Skip to main content

Dynamic Use of Tactile Afferent Signals in Control of Dexterous Manipulation

  • Chapter
Sensorimotor Control of Movement and Posture

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 508))

Abstract

During object manipulation, humans select and activate neural action programs acquired during ontogenetic development. A basic issue in understanding the control of dexterous manipulation is to learn how people use sensory information to adapt the output of these neural programs such that the fingertip actions matches the requirements imposed by the physical properties of the manipulated object, e.g., weight (mass), slipperiness, shape, and mass distribution. Although visually based identification processes contribute to predictions of required fingertip actions, the digital tactile sensors provide critical information for the control of fingertip forces. The present account deals with the tactile afferent signals from the digits during manipulation and focuses on some specific issues that the neural controller has to deal with to make use of tactile information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdelmoumene, M., Besson, J.M., and Aleonard, P., 1970, Cortical areas exerting presynaptic inhibitory action on the spinal cord in cat and monkey, Brain Research, 20, 327–329.

    Article  PubMed  CAS  Google Scholar 

  • Adkins, R.J., Morse, R.W. and Towe, A.L., 1966, Control of somatosensory input by cerebral cortex, Science, 153, 1020–1022.

    Article  PubMed  CAS  Google Scholar 

  • Ballard, D.H., Hayhoe, M.M., Li, F., and Whitehead, S.D.,1992, Hand-eye coordination during sequential tasks, Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 337, 331–338.

    Article  PubMed  CAS  Google Scholar 

  • Birznieks, I., Jenmalm, P., Goodwin, A.W., and Johansson, R.S.,2001, Encoding of direction of fingertip forces by human tactile afferents, Journal of Neuroscience, 21, 8222–8237.

    PubMed  CAS  Google Scholar 

  • Blakemore, S.J., Frith, C.D., and Wolpert, D.M., 2001, The cerebellum is involved in predicting the sensory consequences of action, Neuroreport, 12, 1879–1884.

    Article  PubMed  CAS  Google Scholar 

  • Blakemore, S.J., Goodbody, S.J., and Wolpert, D.M., 1998a, Predicting the consequences of our own actions: The role of sensorimotor context estimation, Journal of Neuroscience,18, 7511–7518.

    CAS  Google Scholar 

  • Blakemore, S.J., Wolpert, D.M., and Frith, C.D., 1998b, Central cancellation of self-produced tickle sensation, Naure Neurosciece, 1, 635–640.

    Article  CAS  Google Scholar 

  • Buonomano, D.V., and Merzenich, M.M., 1998, Cortical plasticity: from synapses to maps, Annual Review of Neuroscience, 21,149–186.

    Article  PubMed  CAS  Google Scholar 

  • Burstedt, M.K.O., Edin, B.B., and Johansson, R.S., 1997, Coordination of fingertip forces during human manipulation can emerge from independent neural networks controlling each engaged digit, Experimental Brain Research, 117,67–79.

    Article  CAS  Google Scholar 

  • Cohen, L.G., and Starr, A., 1987, Localization, timing and specificity of gating of somatosensory evoked potentials during active movement in man, Brain, 110, 451–467.

    Article  PubMed  Google Scholar 

  • Dykes, R.W and Craig, A.D, 1998, Control of size and excitability of mechanosensory receptive fields in dorsal column nuclei by homolateral dorsal horn neurons, Journal of Neurophysiology, 80, 120–129.

    PubMed  CAS  Google Scholar 

  • Edin, B.B., Westling, G., and Johansson, R.S., 1992, Independent control of fingertip forces at individual digits during precision lifting in humans, Journal of Physiology, 450, 547–564.

    PubMed  CAS  Google Scholar 

  • Ergenzinger, E.R., Glasier, M.M., Hahm, J.O., and Pons, T.P., 1998, Cortically induced thalamic plasticity in the primate somatosensory system, Nature Neuroscience 1, 226–229.

    Article  PubMed  CAS  Google Scholar 

  • Evarts, E.V., 1981, Sherrington’s concepts of proprioception, Trends in Neuroscience, 4, 44–46.

    Article  Google Scholar 

  • Flanagan, J.R., Burstedt, M.K.O., and Johansson, R.S., 1999, Control of fingertip forces in multi-digit manipulation, Journal of Neurophysiology, 81, 1706–1717.

    PubMed  CAS  Google Scholar 

  • Flanagan, J.R., and Tresilian, J.R., 1994, Grip load force coupling: A general control strategy for transporting objects, Journal of Experimental Psychology: Human Perception and Performance, 20, 944–957.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin, A.W., Browning, A.S., and Wheat, H.E., 1995, Representation of curved surfaces in responses of mechanoreceptive afferent-fibers innervating the monkeys fingerpad, Journal of Neuroscience, 15, 798–810.

    PubMed  CAS  Google Scholar 

  • Goodwin, A.W., Jenmalm, P., and Johansson, R.S., 1998, Control of grip force when tilting objects: effect of curvature of grasped surfaces and of applied tangential torque, Journal of Neuroscience, 18, 10724–10734.

    PubMed  CAS  Google Scholar 

  • Goodwin, A.W., Macefield, V.G., and Bisley, J.W., 1997, Encoding of object curvature by tactile afferents from human fingers, Journal of Neurophysiology, 78, 2881–2888.

    PubMed  CAS  Google Scholar 

  • Gordon, A.M., Forssberg, H., Johansson, R.S., and Westling, G., 1991, Visual size cues in the programming of manipulative forces during precision grip, Experimental Brain Research, 83, 477–482.

    CAS  Google Scholar 

  • Harris, F., Jabbur, S.J., Morse, R.W., and Tow, A.L., 1965, Influence of the cerebral cortex on the cuneate nucleus of the monkey, Nature, 208, 1215–1216.

    Article  PubMed  CAS  Google Scholar 

  • Imamizu, H., Miyauchi, S., Tamada, T., Sasaki, Y., Takino, R., Putz, B., Yoshioka, T., and Kawato, M., 2000, Human cerebellar activity reflecting an acquired internal model of a new tool, Nature, 403, 192–195.

    Article  PubMed  CAS  Google Scholar 

  • Jeannerod, M., 1986, The formation of finger grip during prehension. A cortically mediated visuomotor pattern, Behavioural Brain Research, 19, 99–116.

    Article  PubMed  CAS  Google Scholar 

  • Jenmalm, P., Birznieks, I., Goodwin, A., and Johansson, R., 1999, Differential responses in populations of fingertip tactile afferents to objects’ surface curvatures, Acta Physiologica Scandinavica, 167, A24–A25.

    Google Scholar 

  • Jenmalm, P., Dahlstedt, S., and Johansson, R.S., 2000, Visual and tactile information about object curvature control fingertip forces and grasp kinematics in human dexterous manipulation, Journal of Neurophysiology, 84, 2984–2997.

    PubMed  CAS  Google Scholar 

  • Jenmalm, P., Goodwin, A.W., and Johansson, R.S., 1998, Control of grasp stability when humans lift objects with different surface curvatures, Journal of Neurophysiology, 79, 1643–1652.

    PubMed  CAS  Google Scholar 

  • Jenmalm, P., and Johansson, R.S., 1997, Visual and somatosensory information about object shape control manipulative finger tip forces, Journal of Neuroscience, 17, 4486–4499.

    PubMed  CAS  Google Scholar 

  • Johansson, R.S., Backlin, J.L., and Burstedt, M.K.O., 1999, Control of grasp stability during pronation and supination movements, Experimental Brain Research, 128, 20–30.

    Article  CAS  Google Scholar 

  • Johansson, R.S., and Cole, K.J., 1992, Sensory-motor coordination during grasping and manipulative actions, Current Opinion in Neurobiology, 2, 815–823.

    Article  PubMed  CAS  Google Scholar 

  • Johansson, R.S., and Cole, K.J., 1994, Grasp stability during manipulative actions. Canadian Journal of Physioliogy and Pharmacology, 72, 511–524.

    Article  CAS  Google Scholar 

  • Johansson, R.S., and Vallbo, A.B., 1979, Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin, Journal of Physiolog, 286, 283–300.

    CAS  Google Scholar 

  • Johansson, R.S and Vallbo, A.B, 1983, Tactile sensory coding in the glabrous skin of the human hand, Trends in Neuroscience, 6, 27–31.

    Article  Google Scholar 

  • Johansson, R.S., and Westling, G., 1984, Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects, Experimental Brain Research, 56,550–564.

    Article  CAS  Google Scholar 

  • Johansson, R.S., and Westling, G., 1987, Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip, Experimental Brain Research, 66, 141–154.

    Article  CAS  Google Scholar 

  • Johansson, R.S., and Westling, G., 1988a, Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip, Experimental Brain Research, 71, 59–71.

    CAS  Google Scholar 

  • Johansson, R.S., and Westling, G., 1988b, Programmed and triggered actions to rapid load changes during precision grip, Experimental Brain Research, 71, 72–86.

    CAS  Google Scholar 

  • Johansson, R.S., and Westling, G., 1990, Tactile afferent signals in the control of precision grip, in: Attention and Performance, vol XIII, Jeannerod M. Erlbaum, ed., Hilldale, New Jersey, pp. 677–713.

    Google Scholar 

  • Johansson, R.S., Westling, G., Bäckström, A., and Flanagan, J.R., 2001, Eye-hand coordination in object manipulation, Journal of Neuroscience, 21, 6917–6932.

    PubMed  CAS  Google Scholar 

  • Jones, E.G., 2000, Cortical and subcortical contributions Co activity-dependent plasticity in primate somatosensory cortex, Annual Review of Neuroscience, 23, 1–37.

    Article  PubMed  CAS  Google Scholar 

  • Kawato, M., 1999, Internal models for motor control and trajectory planning, Current Opinion in Neurobiology, 9, 718–727.

    Article  PubMed  CAS  Google Scholar 

  • Khalsa, P.S., Friedman, R.M., Srinivasan, M.A., and Lamotte, R.H., 1998, Encoding of shape and orientation of objects indented into the monkey fingerpad by populations of slowly and rapidly adapting mechanoreceptors, Journal of Neurophysiology, 79, 3238–3251.

    PubMed  CAS  Google Scholar 

  • Kinoshita, H., Bäckström, L., Flanagan, J.R., and Johansson, R.S., 1997, Tangential torque effects on the control of grip forces when holding objects with a precision grip, Journal of Neurophysiology, 78, 1619–1630.

    PubMed  CAS  Google Scholar 

  • Lackner, J.R., and DiZio, P.A., 2000, Aspects of body self-calibration, Trends in Cognitive Science, Regular Edition, 4, 279–288.

    CAS  Google Scholar 

  • Lacquaniti, F., 1992, Automatic control of limb movement and posture, Current Opinion in Neurobiology, 2, 807–814.

    Article  PubMed  CAS  Google Scholar 

  • Land, M., Mennie, N., and Rusted, J., 1999, The roles of vision and eye movements in the control of activities of daily living, Perception, 28, 1311–1328.

    Article  PubMed  CAS  Google Scholar 

  • Macefield, V.G., and Johansson, R.S., 1996, Control of grip force during restraint of an object held between finger and thumb: responses of muscle and joint afferents from the digits, Experimental Brain Research, 108,172–184.

    CAS  Google Scholar 

  • Miall, R.C., and Wolpert, D.M., 1996, Forward models for physiological motor control, Neural Networks 9, 1265–1279.

    Article  PubMed  Google Scholar 

  • Ohki, Y., Edin, B.B., and Johansson, R.S., 2002, Predictions specify reactive control of individual digits in manipulation, Journal of Neuroscience, 22, 600–610.

    PubMed  CAS  Google Scholar 

  • Prochazka, A., 1993, Comparison of natural and artificial control of movement, IEEE Transactions on Rehabilitation Engineering, 1, 7–17.

    Article  Google Scholar 

  • Rack, P.M.H., 1981, Limitations of somatosensory feedback in control of posture and movement, in: Handbook of Physiology. Sect. 1: The Nervous System, Brookhart, J.M. and Mountcastle, V.B., eds., American Physiological Society, Bethesda, Maryland, pp. 229–256.

    Google Scholar 

  • Roberts, P.D., and Bell, C.C., 2000, Computational consequences of temporally asymmetric learning rules: I1. Sensory image cancellation, Journal of Computational Neuroscience, 9, 67–83.

    Article  PubMed  CAS  Google Scholar 

  • Sperry, R.W., 1950, Neural basis of the spontaneous optokinetic response produced by visual inversion, Journal of Comparative and Physiological Psychology, 43, 482–489.

    Article  PubMed  CAS  Google Scholar 

  • Tamada, T., Miyauchi, S., Imamizu, H., Yoshioka, T., and Kawato, M., 1999, Cerebro-cerebellar functional connectivity revealed by the laterality index in tool-use learning, Neuroreport 10, 325–331.

    Article  PubMed  CAS  Google Scholar 

  • Vallbo, A.B., 1985, Proprioceptive activity from human finger muscles, in: Feedback and motor control in invertebrates and vertebrates, Barnes, W.J.P. and Gladden, M.H., eds., Croom Helm Ltd, London, pp. 411–430.

    Chapter  Google Scholar 

  • Westling, G., and Johansson, R.S., 1987, Responses in glabrous skin mechanoreceptors during precision grip in humans, Experimental Brain Research, 66, 128–140.

    Article  CAS  Google Scholar 

  • Williams, S.R., Shenasa, J., and Chapman, C.E., 1998, Time course and magnitude of movement-related gating of tactile detection in humans. I. Importance of stimulus location, Journal of Neurophysiolgy, 79, 947–963.

    CAS  Google Scholar 

  • Wolpert, D.M and Miall, R C, Kawato, M, 1998, Internal models in the cerebellum, Trends in Cognitive Science, 2, 338–347.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Johansson, R.S. (2002). Dynamic Use of Tactile Afferent Signals in Control of Dexterous Manipulation. In: Gandevia, S.C., Proske, U., Stuart, D.G. (eds) Sensorimotor Control of Movement and Posture. Advances in Experimental Medicine and Biology, vol 508. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0713-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0713-0_45

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5206-8

  • Online ISBN: 978-1-4615-0713-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics