Skip to main content

Positive Structures

  • Chapter
Computability and Models

Part of the book series: The University Series in Mathematics ((USMA))

Abstract

The paper reviews the current state of the theory of positive (or computably enumerable) structures. This theory is relevant to several branches of algebra, logic and computer science, e.g. to algorithmic problems in algebra, theory of quasivarieties, logic programming, algebraic specifications of data types. Along with the general theory of positive structures we consider also positive structures of special kind (the most interesting results are obtained for positive boolean algebras) and some appliations of positive structures to logic and computability theory.

Partially supported by RFBR-INTAS Grant IR-97-139. Thanks to Barry Cooper and Sergei Goncharov for inviting me to write this survey.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. M. Arslanov. Completeness in the arithmetical hierarchy and fixed points. Algebra i Logika, 28 (1989), 3–18 (in Russian, English translation: Algebra and Logic, 28 (1989), p. l–9.).

    Article  MathSciNet  MATH  Google Scholar 

  2. J. A. Bergstra and J. V. Tucker. A characterization of computable data types by means of a finite, equational specification method. Lec. Notes Comp. Sci., v. 85 (1980), 76–90.

    Article  MathSciNet  Google Scholar 

  3. W. Baur. Rekursive Algebren mit Kettenbedingungen. Z Math. Logik und Grundl. Math., 20, No 1 (1974), 37–46.

    Article  MathSciNet  MATH  Google Scholar 

  4. I. Bucur and A. Deleany. Introduction to the Theory of Categories and Functors. Wiley, London, 1970.

    Google Scholar 

  5. D. Cenzer and A. Nies. Initial segments of the lattice of \( \coprod\nolimits_1^0 {} \)-classes (to appear).

    Google Scholar 

  6. D. Cenzer and J. B. Remmel. \( \coprod\nolimits_1^0 {} \)-classes in mathematics. In Yu. L. Ershov, S. S. Goncharov, A. Nerode and J. B. Remmel, eds. Handbook of Recursive Mathematics, v. 2, Elsevier, Amsterdam, 1998, 623–822.

    Google Scholar 

  7. C. C. Chang and H. J. Keisler. Model Theory. North Holland, Amsterdam, 1973.

    MATH  Google Scholar 

  8. P. M. Cohn. Universal Algebra. Reidel, Dordrecht, 1981.

    Book  MATH  Google Scholar 

  9. S. D. Denisov. On m-degrees of recursively enumerable sets. Algebra i Logika, 9 (1970), p.422–427 (in Russian, there is an English translation).

    Article  MathSciNet  Google Scholar 

  10. V. P. Dobritsa. Computable classes of constructive models, in Yu. L. Ershov, S. S. Goncharov, A. Nerode and J. B. Remmel, eds. Handbook of Recursive Mathematics, v. 1, Elsevier, Amsterdam, 1998, 183–234.

    Google Scholar 

  11. R. G. Downey. Computability theory and linear orderings, in Yu. L. Ershov, S. S. Goncharov, A. Nerode and J. B. Remmel, eds. Handbook of Recursive Mathematics, v. 2, Elsevier, Amsterdam, 1998, 823–976.

    Google Scholar 

  12. R. G. Downey and A. Nies. Undecidability results for low-level complexity degree structures. J. Comput. Systems Sci., 60 (2000).

    Google Scholar 

  13. S. G. Dvornikov. The lattice of degrees of separability. Abstracts of Seventh all-Union Conf. in Math. Log., Novosibirsk (1984), p.55 (in Russian).

    Google Scholar 

  14. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification I. Springer, Berlin, 1985.

    Book  Google Scholar 

  15. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2. Springer, Berlin, 1990.

    Book  MATH  Google Scholar 

  16. Yu. L. Ershov. Numbered fields. Proc. of 3-d Int. Congress for LMPS, North Holland, Amsterdam, 1968, 31–34.

    Google Scholar 

  17. Yu. L. Ershov. Completely numbered sets. Sib. Mat. Zhurn., 10 (1969), 1048–1064 (in Russian, there is an English translation).

    Google Scholar 

  18. Yu. L. Ershov. Theory of numberings. Nauka, Moscow, 1977 (in Russian).

    Google Scholar 

  19. Yu. L. Ershov. Decidability Problems and Constructive Models. Nauka, Moscow, 1980 (in Russian).

    Google Scholar 

  20. Yu. L. Ershov, S. S. Goncharov, A. Nerode and J. B. Remmel, eds. Handbook of Recursive Mathematics, v. 1 and 2, Elsevier, Amsterdam, 1998.

    Google Scholar 

  21. Yu. L. Ershov, S. S. Goncharov. Constructive Models. Plenum, New York, 1999.

    MATH  Google Scholar 

  22. A. Fröhlich and J. C. Shepherdson. Effective procedures in field theories. Philos. Trans. London Roy. Soc., 248, No 950 (1956), 407–432.

    Article  MATH  Google Scholar 

  23. S. S. Goncharov. Universal recusively enumerable boolean algebras. Sib. Math. J., 24, No 6 (1983), 36–43 (in Russian, there is an English translation).

    MathSciNet  Google Scholar 

  24. S. S. Goncharov. Models of data and languages for their description. Computing Systems, v. 107 (1985), 52–70 (in Russian).

    MathSciNet  MATH  Google Scholar 

  25. S.S. Goncharov. Countable Boolean Algebras and Decidability. Plenum, New York, 1996.

    MATH  Google Scholar 

  26. V. A. Gorbunov. Algebraic Theory of Quasivarieties. Plenum, New York, 1999.

    MATH  Google Scholar 

  27. G. Grätzer. Lattice theory. Freeman, San Francisco, California, 1971.

    MATH  Google Scholar 

  28. T. Hammond. Nonisimorphism of lattices of recursively enumerable sets. J. Symbol Log., 58, No 4 (1993), 1177–1189.

    Article  MathSciNet  MATH  Google Scholar 

  29. L. Harrington and A. Nies. Coding in the partial order of enumerable sets. Advances in Math., 133, No 1 (1998), 133–162.

    Article  MathSciNet  MATH  Google Scholar 

  30. E. Herrmann. The undecidability of the elementary theory of the lattice of recursively enumerable sets. Proc. 2-nd Frege Conf. at Schwerin, GDR, 20 (1984), 66–72.

    Google Scholar 

  31. C. G. Jockusch jr., M. Lerman, R. I. Soare and R. M. Solovay. Recursively enumerable sets modulo iterated jumps and extensions of Arslanov’s completeness criterion. J. Symbol. Logic, 54 (1989), p.1288–1323.

    Article  MathSciNet  MATH  Google Scholar 

  32. S. Kallibekov. On index sets of m-degrees. Sib. Mat. Zhurn., 12 (1971), p.1292–1300 (in Russian, there is an English translation).

    MathSciNet  Google Scholar 

  33. S. Kallibekov. On tt-degrees of recursively enumerable sets. Mat. Zametki, 14, No 5 (1973), p.421–426 (in Russian, there is an English translation).

    Google Scholar 

  34. N. Kh. Kasymov. Positive algebras with congruences of finite index. Abstracts of Int. Conf. on Algebra (Theory of models and algebraic systems), Institute of Math., SD USSR, Novosibirsk, 1989, 57.

    Google Scholar 

  35. N. Kh. Kasymov. Positive algebras with Nöther congruence lattices. Sib. Mat. Zhurn., 33, No 2 (1992), 181–185 (in Russian, there is an English translation).

    MathSciNet  MATH  Google Scholar 

  36. N. Kh. Kasymov. Recursively separable numbered algebras. Uspechi Mat. Nauk, 51 (1996), 145–176 (in Russian, there is an English translation).

    Article  MathSciNet  Google Scholar 

  37. N. G. Khisamiev. Arithmetical hierarchy of abelian groups. Sib. Mat. Zhurn., 29, No 6 (1988), 144–159 (in Russian, there is an English translation).

    MathSciNet  MATH  Google Scholar 

  38. N. G. Khisamiev. Constructive abelian groups. In Yu. L. Ershov, S. S. Goncharov, A. Nerode and J. B. Remmel, eds. Handbook of Recursive Mathematics, v. 2, Elsevier, Amsterdam, 1998, 1177–1232.

    Google Scholar 

  39. S. Kripke and M. B. Pour-El. Deduction preserving recursive isomorphism between theories. Fund. Math., 61 (1967), 141–163.

    MathSciNet  MATH  Google Scholar 

  40. A. V. Kuznetsov. On equality problems and functional completeness for algebraic systems. Trans. 3-d All-Union Math. Congress, Moscow, 2 (1956), 145–146 (in Russian).

    Google Scholar 

  41. A. V. Kuznetsov. Algorithms as operations in algebraic systems. Uspechi Mat. Nauk, 13, No 3 (1958), 240–241 (in Russian).

    Google Scholar 

  42. A. H. Lachlan, Recursively enumerable many-one degrees, Algebra i Logika, 11, No 3 (1972), 326–358.

    Article  MathSciNet  Google Scholar 

  43. A. H. Lachlan. A note on positive equivalence relations. Z. Math. Logik Grundl. Math., 33 (1987), 43–46.

    Article  MathSciNet  MATH  Google Scholar 

  44. S. Lempp. Hyperarithmetical index sets in recursion theory. Trans. Amer. Math. Soc., 303, No 2 (1987), 559–584.

    Article  MathSciNet  MATH  Google Scholar 

  45. J. M. Lloyd. Foundations of Logic Programming. Springer, Berlin, 1984.

    Book  MATH  Google Scholar 

  46. A. I. Mal’cev. Constructive algebras, Uspechi mat. nauk, 16, No 3 (1961) 3–60 (in Russian, English translation in: The Metamathematics of Algebraic Systems (North Holand, Amsterdam) 1971, p. 148–214).

    MathSciNet  Google Scholar 

  47. A. I. Mal’cev. Algebraic Systems. Springer, Berlin, 1973.

    Book  Google Scholar 

  48. A. I. Mal’cev. Completely numbered sets. Algebra i Logika, 2 (1963), p.4–29 (in Russian).

    MathSciNet  Google Scholar 

  49. A. I. Mal’cev. Algorithms and recursive functions. Groningen, Wolters-Noordhoff, 1970.

    MATH  Google Scholar 

  50. D. Martin and M. B. Pour-El. Axiomatizable theories with few axiomatizable extensions. J. Symbol Logic, 35 (1970), 205–209.

    Article  MathSciNet  MATH  Google Scholar 

  51. J. G. G. McKinsey. The decision problem for some classes of sentences without quantifiers. J. Symbol. Log., 8, No 3 (1945), 61–76.

    MathSciNet  Google Scholar 

  52. G. Metakides and A. Nerode, Recursively enumerable vector spaces. Annals Math. Logic, 11, No 2 (1977) 147–172.

    Article  MathSciNet  MATH  Google Scholar 

  53. F. Montagna and A. Sorbi. Universal recursion-theoretic properties of c.e. preordered structures. J. Symbol. Logic, 50 (1985), 397–406.

    Article  MathSciNet  MATH  Google Scholar 

  54. A. Mostowski. On models of axiomatic systems. Fund. Math., 39 (1952), 133–158.

    MathSciNet  Google Scholar 

  55. A. Mostowski. On a system of axioms which has no recursively enumerable arithmetic model. Fundam. Math., 40 (1953), 56–61.

    MathSciNet  MATH  Google Scholar 

  56. A. Nies. Intervals of the lattice of computably enumerable sets and effective boolean algebras. Bull. Lond. Math. Society, 29 (1997) 683–692.

    Article  MathSciNet  Google Scholar 

  57. A. Nies. Coding methods in computability theory and complexity theory. Habilitation thesis, Heidelberg, 1998.

    Google Scholar 

  58. A. Nies. Effectively dense boolean algebras and their applications. Trans. Amer. Math. Soc., 352, No 11 (2000), 4989–5012.

    Article  MathSciNet  MATH  Google Scholar 

  59. A. T. Nurtazin. Computable classes and critetia of autostability. PhD Thesis, Alma-Ata, 1974 (in Russian).

    Google Scholar 

  60. S. P. Odintsov. Lattices of recursively enumerable subalgebras of a recursive algebra. Algebra i Logika, 25, No 6 (1986), 631–642 (in Russian, there is an English translation).

    Article  MathSciNet  MATH  Google Scholar 

  61. S. P. Odintsov. Generally constuctive boolean algebras. In Yu. L. Ershov, S. S. Goncharov, A. Nerode and J. B. Remmel, eds. Handbook of Recursive Mathematics, v. 2, Elsevier, Amsterdam, 1998, 1319–1354.

    Google Scholar 

  62. S. P. Odintsov and V. L. Selivanov. Arithmetical hierarchy and ideals of numbered boolean algebras. Sib. Mat. Zhurn., 30, N 6 (1989), 140–149 (in Russian, there is an English translation).

    MathSciNet  Google Scholar 

  63. M. G. Peretyat’kin. Finitely axiomatizable theories and Lindenbaum algebras of semantic classes. Abstracts of AMS-SIAM Conf. on Computability and applications in Boudler, (to appear in Contemporary Math., 2000).

    Google Scholar 

  64. M. O. Rabin, Computable algebra, general theory and theory of computable fields. Trans. Amer. Math. Soc., 95, No 2 (1960) 341–360.

    MathSciNet  MATH  Google Scholar 

  65. J. B. Remmel. Recursively enumerable Boolean algebras. Annals Math. Log., 15, No 1 (1978), 75–107.

    Article  MathSciNet  MATH  Google Scholar 

  66. J. B. Remmel. Recursive Boolean algebras. In: Handbook of Boolean algebras, v. 3, J. D. Monk et.al. (eds.), North Holland, Amsterdam, 1989, 1097–1165.

    Google Scholar 

  67. H. Rogers jr. Theory of recursive functions and effective computability. New York, McGraw-Hill, 1967.

    MATH  Google Scholar 

  68. V. L. Selivanov. On the structure of degrees of generalized index sets. Algebra i Logika, 21, N 4 (1982), 472–491 (in Russian, there is an English translation).

    Article  MathSciNet  Google Scholar 

  69. V. L. Selivanov. Hierarchies of hyperarithmetical sets and functions, Algebra i Logika, 22, No 6 (1983) 666–692 (in Russian, English translation in: Algebra and Logic, 22, No 6 (1983) 473–491).

    Article  MathSciNet  MATH  Google Scholar 

  70. V. L. Selivanov. Index sets of factor-objects of the Post numbering. In: Proc. of the Int. Conference in Foundations of Computation Theory in Kazan. Lecture Notes in Computer Science, v. 278. Berlin: Springer, 1987, 396–400.

    Google Scholar 

  71. V. L. Selivanov. Index sets of factor-objects of the Post numbering, Algebra i Logika, 27, No 3 (1988) 343–358 (in Russian, English translation in: Algebra and Logic, 27, No 3 (1988) 215–224).

    Article  MathSciNet  Google Scholar 

  72. V. L. Selivanov. On algorithmic complexity of algebraic systems. Mat. Zametki, 44, No 6 (1988) 823–832 (in Russian, English translation in: Math. Notes, 44, No 5–6 (1988) 944–950).

    MathSciNet  MATH  Google Scholar 

  73. V. L. Selivanov. Applications of precomplete numberings to tt-type degrees and to index sets. Algebra i Logika Logic, 12, N 1 (1989), 165–185 (in Russian, there is an English translation).

    MathSciNet  Google Scholar 

  74. V. L. Selivanov. Hierarchical classification of arithmetical sets and index sets. Habilitation thesis, Institute of Mathematics SD RAS, Novosibirsk, 1989, 170 p. (in Russian).

    Google Scholar 

  75. V. L. Selivanov. Index sets of classes of hyperhypersimple sets. Algebra i Logika, 29, N 2 (1990), 220–240 (in Russian, there is an English translation).

    Article  MathSciNet  Google Scholar 

  76. V. L. Selivanov. Fine hierarchies and definable index sets, Algebra i Logika, 30, No 6 (1991) 705–725 (in Russian, English translation in: Algebra and Logic, 30, No 6 (1991) 463–475).

    Article  MathSciNet  Google Scholar 

  77. V. L. Selivanov. Universal Boolean algebras with applications. Abstracts of Int. Conf. in Algebra, Novosibirsk, 1991, 127 (in Russian).

    Google Scholar 

  78. V. L. Selivanov. Computing degrees of definable classes of sentences. In: Proc. of Int. Conference in Algebra in Honor of A. I. Malcev in Novosibirsk. Contemporary Mathematics, v. 131, part 3 (1992), 657–666.

    Google Scholar 

  79. V. L. Selivanov. Hierarchies, Numerations, Index Sets. Handwritten notes, 1992, 290pp.

    Google Scholar 

  80. V. L. Selivanov. Precomplete numerations with applications, Preprint No 13, 1994, the University of Heidelberg, Chair of Mathematical Logic, 59 pp. (see Proceedings of Int. Conference in Honor of A. I. Maltsev, Novosibirsk, 1999 for a shorter version).

    Google Scholar 

  81. V. L. Selivanov. Fine hierarchies and Boolean terms. The Journal of Symbolic Logic, 60, N 1 (1995), 289–317.

    Article  MathSciNet  MATH  Google Scholar 

  82. V. L. Selivanov. On recursively enumerable structures. Annals of Pure and Applied Logic, 78 (1996), 243–258.

    Article  MathSciNet  MATH  Google Scholar 

  83. V. L. Selivanov. Fine hierarchy and definability in the Lindenbaum algebra. In: Logic: from foundations to applications, Proceedings of the Logic Colloquium-93 in Keele. Oxford, 1996, 425–452.

    Google Scholar 

  84. R. I. Soare. Recursively Enumerable Sets and Degrees. Springer, Berlin, 1987.

    Google Scholar 

  85. J. J. Thurber. Recursive and recursively enumerable quotient boolean algebras. Arch. math. Logic, 33 (1994), 121–129.

    Article  MathSciNet  MATH  Google Scholar 

  86. A. Visser. Numberings, λ-calculus and arithmetic. In: To H.B.Curry: Essays on combinatory logic, λ-calculus and formalism, New York, Acad. Press, 1980, p.259–284.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Selivanov, V. (2003). Positive Structures. In: Computability and Models. The University Series in Mathematics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0755-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0755-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5225-9

  • Online ISBN: 978-1-4615-0755-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics