Skip to main content

Therapeutic Potential of Iron Chelators in Cancer Therapy

  • Chapter
Iron Chelation Therapy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 509))

Abstract

The development of iron (Fe) chelators for clinical use remains an active research goal. Over the last thirty years desferrioxamine (DFO; DesferalR; Fig. 1) has been the drug of choice in the treatment of Fe overload disease.I2Despite its considerable success, the problems with this drug remain significant and much research has been invested to obtain alternative ligands (see Chapters 7-9, 13, 14). At present, a number of potential chelators that are orally effective are available for experimental testing (see Chapters 7,13,14). Hence, one can envisage that in the future some of these compounds used alone or in various combinations may provide a better regimen than DFO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Olivieri, N.F., and Brittenham, G.M., 1997, Iron chelating therapy and the treatment of thalassemiaBlood89:739.

    CAS  Google Scholar 

  2. Richardson, D.R., and Ponka, P., 1998, The development of iron chelators to treat iron overload disease and their use as experimental tools to study intracellular iron metabolismAm. J. Hematol.58:299.

    Article  CAS  Google Scholar 

  3. Donfrancesco, A., Deb, G., De Sio, L., Cozza, R., and Castellano, A., 1996, Role of desferrioxamine in tumor therapyActa Haematol.95:66.

    Article  CAS  Google Scholar 

  4. Richardson, D.R., 1997, Iron chelators as effective anti-proliferative agentsCan. J. Physiol. Pharmacol.75:1164.

    Article  CAS  Google Scholar 

  5. Hentze, M.W., and Kuhn, L.C., 1996, Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stressProc. Natl. Acad. Sci. USA93:8175.

    Article  CAS  Google Scholar 

  6. Richardson, D.R., and Ponka, P., 1997, The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cellsBiochim. Biophys. Acta1331:1.

    CAS  Google Scholar 

  7. Ponka, P., Beaumont, C., and Richardson, D.R., 1998, Function and regulation of transferrin and ferritinSemin Hematol.35:35.

    CAS  Google Scholar 

  8. Myers, C., Gianni, L., Zweier, J., Muindi, J., Sinha, K., and Eliot T., 1986, Role of iron in adriamycin biochemistryFed. Proc.45:2792.

    CAS  Google Scholar 

  9. Kwok, J., and Richardson, D.R., 2000, The cardioprotective effect of the iron chelator dexrazoxane (ICRF-l87) on anthracycline-mediated cardiotoxicityRedox Report6: (in press)

    Google Scholar 

  10. Burger, R.M., Peisach, J., and Horwitz, S.B. 1981, Activated bleomycin: a transient complex of drug, iron and oxygen that degrades DNAJ Biol. Chem.256:11636.

    CAS  Google Scholar 

  11. Salmon, S.E., Part VII, 1980, Chemotherapeutic Agents-Cancer Chemotherapy. In: Meyers, F.H., Jawetz, E., Goldfien, E., Goldfien, A., eds. Review of Medical Pharmacology.Los Altos: Lange Medical Publications, 477.

    Google Scholar 

  12. Nyholm, S., Thelander, L., and Graslund, A., 1993, Reduction and loss of the iron center in the reaction of the small subunit of mouse ribonucleotide reductase with hydroxyureaBiochemistry32:11569.

    Article  CAS  Google Scholar 

  13. Nyholm, S., Mann, G.J., Johansson, A.G., Bergeron, R.J., Graslund, A., and Thelander, L., 1993, Role of ribonucleotide reductase in inhibition of mammalian cell growth by potent iron chelatorsJ. Biol. Chem.268: 26200.

    CAS  Google Scholar 

  14. Cooper, C.E., Lynagh, G.R., Hoyes, K.P., Hider, R.C., Cammack, R., and Porter, J.B. 1996, The relationship of intracellular iron chelation to the inhibition and regeneration of human ribonucleotide reductase.J. Biol. Cheat.271: 20291.

    Article  CAS  Google Scholar 

  15. Richardson, D.R., Tran, E., and Ponka, P., 1995, The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agentsBlood86:4295.

    CAS  Google Scholar 

  16. Richardson, D.R., and Milnes, K., 1997, The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective anti-proliferative agents II: The mechanism of action of ligands derived from salicylaldehyde benzoyl hydrazone and 2-hydroxy-I-naphthylaldehyde benzoyl hydrazoneBlood89:3025.

    CAS  Google Scholar 

  17. Finch, R.A., Liu, M-C., Grill, S.P., Rose, W.C., Loomis, R., Vasquez, K.M., Cheng, Y-C., and Sartorelli, A.C., 2000, Triapine (3-aminopyridine-2-carboxaldehyde-thiosemicarbazone): A potent inhibitor of ribonucleotide reductase activity with broad spectrum antitumor activityBiochem. Pharmacol.59:983.

    Article  CAS  Google Scholar 

  18. Beckloff, G.L., Lerner, H.1., Frost, D., Russo-Alesi, F.M., and Gitomer, S., 1965, Hydroxyurea (NSC-32065) in biological fluids: Dose-concentration relationshipCancer Chemother. Rep.48:57.

    CAS  Google Scholar 

  19. Gwilt, P.R., and Tracewell, W.G., 1998, Pharmacokinetics and pharmacodynamics of hydroxyureaClin. Pharmacokinet.34:347.

    Article  CAS  Google Scholar 

  20. Moore, E.C., and Hurlbert, R.B., 1989, The inhibition of ribonucleotide diphosphate reductase by hydroxyurea, guanazole and pyrazoloimidazole (IMPY). In:Inhibitors of Rihonucleoside Diphosphate Reductase ActivityCory, J.G., Cory, A.H., eds., Pergamon Press, Oxford, pp. 165–201.

    Google Scholar 

  21. Darnell, G., and Richardson, D.R., 1999, The potential of analogues of the pyridoxal isonicotinoyl hydrazone class as effective anti-proliferative agents Ill: The effect of the ligands on molecular targets involved in proliferationBlood94:781.

    CAS  Google Scholar 

  22. Chitambar, C.R., and Wereley, J., 1995, Effect of hydroxyurea on cellular iron metabolism in human leukemic CCRF-CEM cells: Changes in iron uptake and the regulation of transferrin receptor and ferritin gene expression following inhibition of DNA synthesisCancer Res.55:4361.

    CAS  Google Scholar 

  23. Brodie, C., Siriwardana, G., Lucas, J., Schleicher, R., Terada, N., Szepesi, A., Gelfand, E., and Seligman, P., 1993, Neuroblastoma sensitivity to growth inhibition by deferoxamine: Evidence for a block in the GIphase of the cell cycleCancer Res.53: 3968.

    CAS  Google Scholar 

  24. Rang, H.P., Dale, M.M., and Ritter, M.M., 1995Pharmacology3nd Edn., Churchill Livingston Publishers.

    Google Scholar 

  25. Blatt, J., and Stitely, S., 1987, Antineuroblastoma activity of desferrioxamine in human cell linesCancer Res.47:1749.

    CAS  Google Scholar 

  26. Becton, D.L., and Bryles, P., 1988, Deferoxamine inhibition of human neuroblastoma viability and proliferationCancer Res.48:7189.

    CAS  Google Scholar 

  27. Donfrancesco, A., Deb, G., Dominici, C., Pileggi, D., Castello, M.A., and Nelson, L., 1990, Effects of a single course of deferoxamine in neuroblastoma patientsCancer Res.50:4929.

    CAS  Google Scholar 

  28. Kontoghiorghes, G.J., and Evans, R.W. 1985, Site specificity of iron removal from transferrin by aketohydroxypyridone chelatorsFEBS Lea.189: 141.

    Article  CAS  Google Scholar 

  29. Baker, E., Richardson, D.R., Gross, S., and Ponka, P., 1992, Evaluation of the iron chelation potential of pyridoxal, salicylaldehyde and 2-hydroxy- I -naphthylaldehyde using the hepatocyte in cultureHepatologry15:492.

    Article  CAS  Google Scholar 

  30. Morgan, E.H., 1981, Transferrin: biochemistry, physiology and clinical significanceMol. Aspects Med.4:1.

    Article  Google Scholar 

  31. Kawabata, H., Yang, R., Hiram, T., Vuong, P.T., Kawano, S., Gombart, A.F., and Koerner, H.P., 1999, Molecular cloning of transferrin receptor 2: A new member of the transferrin receptor-like familyJ. Biot. Chem.274:20826.

    Article  CAS  Google Scholar 

  32. Kawabata, H., Germain, R.S., Vuong, P.T., Nakamaki, T., Said, J.W., and Koeffler, H.P., 2000, Transferrin receptor 2-a supports cell growth both in iron-chelated cultured cells and in vivoJ. Biol. Chem.275:16618.

    Article  CAS  Google Scholar 

  33. Page, M.A., Baker, E., and Morgan, E.H., 1984, Transferrin and iron uptake by rat hepatocytes in cultureAm. J. Physiol.246:G26.

    CAS  Google Scholar 

  34. Trinder, D., Morgan, E.H., and Baker, E., 1986, The mechanisms of iron uptake by rat fetal hepatocytesHepatology6:852.

    Article  CAS  Google Scholar 

  35. Richardson, D.R., and Baker, E., 1990, The uptake of iron and transferrin by the human melanoma cellBiochim Biophys. Acta1053:1.

    Article  CAS  Google Scholar 

  36. Richardson, D.R., and Baker, E., 1994, Two saturable mechanisms of iron uptake from transferrin in human melanoma cells: The effect of transferrin concentration, chelators and metabolic probes on transferrin and iron uptakeJ. Cell Physiol.161:160.

    Article  CAS  Google Scholar 

  37. Richardson, D.R., and Ponka, P., 1994, The iron metabolism of the human neuroblastoma cell. Lack of relationship between the efficacy of iron chelation and the inhibition of DNA synthesisJ. Lab. Clin. Med.124: 660.

    CAS  Google Scholar 

  38. Trinder, D., Zak, O., and Aisen, P., 1996, Transferrin receptor-independent uptake of diferric transferrin by human hepatoma cells with antisense inhibition of receptor expressionHepatology23:1512.

    Article  CAS  Google Scholar 

  39. Trowbridge, I.S., and Lopez, F., 1982, Monoclonal antibody to transferrin receptor blocks transferrin binding and inhibits tumor cell growth in vitroProc. Natl. Acad. Sci. USA79:1175.

    Article  CAS  Google Scholar 

  40. Kemp, J.D., Smith, K.M., Kanner, L.J., Gomez, F., Thorson, J.A., and Naumann, P.W., 1990, Synergistic inhibition of lymphoid tumor growth in vitro by combined treatment with the iron chelator deferoxamine and an immunoglobulin G monoclonal antibody against the transferrin receptorBlood76:991.

    CAS  Google Scholar 

  41. Kemp, J.D., Thorson, J.A., Stewart, B.C., and Naumann, P.W., 1992, Inhibition of hematopoietic tumor growth by combined treatment with deferoxamine and an IgG monoclonal antibody against the transferrin receptor: evidence for a threshold model of iron deprivation toxicityCancer Res.52: 4144.

    CAS  Google Scholar 

  42. Levy, J.E., Jin, O., Fujiwara, Y., Kuo, F., and Andrews, N.C., 1999, Transferrin receptor is necessary for the development of erythrocytes and the nervous systemNature Genet.21:396.

    Article  CAS  Google Scholar 

  43. Chan, L-N.L., and Gerhardt, E.M., 1992, Transferrin receptor gene is hyperexpressed and transcriptionally regulated in differentiating erythroid cellsJ. Biol. Chem.267:8254.

    CAS  Google Scholar 

  44. Bianchi, L., Tacchini, L., and Cairo, G., 1999, HIF-1-mediated activation of transferrin receptor gene transcription by iron chelationNucleic Acids Res.27:4223.

    Article  CAS  Google Scholar 

  45. Lok, C.N., and Ponka, P., 1999, Identification of a hypoxia response element in the transferrin receptor gene.J. Biol. Chem.274:24147.

    Article  CAS  Google Scholar 

  46. Tacchini, L., Bianchi, L., Bernelli-Zazzera, A., and Cairo, G., 1999, Transferrin receptor induction by hypoxia. HIF-I mediated transcriptional activation and cell specific post-transcriptional regulationJ. Biol. Chem.274:24142.

    Article  CAS  Google Scholar 

  47. .Larrick, J.W., and Cresswell, P., 1979, Modulation of cell surface iron transferrin receptors by cellular density and the state of activationJ. Supramol. Struct.11:579.

    Article  CAS  Google Scholar 

  48. Richardson, D.R., and Baker, E., 1992, Two mechanisms of iron uptake from transferrin by melanoma cells. The effect of desferrioxamine and ferric ammonium citrateJ. Biol. Chem.267:13972.

    CAS  Google Scholar 

  49. Chan, S.M., Hoffer, P.B., Maric, N., and Duray, P., 1987, Inhibition of gallium-67 uptake in melanoma by an anti-human transferrin receptor monoclonal antibodyJ. Nucl. Med.28:1303.

    CAS  Google Scholar 

  50. Crawford, E.D., Saiers, J.H., Baker, L.H., Costanzi, J.H., and Bukowski, R.M., 1991, Gallium nitrate in advanced bladder carcinoma: southwest oncology group studyUrology38:355.

    Article  CAS  Google Scholar 

  51. Chitambar, C.R., Zahir, S.A., Ritch, P.S., and Anderson, T., 1997, Evaluation of continuous-infusion gallium nitrate and hydroxyurea in combination for the treatment of refractory non-Hodgkin’s lymphoma,Am.J. Clin. Oncol.20:173.

    Article  CAS  Google Scholar 

  52. Chitamber, C.R. and Seligman, P.A., 1986, Effects of different transferrin forms on transferrin receptor expression, iron uptake, and cellular proliferation of human leukemic HL60 cells: mechanisms responsible for the specific cytotoxicity of transferrin-gallium, J.Clin. Invest.78: 1538.

    Article  Google Scholar 

  53. Chitambar, C.R., and Zivkovic, Z., 1987, Uptake of gallium-67 by human leukemic cells: Demonstration of transferrin receptor-dependent and transferrin receptor-independent mechanismsCancer Res.47:3929.

    CAS  Google Scholar 

  54. Lovejoy, D.B., and Richardson, D.R., 2000, Complexes of gallium(Ill) and other metal ions and their potential in the treatment of neoplasiaExpert Opin. Invest. Drugs9:1257.

    Article  CAS  Google Scholar 

  55. Gunshin, H., MacKenzie, B., Berger, U.V., Gunshin, Y., Romero, M.F., Boron, W.F., Nussberger, S., Gollan, J.L., and Hediger, M.A., 1997, Cloning and characterization of a mammalian proton-coupled metal-ion transporterNature388:482.

    Article  CAS  Google Scholar 

  56. Fleming, M.D., Trenor, C.C., Su, M.A., Foemzler, D., Beier, D.R., Dietrich, W.F., and Andrews, N.C., 1997, Microcytic anemia mice have a mutation inNramp2a candidate iron transporter gene,Nut. Genet. 16:383.

    CAS  Google Scholar 

  57. Harrison, P.M., and Arosio, P., 1996, The ferritins: molecular properties, iron storage function and cellular regulationBiochim. Biophys. Acta1275:161.

    Article  Google Scholar 

  58. Osaki, S., Johnson, D.A., and Frieden, E., 1971, The mobilization of iron from the perfused mammalian liver by a serum copper enzyme, ferroxidase IJ. Biol. Chem.246:3018.

    CAS  Google Scholar 

  59. Young, S.P., Fahmy, M., and Golding, S., 1997, Ceruloplasmin, transferrin and apotransferrin facilitate iron release from human liver cellsFEBS Lett.411:93.

    Article  CAS  Google Scholar 

  60. Richardson, D.R., 1999, The role of ceruloplasmin and ascorbate in cellular iron releaseJ. Lab. Clin. Med.134:454.

    Article  CAS  Google Scholar 

  61. Donovan, A., Brownlie, A., Zhou, Y., Shepard, J., Pratt, S.J., Moynihan, J., Paw, B.H., Drejer, A., Barut, B., Zapata, A., Law, T.C., Brugnara, C., Lux, S.E., Pinkus, G.S., Pinkus, J.L., Kingsley, P.D., Palis, J., Fleming, M.D., Andrews, N.C., and Zon, L.I., 2000, Positional cloning ofzebrafishferroportin Iidentifies a conserved vertebrate iron exporter,Nature403:776.

    Article  CAS  Google Scholar 

  62. Estrov, Z., Tawa, A., Wang, X-H., Dube, I.D., Sulh, H., Cohen, A., Gelfand, E.W., and Freedman, M.H., 1987, In vivo and in vitro effects of desferrioxamine in neonatal acute leukemiaBlood69:757.

    CAS  Google Scholar 

  63. Dezza, L., Cazzola, M., Danova, M., Carlo-Stella, C., Bergamaschi, G., Brugnatelli, S., Invernizzi, R., Mazzini, G., Riccardi, A., and Aseari, E., 1989, Effects of desferrioxamine on normal and leukemic human hematopoietic cell growth: in vitro and in vivo studiesLeukemia3:104.

    CAS  Google Scholar 

  64. Donfrancesco, A., Deb, G., Dominici, C., Angioni, A., Caniglia, M., De Sio, L., Fidani, P., Amici, A., and Nelson, L., 1992, Deferoxamine, cyclophosphamide, etoposide, carboplatin, and thiotepa (D-CECat): A new cytoreductive chelation-chemotherapy regimen in patients with advanced neuroblastomaAm. J. Clin.Oncol.15:319.

    Article  CAS  Google Scholar 

  65. Donfrancesco, A., De Bernardi, B., Carli, M., Mancini, A., Nigro, M., De Sio, L., Casale, F., Bagnulo, S., Nelson, L., and Deb, G., 1995, Deferoxamine (D) followed by cytoxan (C), etoposide (E), carboplatin (Ca), thio-TEPA (T), induction regimen in advanced neuroblastomaEur. J. Cancer31A: 612.

    Article  CAS  Google Scholar 

  66. Richardson, D.R.,1998, Analogues of pyridoxal isonicotinoyl hydrazone (PIH) as potential iron chelators for the treatment of neoplasiaLeukemia & Lymphoma31:47.

    Article  CAS  Google Scholar 

  67. Richardson, D.R., 2001, The use of iron chelators as therapeutic agents for the treatment of cancerCrit. Rev. Oncol. Hematol.(in press).

    Google Scholar 

  68. Voute, P.A., 1984, Neuroblastoma, In:Clinical Pediatric OncologyMosby Publ. Co., 1984:559.

    Google Scholar 

  69. Selig, R.A., White, L., Gramacho, C., Sterlinglevis, K., Fraser, I.W., and Naidoo, D., 1998, Failure of iron chelators to reduce tumor growth in human neuroblastoma xenograftsCancer Res.58:473.

    CAS  Google Scholar 

  70. Blatt, J., 1994, Deferoxamine in children with recurrent neuroblastomaAnticancer Res.14:2109.

    CAS  Google Scholar 

  71. Sartorelli, A.C., Agrawal, K.C., and Moore, E.C., 1971, Mechanism of inhibition of ribonucleoside diphosphate reductase by a-(N)-heterocyclic aldehyde thiosemicarbazonesBiochem. Pharmacol.20:3119.

    Article  CAS  Google Scholar 

  72. French, F.A., Blanz, E.J. J.R., Schaddix, S.C., and Brockman, R.W., 1974, a-(N)-Formylheteroaromatic thiosemicarbazones. Inhibition of tumor derived ribonucleoside diphosphate reductase and correlation with in vivo anti-tumor activityJ. Med. Chem.17:172.

    Article  CAS  Google Scholar 

  73. Liu, M-C., Lin, T-S., and Sartorelli, A.C., 1995, Chemical and biological properties of cytotoxic a-(N)heterocyclic carboxaldehyde thiosemicarbazones. In:Progress in Medicinal ChemistryVolume 32. Ellis, G.P., Luscombe, D.K. (Eds.), Elsevier Science B.V. I-35.

    Google Scholar 

  74. Agrawal, K.C., and Sartorelli, A.C., 1978, The chemistry and biological activity of a-(N)-heterocyclic carboxaldehyde thiosemicarbazonesProg. Med. Chem.15:321.

    Article  CAS  Google Scholar 

  75. DeConti, R.C., Toftness, B.R., Agrawal, K.C., Tomchick, R., Mead, J.A.R., Bertino, J.R., Sartorelli, A.C., and Creasey, W.A., 1972, Clinical and pharmacological studies with 5-hydroxy-2-formylpyridine thiosemicarbazoneCancer Res.32:1455.

    CAS  Google Scholar 

  76. Krakoff, I.H., Etcubanas, E., Tan, C., Mayer, K., Bethune, V., and Burchenai, J.H., 1974, Clinical trial of 5hydroxypicolinaldehyde thiosemicarbazone (5-HP: NSC-107392), with special reference to its Fe chelating propertiesCancer Chemother. Rep.53:207.

    Google Scholar 

  77. Sah, P., 1954, Nicotinoyl and isonicotinoyl hydrazones of pyridoxal, J. Am. Chem. Soc., 76:300.

    Article  CAS  Google Scholar 

  78. Ponka, P., Borova, J., Neuwirt, J., and Fuchs, O., 1979, Mobilization of iron from reticulocytes. Identification of pyridoxal isonicotinoyl hydrazone as a new iron chelating agentFEBS Lett.97:317.

    Article  CAS  Google Scholar 

  79. Ponka, P., Borova, J, Neuwirt, J., Fuchs, O., and Necas, E., 1979, A study of intracellular iron metabolism using pyridoxal isonicotinoyl hydrazone and other synthetic chelating agentsBiochim. Biophys. Acta586:278.

    CAS  Google Scholar 

  80. Cikrt, M., Ponka, P., Necas, E., and Neuwirt, J., 1980, Biliary iron excretion in rats following pyridoxal isonicotinoyl hydrazoneBr. J. Haematol.45:275.

    Article  CAS  Google Scholar 

  81. Hoy, T., Humphreys, J., Jacobs, A., Williams, A., and Ponka, P., 1979, Effective iron chelation following oral adminstration of an isoniazid pyridoxal hydrazoneBr. J. Haematol.43:443.

    Article  CAS  Google Scholar 

  82. Baker, E., Vitolo, M.L., and Webb, J.M., 1985, Iron chelation by pyridoxal isonicotinoyl hydrazone and analogues in hepatocytes in cultureBiochem. Pharmaco/.34:3011.

    Article  CAS  Google Scholar 

  83. Richardson, D.R., and Ponka, P., 1998, Orally effective iron chelators for the treatment of iron overload disease: The case for a further look at pyridoxal isonicotinoyl hydrazone (PIH) and its analogsJ. Lab. Clin. Med.132:351.

    Article  CAS  Google Scholar 

  84. Brittenham, G.M., 1990, Pyridoxal isonicotinoyl hydrazone: an effective chelator after oral administrationSemin. Hematol.27:112.

    CAS  Google Scholar 

  85. Hoyes, K.P., Hider, R.C., and Porter, J.B., 1992, Cell cycle synchronization and growth inhibition by 3hydroxypyridin-4-one iron chelators in leukemic cell linesCancer Res.52: 4591.

    CAS  Google Scholar 

  86. Lucas, J.J., Terada, N., Szepesi, A., and Gelfand, E.W., 1992, Regulation of synthesis of p34cdc2 and its homologues and their relationship to pl l ORb phosphorylation during cell cycle progression of normal human T cellsJ. Immunol.148:1804.

    CAS  Google Scholar 

  87. Agarwal, M.L., Taylor WR, Chernov MV, Chernova OB, and Stark, GR., 1998, The p53 networkJ. Biol. Chem.273:1.

    Article  CAS  Google Scholar 

  88. Greenblatt, M.S., Bennett, W.P., Hollstein, M., Harris, C.C., 1994, Mutations in the p53 suppressor gene: clues to cancer etiology and molecular pathogenesisCancer Res. 54:4855.

    CAS  Google Scholar 

  89. Xiong, Y., Hannon, G.J., Zhang, H., Casso, D., Kobayashi, R., and Beach, D., 1993, p21 is a universal inhibitor of cyclin kinasesNature366:701.

    Article  CAS  Google Scholar 

  90. Levine, A.J., 1997, p53, the cellular gatekeeper for growth and divisionCell88:323.

    Article  CAS  Google Scholar 

  91. Katan, M.B., Zhan, Q., El-Deity, W.S., Carrier, F., Jacks, T., Walsh, W.V., Plunkett, B.S., Vogelstein, B., and Fornace, A.J. Jr, 1992, A mammalian cell cycle check point pathway utilizing p53 and gadd45 is defective in ataxia telangiectasiaCell71:587.

    Article  Google Scholar 

  92. Tanaka, H., Arakawa, H., Yamaguchi, T., Shiraishi, K., Fukuda, S., Matsui, K., Takei, Y., and Nakamura, Y., 2000, A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damageNature404:42.

    Article  CAS  Google Scholar 

  93. Terada, N., Lucas, J.J., and Gelfand, E.W., 1991, Differential regulation of the tumor suppressor molecules, retinoblastoma susceptibility gene product (Rb) and p53, during cell cycle progression of normal human T cellsJ. Immunol.147: 698.

    CAS  Google Scholar 

  94. Fukuchi, K., Tomoyasu, S., Watanabe, H., Kaetsu, S., Tsuruoka, N., and Gomi, K., 1995, Iron deprivation results in an increase in p53 expressionBiol. Chem. Hoppe Seyler376:627.

    Article  CAS  Google Scholar 

  95. Russo, T., Zambrano, N., Esposito, F., Ammendola, R., Cimino, F., Fiscella, M., Jackman, J., Connor, P.M., Anderson, C.W., and Appella, E.,1995, A p53-independent pathway for activation of WAFT/CIPI expression following oxidative stressJ. Biol. Chem.270:29386.

    Article  CAS  Google Scholar 

  96. Hainaut, P., and Milner, J., 1993, A structural role for metal ions in “wild-type” conformation of the tumor suppressor protein p53Cancer Res.53:1739.

    CAS  Google Scholar 

  97. Hainaut, P., Butcher, S., and Milner, J., 1995, Temperature sensitivity for conformation is an intrinsic property of wild-type p53Br. J. Cancer71: 227.

    Article  CAS  Google Scholar 

  98. Sun, Y., Bian, J., Wang, Y., and Jacobs, C., 1997, Activation of p53 transcriptional activity by 1,10phenanthroline, a metal chelator and redox sensitive compoundOncogene14:385.

    Article  CAS  Google Scholar 

  99. Davidoff, A.M., Pence, J.C., Shorter, N.A., Ingelhart, J.D., and Marks, J.R., 1992, Expression of p53 in human neuroblastoma-and neuroepithelioma-derived cell linesOncogene7:127.

    CAS  Google Scholar 

  100. Bi, S., Hughes, T., Bungey, J., Chase, A., de Fabritiis, P., and Goldman, J.A., 1992, sp53 in chronic myeloid leukemia cell lineLeukemia6: 839

    CAS  Google Scholar 

  101. Gao, J., Lovejoy, D., and Richardson, D.R., 1999, Effect of iron chelators with potent anti-proliferative activity on the expression of molecules involved in cell cycle progression and proliferationRedox Report4:311.

    Article  CAS  Google Scholar 

  102. Linke, S.P., Clarkin, K.C., Di Leonardo, A., Tsou, A., and Wahl, G.M., 1996, A reversible, p53-dependent Go/G1 cell cycle arrest induced by ribonucleotide depletion in the absence of detectable DNA damageGenes und Develop.10:934.

    Article  CAS  Google Scholar 

  103. Levrero, M., De Laurenzi, V., Costanzo, A., Gong, J., Melino, G., and Wang, J.Y., 1999, Structure, function and regulation of p63 and p73Cell Death Diller.6:1146.

    Article  CAS  Google Scholar 

  104. .Lohrum, M.A., and Vousden, K.H., 2000, Regulation and function of the p53-related proteins: same family, different rulesTrends Cell Biol.l0:197.

    Article  Google Scholar 

  105. De Laurenzi, V., Costanzo, A., Barcaroli, D., Terrinoni, A., Falco, M., Annicchiarico-Petruzzelli, M., Levrero, M., and Melino, O., 1998, Two new p73 splice variants, gamma and delta, with different transcriptional activityJ. Exp. Med.188:1763.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Richardson, D.R. (2002). Therapeutic Potential of Iron Chelators in Cancer Therapy. In: Hershko, C. (eds) Iron Chelation Therapy. Advances in Experimental Medicine and Biology, vol 509. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0593-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0593-8_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46785-1

  • Online ISBN: 978-1-4615-0593-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics