldehyde dehydrogenase inhibitors on the ex vivo sensitivity of human multipotent and committed hematopoietic progenitor cells and malignant blood cells to oxazaphosphorines. Cancer Res, 47:3180–3185, 1987.

    PubMed  CAS  Google Scholar 

  17. Colvin M, Hilton J. Cellular resistance to cyclophosphamide. In: Mechanisms of Drug Resistance in Neoplastic Cells, PV Woolley III, KD Tew (eds.), Academic Press, New York, NY, 161–171, 1988.

    Google Scholar 

  18. Colvin M, Russo JE, Hilton J.et al.Enzymatic mechanisms of resistance to alkylating agents in tumor cells and normal tissues. Adv Enz Regulat, 27:211–221, 1988.

    Article  CAS  Google Scholar 

  19. Russo JE, Hauquitz D, Hilton J. Inhibition of mouse cytosolic aldehyde dehydrogenase by 4-(diethylamino)benzaldehyde. Biochem Pharmacol, 37:1639–1642, 1988.

    Article  PubMed  CAS  Google Scholar 

  20. Russo JE, Hilton J. Characterization of cytosolic aldehyde dehydrogenase from cyclophosphamide resistant L1210 cells. Cancer Res, 48:2963–2968, 1988.

    PubMed  CAS  Google Scholar 

  21. Russo SE, Hilton J, Colvin OM. The role of aldehyde dehydrogenase isozymes in cellular resistance to the alkylating agent cyclophosphamide. Progr Clin Biol Res, 290:65–79, 1989.

    CAS  Google Scholar 

  22. Radin AT, Zhao X-L, Woo THet al.Structure and expression of the cytosolic aldehyde dehydrogenase gene in cyclophosphamide-resistant murine leukemia L1210 cells. Biochem Pharmacol, 42:1933–1939, 1991.

    Article  PubMed  CAS  Google Scholar 

  23. Habib AD, Boal JH, Hilton Jet al.Effect of stereochemistry on the oxidative metabolism of the cyclophosphamide metabolite aldophosphamide. Biochem Pharmacol, 50:429–433, 1995.

    Article  PubMed  CAS  Google Scholar 

  24. Martens ACM, de Groot CI, Hagenbeek A. Development and characterization of a cyclophosphamide resistant variant of the BNML rat model for acute myelocytic leukaemia. Eur J Cancer, 27:161–166, 1991.

    Article  PubMed  CAS  Google Scholar 

  25. de Groot CI, Martens ACM, Hagenbeek A. Aldehyde dehydrogenase involvement in a variant of the Brown Norway rat acute myelocytic leukaemia (BNML) that acquired cyclophosphamide resistance in vivo. Eur J Cancer, 30A:2137–2143, 1994.

    Article  PubMed  Google Scholar 

  26. Koelling TM, Yeager AM, Hilton Jet al.Development and characterization of a cyclophosphamide-resistant subline of acute myeloid leukemia in the Lewis x Brown Norway hybrid rat. Blood, 76:1209–1213, 1990.

    PubMed  CAS  Google Scholar 

  27. Andersson BS, Mroue M, Britten RA, Murray D. The role of DNA damage in the resistance of human chronic myeloid leukemia cells to cyclophosphamide analogues. Cancer Res, 54:5394–5400, 1994.

    PubMed  CAS  Google Scholar 

  28. Andersson BS, Mroue M, Britten RAet al.Mechanisms of cyclophosphamide resistance in a human myeloid leukemia cell line. Acta Oncol, 34:247–251, 1995.

    Article  PubMed  CAS  Google Scholar 

  29. Andersson BS, Khajavi K, Sadeghi Tet al.Clinically relevant cyclophosphamide analog resistance can be induced by single drug exposure in human leukemic cells. Proc Amer Assoc Cancer Res, 37:317, 1996.

    Google Scholar 

  30. Tsukamoto N, Chen I, Yoshida A. Enhanced expressions of glucose-6-phosphate dehydrogenase and cytosolic aldehyde dehydrogenase, and elevation of reduced glutathione level in cyclophosphamide-resistant human leukemia cells. Blood Cells Molecules Diseases, 24:231–238, 1998.

    Article  CAS  Google Scholar 

  31. De Wys WD. A dose-response study of resistance of leukemia L1210 to cyclophosphamide. J Natl Cancer Inst, 50:783–789, 1973.

    Google Scholar 

  32. Lane M, Yancey ST. Development of a leukaemia resistant to cyclophosphamide (“Cytoxan”). Nature (London), 188:756–757, 1960.

    Article  CAS  Google Scholar 

  33. Sladek NE, Low JE, Landkamer GJ. Collateral sensitivity to cross-linking agents exhibited by cultured L1210 cells resistant to oxazaphosphorines. Cancer Res, 45:625–629, 1985.

    PubMed  CAS  Google Scholar 

  34. Goedde HW, Agarwal DP. Pharmacogenetics of aldehyde dehydrogenase [ALDH]. Pharmacol Ther, 45:345–371, 1990.

    Article  PubMed  CAS  Google Scholar 

  35. Lindahl R. Aldehyde dehydrogenases and their role in carcinogenesis. Crit Rev Biochem Mol Biol, 27:283–335, 1992.

    Article  PubMed  CAS  Google Scholar 

  36. Sreerama L, Sladek NE. Class 1 and class 3 aldehyde dehydrogenase levels in the human tumor cell lines currently used by the National Cancer Institute to screen for potentially useful antitumor agents. Adv Exp Med Biol, 414:81–94, 1997.

    Article  PubMed  Google Scholar 

  37. Moreb JS, Maccow C, Schweder M. Successful expression of antisense RNA to aldehyde dehydrogenase class-1 results in significant increase in the sensitivity to cyclophosphamide derivative. Proc Amer Assoc Cancer Res, 40:437, 1999.

    Google Scholar 

  38. Moreb J, Schweder M, Suresh A, Zucali JR. Overexpression of the human aldehyde dehydrogenase class I results in increased resistance to 4-hydroperoxycyclophosphamide. Cancer Gene Ther, 3:24–30, 1996.

    PubMed  CAS  Google Scholar 

  39. Bunting KD, Townsend AJ. De novo expression of transfected human class 1 aldehyde dehydrogenase (ALDH) causes resistance to oxazaphosphorine anti-cancer alkylating agents in hamster V79 cell lines. Elevated class 1 ALDH activity is closely correlated with reduction in DNA interstrand cross-linking and lethality. J Biol Chem, 271:11884–11890, 1996.

    Article  PubMed  CAS  Google Scholar 

  40. Magni M, Shammah S, Schiro Ret al.Induction of cyclophosphamide-resistance by aldehyde-dehydrogenase gene transfer. Blood, 87:1097–1103, 1996.

    PubMed  CAS  Google Scholar 

  41. Friedman HS, Colvin OM, Kaufmann SHet al.Cyclophosphamide resistance in medulloblastoma. Cancer Res, 52:5373–5378, 1992.

    PubMed  CAS  Google Scholar 

  42. Yoshida A, Dave V, Han H, Scanlon KI. Enhanced transcription of the cytosolic ALDH gene in cyclophosphamide resistant human carcinoma cells. Adv Exp Med Biol, 328:63–72, 1993.

    Google Scholar 

  43. Frei E III, Teicher BA, Holden SAet al.Preclinical studies and clinical correlation of the effect of alkylating dose. Cancer Res, 48:6417–6423, 1988.

    PubMed  CAS  Google Scholar 

  44. Sreerama L, Sladek NE. Identification and characterization of a novel class 3 aldehyde dehydrogenase overexpressed in a human breast adenocarcinoma cell line exhibiting oxazaphosphorine-specific acquired resistance. Biochem Pharmacol. 45:2487–2505, 1993.

    Article  PubMed  CAS  Google Scholar 

  45. Sreerama L, Sladek NE. Overexpression or polycyclic aromatic hydrocarbon-mediated induction of an apparently novel class 3 aldehyde dehydrogenase in human breast adenocarcinoma cells and its relationship to oxazaphosphorine-specific acquired resistance. Adv Exp Med Biol, 328:99–113, 1993.

    Article  PubMed  CAS  Google Scholar 

  46. Sladek NE, Sreerama L, Rekha GK. Constitutive and overexpressed human cytosolic class-3 aldehyde dehydrogenases in normal and neoplastic cells/secretions. Adv Exp Med Biol, 372:103–114, 1995.

    PubMed  CAS  Google Scholar 

  47. Sreerama L, Sladek NE. Three different stable human breast adenocarcinoma sublines that overexpress ALDH3A1 and certain other enzymes, apparently as a consequence of constitutively upregulated gene transcription mediated by transactivated EpREs (electrophile responsive elements) present in the 5’-upstream regions of these genes. Chem-Biol Interact, 130132:247–260, 2001.

    Article  Google Scholar 

  48. Sreerama L, Sladek NE. Identification of a methylcholanthrene-induced aldehyde dehydrogenase in a human breast adenocarcinoma cell line exhibiting oxazaphosphorinespecific acquired resistance. Cancer Res, 54:2176–2185, 1994.

    PubMed  CAS  Google Scholar 

  49. Sreerama L, Rekha GK, Sladek NE. Phenolic antioxidant-induced overexpression of class-3 aldehyde dehydrogenase and oxazaphosphorine-specific resistance. Biochem Pharmacol, 49:669–675, 1995.

    Article  PubMed  CAS  Google Scholar 

  50. Rekha GK, Sladek NE. Inhibition of human class 3 aldehyde dehydrogenase, and sensitization of tumor cells that express significant amounts of this enzyme to oxazaphosphorines, by the naturally occurring compound gossypol. Adv Exp Med Biol, 414:133–146, 1997.

    Article  PubMed  CAS  Google Scholar 

  51. Rekha GK, Devaraj VR, Sreerama Let al.Inhibition of human class 3 aldehyde dehydrogenase, and sensitization of tumor cells that express significant amounts of this enzyme to oxazaphosphorines, by chlorpropamide analogues. Biochem Pharmacol, 55:465–474, 1998.

    Article  PubMed  CAS  Google Scholar 

  52. Sreerama L, Sladek NE. Human breast adenocarcinoma MCF-7/0 cells electroporated with cytosolic class 3 aldehyde dehydrogenases obtained from tumor cells and a normal tissue exhibit differential sensitivity to mafosfamide. Drug Metab Dispos, 23:1080–1084, 1995.

    PubMed  CAS  Google Scholar 

  53. Bunting KD, Lindahl R, Townsend AJ. Oxazaphosphorine-specific resistance in human MCF-7 breast carcinoma cell lines expressing transfected rat class 3 aldehyde dehydrogenase. J Biol Chem, 269:23197–23203, 1994.

    PubMed  CAS  Google Scholar 

  54. Bunting KD, Townsend AJ. Protection by transfected rat or human class 3 aldehyde dehydrogenases against the cytotoxic effects of oxazaphosphorine alkylating agents in hamster V79 cell lines. Demonstration of aldophosphamide metabolism by the human cytosolic class 3 isozyme. J Biol Chem, 271:11891–11896, 1996.

    Article  PubMed  CAS  Google Scholar 

  55. Sladek NE, Kollander R, Sreerama L, Kiang DT. Cellular levels of aldehyde dehydrogenases (ALDH1A1 and ALDH3A1) as predictors of therapeutic responses to cyclophosphamide-based chemotherapy of breast cancer: a retrospective study. Rational individualization of oxazaphosphorine-based cancer chemotherapeutic regimens. Cancer Chemother Pharmacol, 49:309–321, 2002.

    Article  PubMed  CAS  Google Scholar 

  56. Kastan MB, Schlaffer E, Russo JEet al.Direct demonstration of elevated aldehyde dehydrogenase in human hematopoietic progenitor cells. Blood, 75:1947–1950, 1990.

    PubMed  CAS  Google Scholar 

  57. Moreb J, Turner C, Sreerama Let al.Interleukin-1 and tumor necrosis factor alpha induce class-1 aldehyde dehydrogenase mRNA and protein in bone marrow cells. Leukemia Lymphoma, 20:77–84, 1995.

    Article  PubMed  CAS  Google Scholar 

  58. Helander A. Aldehyde dehydrogenase in blood: distribution, characteristics and possible use as marker of alcohol misuse. Alcohol Alcoholism, 28:135–145, 1993.

    CAS  Google Scholar 

  59. Dockham PA, Sreerama L, Sladek NE. Relative contribution of human erythrocyte aldehyde dehydrogenase to the systemic detoxification of the oxazaphosphorines. Drug Metab Dispos, 25:1436–1441, 1997.

    PubMed  CAS  Google Scholar 

  60. Jones RI, Barber JP, Vala MSet al.Assessment of aldehyde dehydrogenase in viable cells. Blood, 85:2742–2746, 1995.

    PubMed  CAS  Google Scholar 

  61. Uckun FM, Chandan-Langlie M, Dockham PAet al.Sensitivity of primary clonogenic blasts from acute lymphoblastic leukemia patients to an activated cyclophosphamide, viz., mafosfamide. Leukemia Lymphoma, 13:417–428, 1994.

    Article  PubMed  CAS  Google Scholar 

  62. Miller CB, Zehnbauer BA, Piantadosi Set al.Correlation of occult clonogenic leukemia drug sensitivity with relapse after autologous bone marrow transplantation. Blood, 78:1125–1131, 1991.

    PubMed  CAS  Google Scholar 

  63. Sladek NE, Manthey CL, Maid PAet al.Xenobiotic oxidation catalyzed by aldehyde dehydrogenases. Drug Metab Revs, 20:697–720, 1989.

    Article  CAS  Google Scholar 

  64. Evans WE, Relling MV, Rodman JHet al.Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukemia. N Engl J Med, 338:499–505, 1998.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sládek, N.E. (2002). Leukemic Cell Insensitivity to Cyclophosphamide and other Oxazaphosphorines Mediated by Aldehyde Dehydrogenase(s). In: Andersson, B., Murray, D. (eds) Clinically Relevant Resistance in Cancer Chemotherapy. Cancer Treatment and Research, vol 112. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1173-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1173-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5428-4

  • Online ISBN: 978-1-4615-1173-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics