Skip to main content

Molecular Pathogenesis of Acute Pseudomonas Aeruginosa Infections

  • Chapter
Severe Infections Caused by Pseudomonas Aeruginosa

Part of the book series: Perspectives on Critical Care Infectious Diseases ((CCID,volume 7))

Abstract

Pseudomonas aeruginosa is probably one of the best examples of an “opportunistic” pathogen, i.e. one that only causes disease in compromised hosts. As reviewed in Chapter 1, normal individuals rarely get P. aeruginosa infections. Chronic P. aeruginosalung infections, discussed in Chapters 5 and 6, are the hallmark of cystic fibrosis (CF). This chapter will be restricted to considering the molecular pathogenesis of acute P. aeruginosa infections. These infections include (i) acute pneumonia in hospitalized and in particular mechanically ventilated patients, (ii) skin infections and sepsis in patients with extensive burns, (iii) corneal infections in individuals wearing contact lenses, (iv) urinary tract infections in patients with indwelling Foley catheters, (v) bacteremia and sepsis in immunocompromised patients, particularly neutropenic patients receiving cytotoxic therapies, and (vi) post-surgical wound infections. The magnitude and costs of these nosocomial infections are enormous. For example, P. aeruginosa pneumonia accounts for as much as 20% of hospital-acquired pneumonia and has a mortality rate of upwards of 40%, even with appropriate antibiotic therapy. Likewise, sepsis secondary to P. aeruginosa burn wound infections is still a major cause of mortality and morbidity. Finally, prior to the institution of pre-emptive antibiotic therapy in neutropenic patients, P. aeruginosa sepsis was a leading cause of death in cancer patients receiving cytotoxic chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Falkow S. Molecular Koch’s postulates applied to microbial pathogenicity. Rev Infect Dis 1988; 10(Suppl 2):S274–6.

    PubMed  Google Scholar 

  2. West SE., Schweizer HP, Dall C, Sample AK, Runyen-Janecky LJ. Construction of improved Escherichia-Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. Gene 1994: 148:81–86.

    PubMed  CAS  Google Scholar 

  3. Hoang TT, Ma Y, Stern RJ, McNeil MR, Schweizer HP. Construction and use of low-copy number T7 expression vectors for purification of problem proteins: purification of Mycobacterium tuberculosis Rm1D and Pseudomonas aeruginosa LasI and RhII proteins, and functional analysis of purified RhII. Gene 1999; 237:361–71.

    PubMed  CAS  Google Scholar 

  4. Schweizer HP, Hoang TT. An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene 1995; 158:15–22.

    PubMed  CAS  Google Scholar 

  5. Schweizer HP. Allelic exchange in Pseudomonas aeruginosa using novel ColE1 -type vectors and a family of cassettes containing a portable oriT and the counter-selectable Bacillus subtilis sacB marker. Mol Microbiol 1992; 6:1195–1204.

    PubMed  CAS  Google Scholar 

  6. Liang, X, Pham XQ, Olson MV, Lory S. Identification of a genomic island present in the majority of pathogenic isolates of Pseudomonas aeruginosa. J Bacteriol 2001; 183:843–53.

    PubMed  CAS  Google Scholar 

  7. Sokurenko EV, Tchesnokova V, Yeung AT, Oleykowski CA, Trintchina E, Hughes KT, Rashid RA, Brint JM, Moseley SL, Lory S. Detection of simple mutations and polymorphisms in large genomic regions. Nucleic Acids Res 2001; 29:E111.

    PubMed  CAS  Google Scholar 

  8. Feltman H, Schulert G, Khan S, Jain M, Peterson L, Hauser AR. Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. Microbiology 2001; 147:2659–69.

    PubMed  CAS  Google Scholar 

  9. Hauser AR, Kang PJ, Engel J. PepA, a novel secreted protein of Pseudomonas aeruginosa, is necessary for cytotoxicity and virulence. Mol Microbiol 1998; 27:807–818.

    PubMed  CAS  Google Scholar 

  10. Finck-Barbancon V, Goranson J, Zhu L, Sawa T, Wiener-Kronish JP, Fleiszig SMJ, Wu C, Mende-Mueller L, Frank D. ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol Microbiol 1997; 25:547–557.

    PubMed  CAS  Google Scholar 

  11. Comolli J, Hauser A, Waite L, Whitchurch C, Mattick J, Engel J. PiIU and PiIT are required for cytotoxicity and virulence of Pseudomonas aeruginosa. Infect Immun 1999; 67:3625–3630.

    PubMed  CAS  Google Scholar 

  12. Rahme L, Ausubel F, Cao H, Drenkard E, Goumnerov B, Lau G, Mahajan-Miklos S, Plotnikova J, Tan M, Tsongalis J, Walendziewicz C, Tompkins R. Plants and animals share functionally common bacterial virulence factors. Proc Nat Acad Sci USA 2000; 97:8815–8821.

    PubMed  CAS  Google Scholar 

  13. Darby C, Cosma CL, Thomas JH, Manoil C. Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa. Proc Natl Acad Sci USA 1999; 96:15202–7.

    PubMed  CAS  Google Scholar 

  14. D’Argenio DA, Gallagher LA, Berg CA, Manoil C. Drosophila as a model host for Pseudomonas aeruginosa infection. J Bacteriol 2001; 183:1466–71.

    PubMed  Google Scholar 

  15. Pukatzki S, Kessin RH, Mekalanos JJ. The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyostelium discoideum. Proc Natl Acad Sci USA 2002; 99:3159–64.

    PubMed  CAS  Google Scholar 

  16. Cosson P, Zulianello L, Join-Lambert 0, Faurisson F, Bebbie L, Benghezal M, van Delden C, Curty LK, Kohler T. Pseudomonas aeruginosa viurlence analyzed in a Dictyostelium discoideum host system. J Bacteriol 2002; 184:3027–3033.

    PubMed  CAS  Google Scholar 

  17. Tang HB, DiMango E, Bryan R, Bambello M, Iglewski BH, Goldberg JB, Prince A. Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infect Immun 1996; 64:37–43.

    PubMed  CAS  Google Scholar 

  18. Zaidi TS, Fleiszig SM, Preston MJ, Goldberg JB, Pier GB. Lipopolysaccharide outer core is a ligand for corneal cell binding and ingestion of Pseudomonas aeruginosa. Inv Opth Vis Sci 1996; 37:976–986.

    CAS  Google Scholar 

  19. Fletcher EL, Fleiszig SM, Brennan NA. Lipopolysaccharide in adherence of Pseudomonas aeruginosa to the cornea and contact lenses. Inv Opth Vis Sci 1993; 34:1930–1996.

    CAS  Google Scholar 

  20. Doig P, Smith NR, Todd T, Irvin RT. Characterization of the binding of Pseudomonas aeruginosa alginate to human epithelial cells. Infect Immun 1987; 55:1517–1522.

    PubMed  CAS  Google Scholar 

  21. Edward KJ, Saunders NA. Real-time PCR used to measure stress-induced changes in the expression of the genes of the alginate pathway of Pseudomonas aeruginosa. J Appl Microbiol 2001; 91:29–37.

    Google Scholar 

  22. Mattick JS. Twitching motility. Ann Rev Microbiol 2002; 56:289–314..

    CAS  Google Scholar 

  23. Skerker JM, Berg HC. Direct observation of extension and retraction of type IV pili. Proc Natl Acad Sci USA 2001; 98:6901–4.

    PubMed  CAS  Google Scholar 

  24. Merz AJ, So M, Sheetz MP. Pilus retraction powers bacterial twitching motility. Nature 2000;407:98–102.

    PubMed  CAS  Google Scholar 

  25. Zoutman DE, Hulbert W, Pasloske B, Joffe A, Volpel K, Trebilcock M, Paranchych W. The role of polar pili in the adherence of Pseudomonas aeruginosa to injured canine tracheal cells: A semiquantitative morphological study. Scan Microscopy 1991; 5:109–126.

    CAS  Google Scholar 

  26. Prince A. Adhesins and receptors of Pseudomonas aeruginosa associated with infection of the respiratory tract. Microb Pathog 1992; 13:251–260.

    PubMed  CAS  Google Scholar 

  27. Strom MS, Lory S. Structure-function and biogenesis of the type IV pili. Annu Rev Microbiol 1993; 47:565–596.

    PubMed  CAS  Google Scholar 

  28. Ramphal R, Carnoy C, Fievre S, Michalski JC, Houdret N.Pseudomonas aeruginosa recognizes carbohydrate chains containing type 1 (Gal B1–3GIcNac) or type 2 (gal 01–4GIcNac) dissaccharide units. Infect Immun 1991; 59:700–704.

    PubMed  CAS  Google Scholar 

  29. Saiman L, Prince A.Pseudomonas aeruginosa pili bind to asialoGM I which is increased on the surface of cystic fibrosis epithelial cells. J Clin Invest 1993; 92:1875–1880.

    PubMed  CAS  Google Scholar 

  30. Sheth HB, Lee KK, Wong WY, Srivastava G, Hindsgaul 0, Hodges RS, Paranchych W, Irvin RT. The pili of Pseudomonas aeruginosa strains PAK and PAO bind specifically to the carbohydrate sequence BGalNac(1–4)BGal found in glycolipids asialo-GM1 and asialoGM2. Mol Microbiol 1994; 11:715–723.

    PubMed  CAS  Google Scholar 

  31. Comolli J, Waite L, Mostov K, Engel JN. The interaction of Pseudomonas aeruginosa pili and asialo-GM1 stimulates epithelial cell cytotoxicity and bacterial internalization. Infect Immun 1999; 67:3207–3214.

    PubMed  CAS  Google Scholar 

  32. Woods DE, Straus DC, Johanson WG, Berry VK, Bass JA. Role of pili in adherence of Pseudomonas aeruginosa to mammalian buccal epithelial cells. Infect Immun 1980; 29:1146–1151.

    PubMed  CAS  Google Scholar 

  33. Ramphal R, Sadoff JC, Pyle M, Silipigni JD. Role of pili in the adherence of Pseudomonas aeruginosa to injured tracheal epithelium. Infect Immun 1984; 44:38–40.

    PubMed  CAS  Google Scholar 

  34. Saiman L, Ishimoto K, Lory S, Prince A. Effect of piliation and exoproduct expression on the adherence of Pseudomonas aeruginosa to respiratory epithelial monolayers. J Infect Dis 1990; 161:541–548.

    PubMed  CAS  Google Scholar 

  35. Hazlett LD, Moon MM, Singh A, Berk RS, Rudner XL. Analysis of adhesion, piliation, protease production and ocular infectivity of several P. aeruginosa strains. Curr Eye Res 1991; 10:351–362.

    PubMed  CAS  Google Scholar 

  36. Chi E, Mehl T, Nunn D, Lory S. Interaction of Pseudomonas aeruginosa with A549 pneumocyte cells. Infect Immun 1991; 59:822–828.

    PubMed  CAS  Google Scholar 

  37. Simpson DA, Ramphal R, Lory S. Genetic analysis of Pseudomonas aeruginosa adherence: distinct genetic loci control attachment to epithelial cells and mucins. Infect Immun 1992; 60:3771–3779.

    PubMed  CAS  Google Scholar 

  38. Tang H, Kays M, Prince A. Role of Pseudomonas aeruginosa pili in acute pulmonary infection. Infect Immun 1995; 63:1278–1285.

    PubMed  CAS  Google Scholar 

  39. Bradley DE. The adsorption of the Pseudomonas aeruginosa filamentous bacteriophage Pf to its host. Can J Microbiol 1973; 19:623–631.

    PubMed  CAS  Google Scholar 

  40. Rashid MH, Kornberg A. Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 2000; 97:4885–90.

    PubMed  CAS  Google Scholar 

  41. Kohler T, Curty LK, Barja F, van Delden C, Pechere JC. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 2000; 182:5990–6.

    PubMed  CAS  Google Scholar 

  42. Croft L, Beatson SA, Whitchurch CB, Huang B, Blakeley RL, Mattick JS. An interactive web-based Pseudomonas aeruginosa genome database: discovery of new genes, pathways and structures. Microbiology 2000; 146:2351–2364.

    PubMed  CAS  Google Scholar 

  43. Vallet I, Olson JW, Lory S, Lazdunski A, Filloux A. The chaperone/usher pathways of Pseudomonas aeruginosa: identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc Natl Acad Sci USA 2001; 98:6911–6.

    PubMed  CAS  Google Scholar 

  44. Ramphal R, Koo L, Ishimoto K, Totten PA, Lara JC, Lory S. Adhesion of Pseudomonas aeruginosa pilin-deficient mutants to mucin. Infect Immun 1991; 59:1307–1311.

    PubMed  CAS  Google Scholar 

  45. Simpson DA, Ramphal R, Lory S. Characterization of Pseudomonas aeruginosa fliO a gene involved in flagellar biosynthesis and adherence. Infect Immun 1995; 63:2950–2957.

    PubMed  CAS  Google Scholar 

  46. Arora SK, Ritchings BW, Almira EC, Lory S, Ramphal R. Cloning and characterization of Pseudomonas aeruginosa fliF necessary for flagellar assembly and bacterial adherence to mucin. Infect Immun 1996; 64:2130–2136.

    PubMed  CAS  Google Scholar 

  47. Feldman M, Bryan R, Rajan S, Scheffler L, Brunnert S, Tang H, Prince A. Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect Immun 1998; 66:43–51.

    PubMed  CAS  Google Scholar 

  48. DiMango E, Zar HJ, Bryan R, Prince A. Diverse Pseudomonas aeruginosa gene products stimulate respiratory epithelial cells to produce interleukin-8. J Clin Invest 1995; 96:220–410.

    Google Scholar 

  49. DiMango E, Ratner AJ, Bryan R, Tabibi S, Prince A. Activation of NF-kappa-B by adherent Pseudomonas aeruginosa in normal and cystic fibrosis respiratory epithelial cells. J Clin Invest 1998; 101:2598–605.

    PubMed  CAS  Google Scholar 

  50. Ratner AJ, Bryan R, Weber A, Nguyen S, Barnes D, Pitt A, Gelber S, Cheung A, Prince A. Cystic fibrosis pathogens activate Ca2+-dependent mitogen-activated protein kinase signaling pathways in airway epithelial cells. J Biol Chem 2001; 276:19267–75.

    PubMed  CAS  Google Scholar 

  51. McNamara N, Khong A, McKemy D, Caterina M, Boyer J, Julius D, Basbaum C. ATP transduces signals from ASGMI, a glycolipid that functions as a bacterial receptor. Proc Natl Acad Sci USA 2001; 98:9086–91.

    PubMed  CAS  Google Scholar 

  52. Reed KA, Hobert ME, Kolenda CE, Sands KA, Rathman M, O’Connor M, Lyons S, Gewirtz AT, Sansonetti PJ, Madara JL. The Salmonella typhimurium flagellar basal body protein FliE is required for flagellin production and to induce a proinflammatory response in epithelial cells. J Biol Chem 2002; 277:13346–13353.

    PubMed  CAS  Google Scholar 

  53. Read RC, Wyllie DH. Toll receptors and sepsis. Curr Opin Crit Care 2001; 7:371–5.

    PubMed  CAS  Google Scholar 

  54. Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 2001; 167:1882–5.

    PubMed  CAS  Google Scholar 

  55. Hayashi F, Smith K, Ozinsky A, Hawn T, Yi E, Goodlett D, Enge J, Kira SA, Underhill D, Aderem A. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001; 410:1099–1103.

    PubMed  CAS  Google Scholar 

  56. Blackwood L, Stone R, Iglewski B, Pennington J. Evaluation of Pseudomonas aeruginosa exotoxin A and elastase as virulence factors in acute lung infection. Infect Immun 1983; 39:198–201.

    PubMed  CAS  Google Scholar 

  57. Baker NR, Minor V, Deal C, Shahrabadi MS, Simpson DA, Woods DE. Pseudomonas aeruginosa exoenzyme S is an adhesin. Infect Immun 1991; 59:2859–2863.

    PubMed  CAS  Google Scholar 

  58. Bjorn MJ, Pavlovskis OR, Thompson MR, Iglewski BH. Production of exoenzyme S during Pseudomonas aeruginosa infection in burned mice. Infect Immun 1979; 24:837–842.

    PubMed  CAS  Google Scholar 

  59. Coburn J, Wyatt RT, Iglewski BH, Gill DM. Several GTP-binding proteins, inlcuding p21c-H-ras, are preferred stubstrates of Pseudomonas aeruginosa exoenzyme S. J Biol Chem 1989; 264:9004–9008.

    PubMed  CAS  Google Scholar 

  60. Coburn J, Kane AV, Feig L, Gill DM. Pseudomonas aeruginosa exoenzyme S requires a eukaryotic protein for ADP-ribosyltransferase activity. J Biol Chem. 1991; 266:6438–6446.

    PubMed  CAS  Google Scholar 

  61. Coburn J. Pseudomonas aeruginosa exoenzyme S. Curr. Topics. Microbiol Immun 1992; 175:132–143.

    Google Scholar 

  62. Frank D, Iglewski BH. Cloning and sequence analysis of a trans-regulatory locus required for Exoenzyme S synthesis in Pseudomonas aeruginosa.J Bacteriol 1991; 173:6460–6468.

    PubMed  CAS  Google Scholar 

  63. Frank D, Nair G, Schweizer H. Construction and characterization of chromosomal insertional mutations of the Pseudomonas aeruginosa exoenzyme S trans-regulatory locus. J Bacteriol 1994; 62:554–563.

    CAS  Google Scholar 

  64. Iglewski BH, Sadoff J, Bjorn MJ, Maxwell ES. Pseudomonas aeruginosa exoenzyme S: an adenosine diphosphate ribosyltransferase distinct from toxin A. Proc Natl Acad Sci USA 1978; 75:3211–3215.

    PubMed  CAS  Google Scholar 

  65. Kulich SM, Frank DW, Barbieri JT. Expression of the 49 Kilodalton form of Exoenzyme S of Pseudomonas aeruginosa in Escherichia coli. ASM Abstracts 1994; 94:36.

    Google Scholar 

  66. Nicas TI, Iglewski BH. Isolation and characterization of transposon-induced mutants of Pseudomonas aeruginosa deficient in production of exoenzyme S. Infect Immun 1984; 45:470–474.

    PubMed  CAS  Google Scholar 

  67. Nicas TI, Iglewski BH. Contribution of exoenzyme S to the virulence of Pseudomonas aeruginosa. Antibiot Chemother 1985; 36:40–48.

    PubMed  CAS  Google Scholar 

  68. Nicas TI, Frank DW, Stenzel P, Iglewski B. Role of exoenzyme S in chronic Pseudomonas aeruginosa lung infections. Eur J Clin Microbiol 1985; 4:175–179.

    PubMed  CAS  Google Scholar 

  69. Thompson MR, Bjorn MJ, Sokol PA, Lite JD, Iglewski BH. Exoenzyme S: an ADPribosyl transferase produced by Pseudomonas aeruginosa p. 425–433. In M Smulson and T Sugimura (ed.), Novel ADP-ribosylation of regulatory enzymes and proteins. Elsevier/North-Holland Inc., Amsterdam, 1980.

    Google Scholar 

  70. Wiener-Kronish JP, Sakuma T, Kudoh I, Pittet JF, Frank D, Dobbs L, Vasil ML, Matthay MA. Alveolar epithelial injury and pleural empyema in acute Pseudomonas aeruginosa pneumonia in anesthetized rabbits. J Appl Physiol 1993; 75:1661–1669.

    PubMed  CAS  Google Scholar 

  71. Woods DE, Sokol PA. Use of transposon mutants to assess the role of exoenzyme S in chronic pulmonary disease due to Pseudomonas aeruginosa. Eur J Clin Microbiol 1985; 4:163–169.

    PubMed  CAS  Google Scholar 

  72. Woods DE, Hwang WW, Shahrabade MS. Alteration of pulmonary structure by Pseudomonas aeruginosa exoenzyme S. J Med Microbiol 1988; 26:133–141.

    PubMed  CAS  Google Scholar 

  73. Yahr T, Frank D. Transcriptional organization of the trans-regulatory locus which controls exoenzyme S synthesis in Pseudomonas aeruginosa. J Bacteriol 1994; 176:3832–3838.

    PubMed  CAS  Google Scholar 

  74. Kawaharajo K, Homma JY, Aoyama Y, Morihara K. In vivo studies on protease and elastase from Pseudomonas aeruginosa. Jap J Exp Med 1975; 45:89–100.

    PubMed  CAS  Google Scholar 

  75. Storey DG, Ujack EE, Rabin HR. Population transcript accumulation of Pseudomonas aeruginosa exotoxin A and elastase in sputa from patients with cystic fibrosis. Infect Immun 1992; 60:4687–4694.

    PubMed  CAS  Google Scholar 

  76. Woods DE, Cruz SJ, Friedman RL. Contribution of toxin A and elastase to virulence of Pseudomonas aeruginosa in chronic lung infections of rats. Infect Immun 1982; 36:1223–1228.

    PubMed  CAS  Google Scholar 

  77. Doring G, Dalhoff A, Vogel O, Brunner H, Droge U, Botzenhart K. In vivo activity of proteases of Pseudomonas aeruginosa in a rat model. J Infect Dis. 1984; 149:532–537

    PubMed  CAS  Google Scholar 

  78. Kadurugamuwa JL, Beveridge TJ. Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol 1995; 177:3998–4008.

    PubMed  CAS  Google Scholar 

  79. Kadurugamuwa JL, and Beveridge TJ. Natural release of virulence factors in membrane vesicles by Pseudomonas aeruginosa and the effect of aminoglycoside antibiotics on their release. J Antimicrob Chemother 1997; 40:615–21.

    PubMed  CAS  Google Scholar 

  80. Nicas T, Iglewski BH. The contribution of exoproducts to virulence of Pseudomonas aeruginosa. Can J Microbiol 1985; 31:387–392.

    PubMed  CAS  Google Scholar 

  81. Morihara K, Homma JY.Pseudomonas proteases. CRC press, Boca Raton, 1985.

    Google Scholar 

  82. Shibuya Y, Yamamoto T, Morimoto T, Nishino N, Kambara T, Okabe H.Pseudomonas aeruginosa alkaline proteinase might share a biological function with plasmin. Biochim Biophys Acta 1991; 1077:316–24.

    PubMed  CAS  Google Scholar 

  83. Steadman R, Heck L, Abrahamson D. The role of proteases in the pathogenesis of Pseudomonas aeruginosa infections, p. 129–143. In M Campa, M Bendinelli, and H Friedman (ed.), Pseudomonas aeruginosa as an opportunistic pathogen. Plenum Press, New York, 1993.

    Google Scholar 

  84. Thanassi DG, Hultgren SJ. Multiple pathways allow protein secretion across the bacterial outer membrane. Curr Opin Cell Biol 2000; 12:420–30.

    PubMed  CAS  Google Scholar 

  85. Hector J, Azghani A, Johnson A. Genetic regulation and expression of elastase, p. 145162. In M Campa, M Bendinelli, and H Friedman (ed.),Pseudomonas aeruginosa as an opportunistic pathogen. Plenum Press, New York, 1993.

    Google Scholar 

  86. Galloway DR.Pseudomonas aeruginosa elastase and elastolysis revisited: recent developments. Mol Microbiol 1991, 5: 2315–2321.

    PubMed  CAS  Google Scholar 

  87. Pearson JP, Pesci EC, Iglewski BH. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 1997; 179:5756–67.

    PubMed  CAS  Google Scholar 

  88. Gray LD, Kreger AS. Rabbit corneal damage produced by Pseudomonas aeruginosa infection. Infect Immun 1975; 12:419–32.

    PubMed  CAS  Google Scholar 

  89. Kreger AS, Gray LD. Purification of Pseudomonas aeruginosa proteases and microscopic characterization of pseudomonal protease-induced rabbit corneal damage. Infect Immun 1978; 19:630–48.

    PubMed  CAS  Google Scholar 

  90. Azghani AO, Connelly JC, Peterson BT, Gray LD, Collins ML, Johnson AR. Effects of Pseudomonas aeruginosa elastase on alveolar epithelial permeability in guinea pigs. Infect Immun 1990; 58:433–8.

    PubMed  CAS  Google Scholar 

  91. Wick MJ, Frank DW, Story D, Iglewski BH. Structure, function, and regulation of Pseudomonas aeruginosa exotoxin A. Annu Rev Microbiol 1990; 44:335–363.

    PubMed  CAS  Google Scholar 

  92. Pavlovskis OR, Pollack M, Callahan LT, 3rd, and B. H. Iglewski. Passive protection by antitoxin in experimental Pseudomonas aeruginosa burn infections. Infect Immun 1977; 18:596–602.

    PubMed  CAS  Google Scholar 

  93. Pollack M, Young L. Protective activity of antibodies to exotoxins A and lipopolysaccharide at the onset of Pseudomonas aeruginosa septicemia in man. J Clin Invest 1979; 63:276–286.

    PubMed  CAS  Google Scholar 

  94. Cross AS, Sadoff JC, Iglewski BH, Sokol PA. Evidence for the role of toxin A in the pathogenesis of infection with Pseudomonas aeruginosa in humans. J Infect Dis 1980; 142:538–46.

    PubMed  CAS  Google Scholar 

  95. Woods DE, Iglewski BH. Toxins of Pseudomonas aeruginosa: new perspectives. Rev Infect Dis 1983; 5(Suppl 4):S715–22.

    PubMed  Google Scholar 

  96. Pollack M. The role of exotoxin A in pseudomonas disease and immunity. Rev Infect Dis 1983; 5(Suppl 5):S979–84.

    PubMed  CAS  Google Scholar 

  97. Galloway DR. Role of exotoxins in the pathogenesis of P. aeruginosa infections, p. 107127.In M Campa, M Bendinelli, and H Friedman (ed.),Pseudomonas aeruginosa as an opportunistic pathogen. Plenum press, New York, 1993.

    Google Scholar 

  98. Colmer JA, Hamood AN. Expression of ptxR and its effect on toxA and regA expression during the growth cycle of Pseudomonas aeruginosa strain PA01. Can J Microbiol 1999; 45:1008–16.

    PubMed  CAS  Google Scholar 

  99. Ochsner UA, Vasil ML. Gene repression by the ferric uptake regulator in Pseudomonas aeruginosa: cycle selection of iron-regulated genes. Proc Natl Acad Sci USA 1996; 93:4409–14.

    PubMed  CAS  Google Scholar 

  100. Hamood AN, Colmer JA, Ochsner UA, Vasil ML. Isolation and characterization of a Pseudomonas aeruginosa gene, ptxR, which positively regulates exotoxin A production. Mol Microbiol 1996; 21:97–110.

    PubMed  CAS  Google Scholar 

  101. Songer JG. Bacterial phospholipases and their role in virulence. Trends Microbiol 1997; 5:156–61.

    PubMed  CAS  Google Scholar 

  102. Voulhoux R, Ball G, Ize B, Vasil ML, Lazdunski A, Wu LF, Filloux A. Involvement of the twin-arginine translocation system in protein secretion via the type II pathway. Embo J 2001; 20:6735–41.

    PubMed  CAS  Google Scholar 

  103. Cota-Gomez A, Vasil AI, Kadurugamuwa J, Beveridge TJ, Schweizer HP, Vasil ML. PlcR1 and P1cR2 are putative calcium-binding proteins required for secretion of the hemolytic phospholipase C of Pseudomonas aeruginosa. Infect Immun 1997; 65:2904–13.

    PubMed  CAS  Google Scholar 

  104. Chin JC, and Watts JE. Biological properties of phospholipase C purified from a fleecerot isolate of Pseudomonas aeruginosa. J Gen Microbiol 1988; 134 (Pt 9):2567–75.

    PubMed  CAS  Google Scholar 

  105. Granstrom M, Ericsson A, Strandvik B, Wretlind B, Pavlovskis OR, Berka R, Vasil ML. Relation between antibody response to Pseudomonas aeruginosa exoproteins and colonization/infection in patients with cystic fibrosis. Acta Paediatr Scand 1984; 73:772–7.

    PubMed  CAS  Google Scholar 

  106. Ostroff RM, Wretlind B, Vasil ML. Mutations in the hemolytic-phospholipase C operon result in decreased virulence of Pseudomonas aeruginosa PA01 grown under phosphate-limiting conditions. Infect Immun 1989; 57:1369–73.

    PubMed  CAS  Google Scholar 

  107. Rosenau F, and Jaeger K. Bacterial lipases from Pseudomonas: regulation of gene expression and mechanisms of secretion. Biochimie 2000; 82:1023–32.

    PubMed  CAS  Google Scholar 

  108. Jaeger KE, Kharazmi A, Hoiby N. Extracellular lipase of Pseudomonas aeruginosa: biochemical characterization and effect on human neutrophil and monocyte function in vitro. Microb Pathog 1991; 10:173–82.

    PubMed  CAS  Google Scholar 

  109. Konig B, Jaeger KE, Sage AE, Vasil ML, Konig W. Role of Pseudomonas aeruginosa lipase in inflammatory mediator release from human inflammatory effector cells (platelets, granulocytes, and monocytes. Infect Immun 1996; 64:3252–8.

    PubMed  CAS  Google Scholar 

  110. Hueck C. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Molec Biol Rev 1998; 62:379–433.

    CAS  Google Scholar 

  111. Cornelis G, Van Gijsegem F. Assembly and function of type III secretory systems. Annu Rev Microbiol 2000; 54:735–774.

    PubMed  CAS  Google Scholar 

  112. Frithz-Lindsten E, Holmstrom A, Jacobsson L, Soltani M, Olsson J, Rosqvist R, Forsberg A. Functional conservation of the effector protein translocators PopB/YopB and PopD/YopD of Pseudomonas aeruginosa and Yersinia pseudotuberculosis. Mol Microbiol 1998; 29:1155–65.

    PubMed  CAS  Google Scholar 

  113. Stover C, Pham X, Erwin A, Mizoguchi S, Warrener P, Hickey M, Brinkman F, Hufnagle W, Kowalik D, Lagrou M, Garber R, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody L, Coulter S, Folger K, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong G, Wu Z, Paulsen I. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 2000; 406:959–64.

    PubMed  CAS  Google Scholar 

  114. Yahr T, Mende-Mueller LM, Friese MB, Frank DW. Identification of type III secreted products of the Pseudomonas aeruginosa exoenzyme S regulon. J Bacteriol 1997; 179:7165–7168.

    PubMed  CAS  Google Scholar 

  115. Yahr TJ, Barbieri JT, Frank DW. Genetic relationship between the 53- and 49-kilodalton forms of exoenzyme S from Pseudomonas aeruginosa. J Bacteriol 1996; 178:1412–1419.

    PubMed  CAS  Google Scholar 

  116. Yahr TL, Vallis AJ, Hancock MK, Barbieri JT, Frank DW. ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proc Nati Acad Sci USA 1998; 95:13899–13904.

    CAS  Google Scholar 

  117. Yahr TL, Goranson J, Frank DW. Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III secretion pathway. Mol Microbiol 1996; 22:991–1003.

    PubMed  CAS  Google Scholar 

  118. Finck-Barbancon V, Yahr TL, Frank DW. Identification and characterization of SpcU, a chaperone required for efficient secretion of the ExoU cytotoxin. J Bacteriol 1998; 180:6224–31.

    PubMed  CAS  Google Scholar 

  119. Frank DW. The exoenzyme S regulon of Pseudomonas aeruginosa. Mol Microbiol 1997; 4:621–629.

    Google Scholar 

  120. Hauser AR, Engel J. Pseudomonas aeruginosa induces Type III secretion-mediated apoptosis in macrophages and epithelial cells. Infect Immun 1999; 67:5530–5537.

    PubMed  CAS  Google Scholar 

  121. Vallis AJ, Finck-Barbancon V, Yahr TL, Frank DW. Biological effects of Pseudomonas aeruginosa type 111-secreted proteins on CHO cells. Infect Immun 1999; 67:2040–2044.

    PubMed  CAS  Google Scholar 

  122. Finck-Barbancon V, Frank DW. Multiple domains are required for the toxic activity of Pseudomonas aeruginosa ExoU. J Bacteriol 2001; 183:4330–44.

    PubMed  CAS  Google Scholar 

  123. Liu S, Yahr TL, Frank DW, Barbieri JT. Biochemical relationships between the 53- kilodalton (Exo53) and 49-kilodalton (ExoS) forms of exoenzyme S of Pseudomonas aeruginosa. J Bacteriol 1997; 179:1609–1613.

    PubMed  CAS  Google Scholar 

  124. Geiser T, Kazmierczak B, Garrity-Ryan L, Matthay M, Engel J. Pseudomonas aeruginosa ExoT inhibits in vitro lung epithelial wound repair. Cell Microbiol 2001; 3:223–236.

    PubMed  CAS  Google Scholar 

  125. Kazmierczak B, Engel J. Pseudomonas aeruginosa ExoT acts in vivo as a GTPase activating protein for RhoA, Racl, and Cdc42. Infect Immun. 2002; 70:2198–2204.

    PubMed  CAS  Google Scholar 

  126. Krall R, Schmidt G, Aktories K, Barbieri JT. Pseudomonas aeruginosa ExoT is a Rho GTPase-Activating Protein. Infect Immun 2000; 68:6066–6068.

    PubMed  CAS  Google Scholar 

  127. Goehring UM, Schmidt G, Pederson KJ, Aktories K, Barbieri IT. The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J Biol Chem 1999; 274:36369–36372.

    PubMed  CAS  Google Scholar 

  128. Garrity-Ryan L, Kazmierczak B, Kowal R, Commolli J, Hauser A, Engel J. The arginine finger domain of ExoT is required for actin cytoskeleton disruption and inhibition of internalization of Pseudomonas aeruginosa by epithelial cells and macrophages. Infect Immun 2000; 68:7100–7113.

    PubMed  CAS  Google Scholar 

  129. Cowell BA, Chen DY, Frank DW, Vallis AJ, Fleiszig SMJ. ExoT of cytotoxic Pseudomonas aeruginosa prevents uptake by corneal epithelial cells. Infect Immun 2000; 68:403–406.

    PubMed  CAS  Google Scholar 

  130. Black DB, Bliska JB. The RhoGAP activity of the Yersinia cytotoxin YopE is required for antiphagocytic function and virulence. Mol Microbiol 2000; 37:515–527.

    PubMed  CAS  Google Scholar 

  131. Fu Y, Galan JE. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 1999; 401:293–297.

    PubMed  CAS  Google Scholar 

  132. Knight DA, Finck-Barbancon V, Kulich SM, Barbieri JT. Functional domains of Pseudomonas aeruginosa exoenzyme S. Infect Immun 1995; 63:3182–3186.

    PubMed  CAS  Google Scholar 

  133. Sundin C, Henriksson ML, Hallberg B, Forsberg A, Frithz-Lindsten E. Exoenzyme T of Pseudomonas aeruginosa elicits cytotoxicity without interfering with Ras signal transduction. Cell Microbiol 2001; 3:237–246.

    PubMed  CAS  Google Scholar 

  134. Riese MJ, Goehring UM, Ehrmantraut ME, Moss J, Barbieri JT, Aktories K, Schmidt G. Auto-ADP-ribosylation of Pseudomonas aeruginosa ExoS. J Biol Chem 2002; 277:12082–8.

    PubMed  CAS  Google Scholar 

  135. Ganesan AK, Vincent TS, Olson JC, Barbieri JT. Pseudomonas aeruginosa exoenzyme S disrupts Ras-mediated signal transduction by inhibiting guanine nucleotide exchange factor-catalyzed nucleotide exchange. J Biol Chem 1999; 274:21823–21829.

    PubMed  CAS  Google Scholar 

  136. Ganesan AK, Frank DW, Misra RP, Schmidt G, Barbieri JT.Pseudomonas aeruginosa exoenzyme S ADP-ribosylates Ras at multiple sites. J. Biol. Chem. 1998; 273:7332–7337.

    PubMed  CAS  Google Scholar 

  137. Vincent TS, Fraylick JE, McGuffie EM, Olson JC. ADP-ribosylation of oncogenic Ras proteins by Pseudomonas aeruginosa exoenzyme S in vivo. Mol Microbiol 1999; 32:1054–1064.

    PubMed  CAS  Google Scholar 

  138. McGuffie EM, Frank DW, Vincent TS, Olson JC. Modification of Ras in eukaryotic cells by Pseudomonas aeruginosa exoenzyme S. Infect Immun 1998; 66:2607–2613.

    PubMed  CAS  Google Scholar 

  139. Fraylick JE, Rucks EA, Greene DM, Vincent TS, Olson JC. Eukaryotic cell determination of ExoS ADP-ribosyltransferase substrate specificity. Biochem Biophys Res Commun 2002; 291:91–100.

    PubMed  CAS  Google Scholar 

  140. Barbieri AM, Sha Q, Bette-Bobillo P, Stahl PD, Vidal M. ADP-ribosylation of RabS by ExoS of Pseudomonas aeruginosa affects endocytosis. Infect Immun 2001; 69:5329–5334.

    PubMed  CAS  Google Scholar 

  141. Kaufman MR, Jia J, Zeng L, Ha U, Chow M, Jin S.Pseudomonas aeruginosa mediated apoptosis requires the ADP-ribosylating activity of exoS. Microbiology 2000; 146:2531–2541.

    PubMed  CAS  Google Scholar 

  142. Grassme H, Kirschnek S, Riethmueller J, Riehle A, von Ktirthy G, Lang F, Weller M, Gulbins E. CD95/CD95 ligand interactions on epithelial cells in host defense to Pseudomonas aeruginosa. Science 2000; 290:527–530.

    PubMed  CAS  Google Scholar 

  143. Feltman H, Khan S, Jain M, Peterson L, Hauser AR. Type III secretion genotypes of clinical and environmental Pseudmonas aeruginosa isolates. ASM abstracts: D22, 2001.

    Google Scholar 

  144. Dacheux D, Attree I, Toussaint B. Expression of ExsA in trans confers type III secretion system-dependent cytotoxicity on noncytotoxic Pseudomonas aeruginosa cystic fibrosis isolates. Infect Immun 2001; 69:538–542.

    PubMed  CAS  Google Scholar 

  145. Fleiszig SM, Zaidi TS, Fletcher EL, Preston MJ, Pier GB.Pseudomonas aeruginosa invades corneal epithelial cells during experimental infection. Infect Immun 1994; 62:3485–3493.

    PubMed  CAS  Google Scholar 

  146. Fleiszig SM, Zaidi TS, Pier GB.Pseudomonas aeruginosa invasion of and multiplication within corneal epithelial cells in vitro. Infect Immun 1995; 63:4072–4077.

    PubMed  CAS  Google Scholar 

  147. Fleiszig SMJ, Wiener-Kronish JP, Miyazaki H, Vallas V, Mostov K, Kanada D, Sawa T, Yen TSB, Frank D.Pseudomonas aeruginosa-mediated cytotoxicity and invasion correlate with distinct genotypes at the loci encoding exoenzyme S. Infect Immun 1997; 65:579–586.

    PubMed  CAS  Google Scholar 

  148. Hauser AR, Kang PJ, Fleiszig SJM, Mostov K, Engel J. Defects in type III secretion correlate with internalization of Pseudomonas aeruginosa by epithelial cells. Infect Immun 1998; 66:1413–1420.

    PubMed  CAS  Google Scholar 

  149. Ha U, Jin S. Growth phase-dependent invasion of Pseudomonas aeruginosa and its survival within HeLa cells. Infect Immun 2001; 69:4398–406.

    PubMed  CAS  Google Scholar 

  150. Kazmierczak B, Mostov K, Engel J. Interaction of bacterial pathogens with polarized epithelium. Ann Rev Microbiol 2001; 55:407–435.

    CAS  Google Scholar 

  151. Fleiszig SM, Evans DJ, Do N, Vallas V, Shin S, Mostov K. Epithelial cell polarity affects susceptibility to Pseudomonas aeruginosa invasion and cytotoxicity. Infect Immun 1997; 65:2861–2867.

    PubMed  CAS  Google Scholar 

  152. Plotkowski MC, de Bentzmann S, Pereira SH, Zahm JM, Bajolet-Laudinat 0, Roger P, Puchelle E. Pseudomonas aeruginosa internalization by human epithelial respiratory cells depends on cell differentiation, polarity, and junctional complex integrity. Am J Respir Cell Mol Biol 1999; 20:880–890.

    PubMed  CAS  Google Scholar 

  153. Fleiszig SM, Vallas V, Jun C, Mok L, Balkovetz D, Roth M, Mostov K. Susceptibility of epithelial cells to Pseudomonas aeruginosa invasion and cytotoxicity is upregulated by hepatocyte growth factor. Infect Immun 1998; 66:3443–3446.

    PubMed  CAS  Google Scholar 

  154. Pereira SHM, Cervante MP, deBentzmann S, Plotkowski MC.Pseudomonas aeruginosa entry into Caco-2 cells is enhanced in repairing wounded monolayers. Microb Pathog 1997; 23:249–255.

    PubMed  CAS  Google Scholar 

  155. Lee A, Chow D, Haus B, Tseng W, Evans D, Fleiszig S, Chandy G, Machen T. Airway epithelial tight junctions and binding and cytotoxicity of Pseudomonas aeruginosa. Amer J Physiol 1999; 277:L204–L217.

    PubMed  CAS  Google Scholar 

  156. Pier GB, Grout M, Zaidi TS. Cystic fibrosis transmembrane conductance regulator is an epithelial cell receptor for clearance of Pseudomonas aeruginosa from the lung. Proc Natl Acad Sci USA 1997; 94:12088–12093.

    PubMed  CAS  Google Scholar 

  157. Pier GB, Grout M, Zaidi TS, Olsen JC, Johnson LG, Yankaskas JR, Goldberg JB. Role of mutant CFTR in hypersusceptibility of cystic fibrosis patients to lung infections. Science 1996; 271:64–67.

    PubMed  CAS  Google Scholar 

  158. Gerceker AA, Zaidi T, Marks P, Golan DE, Pier GB. Impact of heterogeneity within cultured cells on bacterial invasion: analysis of Pseudomonas aeruginosa and Salmonella enterica serovar typhi entry into MDCK cells by using a green fluorescent protein-labelled cystic fibrosis transmembrane conductance regulator receptor. Infect Immun 2000; 68:861–70.

    PubMed  CAS  Google Scholar 

  159. Kazmierczak BI, Jou T-S, Mostov K, Engel J. Rho-GTPase activity modulates Pseudomonas aeruginosa internalization by epithelial cells. Cell Microbiol 2001; 3:85–98.

    PubMed  CAS  Google Scholar 

  160. Kazmierczak BI, Mostov K, Engel JN. Epithelial cell polarity alters Rho-GTPase responses to Pseudomonas aeruginosa Submitted.

    Google Scholar 

  161. de Bentzmann S, Plotkowski C, Puchelle E. Receptors in the Pseudomonas aeruginosa adherence to injured and repairing airway epithelium. Am J Respir Crit Care Med 1996; 154:SI55–S162.

    Google Scholar 

  162. de Bentzmann S, Roger P, Dupuit F, Bajolet-Laudinat 0, Fuchey C, Plotkowski MC, Puchelle E. Asialo GM1 is a receptor for Pseudomonas aeruginosa adherence to regenerating respiratory epithelial cells. Infect Immun 1996; 64:1582–1588.

    PubMed  Google Scholar 

  163. de Bentzmann S, Roger P, Puchelle E. Pseudomonas aeruginosa adherence to remodelling respiratory epithelium. Eur Resp J 1996; 10:2145–2150.

    Google Scholar 

  164. Roger P, Puchelle E, Bajolet-Laudinat O, Tournier JM, Debordeaux C, Plotkowski MC, Cohen JH, Sheppard D, de Bentzmann S. Fibronectin and cc5131 integrin mediate binding of Pseudomonas aeruginosa to repairing airway epithelium. Eur Respir J 1999; 13:1301–1309.

    PubMed  CAS  Google Scholar 

  165. Santos MF, McCormack SA, Guo Z, Okolicany J, Zheng Y, Johnson LR, Tigyi G. Rho proteins play a critical role in cell migration during the early phase of mucosal restitution. J Clin Invest 1997; 100:216–225.

    PubMed  CAS  Google Scholar 

  166. Nicas TI, Bradley J, Lochner JE, Iglewski BH. The role of exoenzyme S in infections with Pseudomonas aeruginosa. J Infect Dis 1985; 152:716–721.

    PubMed  CAS  Google Scholar 

  167. Allewelt M, Coleman FT, Grout M, Priebe GP, Pier GB. Acquisition of expression of the Pseudomonas aeruginosa ExoU cytotoxin leads to increased bacterial virulence in a murine model of acute pneumonia and systemic spread. Infect Immun 2000; 68:3998–4004.

    PubMed  CAS  Google Scholar 

  168. Sawa T, Yahr TL, Ohara M, Kurahashi K, Gropper MA, Wiener-Kronish JP, Frank DW. Active and passive immunization with the Pseudomonas V antigen protects against type III intoxication and lung injury. Nature Med 1999; 5:392–398.

    PubMed  CAS  Google Scholar 

  169. Hauser AR, Cobb E, Bodi M, Mariscal D, Valles J, Engel J, Rello J. Impact of Pseudomonas aeruginosa type III secretion on clinical outcomes in patients with ventilator-associated pneumonia. Crit Care Med 2002, 30:521–528.

    PubMed  CAS  Google Scholar 

  170. Roy-Burman A, Savel R, Racine S, Swanson B, Revadigar N, Fijimoto J, Sawa T, Frank D, Wiener-Kronish J. Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect Dis 2001; 183:1767–1774.

    PubMed  CAS  Google Scholar 

  171. Liu PV. Extracellular toxins of Pseudomonas aeruginosa. J Infect Dis 1974; 130 Suppl:S94–9.

    PubMed  Google Scholar 

  172. McClure CD, Schiller NL. Inhibition of macrophage phagocytosis by Pseudomonas aeruginosa rhamnolipids in vitro and in vivo. Curr Microbiol 1996; 33:109–17.

    PubMed  CAS  Google Scholar 

  173. McClure CD, Schiller NL. Effects of Pseudomonas aeruginosa rhamnolipids on human monocyte-derived macrophages. J Leukoc Biol 1992; 51:97–102.

    PubMed  CAS  Google Scholar 

  174. Read RC, Roberts P, Munro N, Rutman A, Hastie A, Shryock T, Hall R, McDonald-Gibson W, Lund V, Taylor B et al. Effect of Pseudomonas aeruginosa rhamnolipids on mucociliary transport and ciliary beating. J Appl Physiol 1992; 72:2271–7.

    PubMed  CAS  Google Scholar 

  175. Cox CD, Adams P. 1985. Siderophore activity of pyoverdin for Pseudomonas aeruginosa. Infect Immun 48:130–8.

    PubMed  CAS  Google Scholar 

  176. Lamont IL, Beare PA, Ochsner U, Vasil Al, Vasil ML. Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc Nati Acad Sci USA 2002; 99:7072–7077.

    CAS  Google Scholar 

  177. Takase H, Nitanai H, Hoshino K, Otani T. Impact of siderophore production on Pseudomonas aeruginosa infections in immunosuppressed mice. Infect Immun 2000; 68:1834–9.

    PubMed  CAS  Google Scholar 

  178. Meyer JM, Neely A, Stintzi A, Georges C, Holder IA. Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect Immun 1996; 64:518–23.

    PubMed  CAS  Google Scholar 

  179. Sorensen R, Joseph F. Phenazine pigments in Pseudomonas aeruginosa infection, p. 4357.In M Campa, M Bendinelli, and H Friedman (ed.),Pseudomonas aeruginosa as an opportunistic pathogen. Plenum Press, New York, 1993.

    Google Scholar 

  180. Mahajan-Miklos S, Tan MW, Rahme LG, Ausubel FM. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell 1999; 96:47–56.

    PubMed  CAS  Google Scholar 

  181. Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow LS. Functional analysis of genes for biosynthesis of pyocyanin and phenazine- 1 -carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 2001; 183:6454–65.

    PubMed  CAS  Google Scholar 

  182. Gilboa-Garber N. Lectins of Pseudomonas aeruginosa: properties, biological effects and applications, p. 225–269. In D Mirelman (ed.), Microbial lectins and agglutinins-properties and biolgoical activity. John Wiley & Sons, New York, 1986.

    Google Scholar 

  183. Wentworth J, Austin F, Garber NC, Gilboa-Garber N, Paterson C, Doyle R. Cytoplasmic lectins contribute to the adhesion of P. aeruginosa. Biofouling 1991; 4:99–104.

    CAS  Google Scholar 

  184. Bajolet-Laudinat O, Girod-de Bentzmann S, Tournier JM, Madoulet C, Plotkowski MC, Chippaux C, Puchelle E. Cytotoxicity of Pseudomonas aeruginosa internal lectin PA-I to respiratory epithelial cells in primary culture. Infect Immun 1994; 62:4481–7.

    PubMed  CAS  Google Scholar 

  185. Winzer K, Falconer C, Garber NC, Diggle SP, Camara M, Williams P. The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. J Bacteriol 2000; 182:6401–11.

    PubMed  CAS  Google Scholar 

  186. Carpentier B, Cerf 0. Biofilms and their consequences, with particular reference to hygiene in the food industry. J Appl Bacteriol 1993; 75:499–511.

    PubMed  CAS  Google Scholar 

  187. Davey ME, O’Toole GA. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 2000; 64:847–67.

    PubMed  CAS  Google Scholar 

  188. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002; 15:167–93.

    PubMed  CAS  Google Scholar 

  189. Mah TF, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 2001; 9:34–9.

    PubMed  CAS  Google Scholar 

  190. O’Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol 2000; 54:49–79.

    PubMed  Google Scholar 

  191. O’Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB, Kolter R. Genetic approaches to study of biofilms. Methods Enzymol 1999; 310:91–109.

    PubMed  Google Scholar 

  192. O’Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 1998; 30:295–304.

    PubMed  Google Scholar 

  193. O’Toole GA, Gibbs KA, Hager PW, Phibbs PV Jr, Kolter R. The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. J Bacteriol 2000; 182:425–31.

    PubMed  Google Scholar 

  194. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. Extracellular DNA required for bacterial biofilm formation. Science 2002; 295:1487.

    PubMed  CAS  Google Scholar 

  195. Hentzer M, Teitzel GM, Balzer GJ, Heydorn A, Molin S, Givskov M, Parsek MR. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 2001; 183:5395–401.

    PubMed  CAS  Google Scholar 

  196. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 1998; 280:295–298.

    PubMed  CAS  Google Scholar 

  197. Whiteley M, Bangera MG, Bumgarner RE, Parsek MR, Teitzel GM, Lory S, Greenberg EP. Gene expression in Pseudomonas aeruginosa biofilms. Nature 2001; 413:860–4.

    PubMed  CAS  Google Scholar 

  198. Parsek MR, Greenberg EP. Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci USA 2000; 97:8789–93.

    PubMed  CAS  Google Scholar 

  199. Rumbaugh KP, Griswold JA, Hamood AN. The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa. Microbes Infect 2000; 2:1721–1731.

    PubMed  CAS  Google Scholar 

  200. de Kievit TR, Iglewski BH. Bacterial quorum sensing in pathogenic relationships. Infect Immun 2000; 68:4839–49.

    PubMed  Google Scholar 

  201. Van Delden C, Iglewski B. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 1998; 4:551–60.

    PubMed  Google Scholar 

  202. Kohler T, van Delden C, Curty LK, Hamzehpour MM, Pechere JC. Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa. J Bacteriol 2001; 183:5213–22.

    PubMed  CAS  Google Scholar 

  203. Beatson S, Whitchurch CB, Semmler ABT, Mattick JS. Quorum sensing is not required for twitching motility in Pseudomonas aeruginosa. J Bacteriol 2002; 184:3598–3604.

    PubMed  CAS  Google Scholar 

  204. Whiteley M, Lee KM, Greenberg EP. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 1999; 96:13904–9.

    PubMed  CAS  Google Scholar 

  205. Pearson JP, Feldman M, Iglewski BH, Prince A.Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infect Immun 2000; 68:4331–4334.

    PubMed  CAS  Google Scholar 

  206. Rumbaugh KP, Griswold JA, Hamood AN. Contribution of the regulatory gene lasR to the pathogenesis of Pseudomonas aeruginosa infection of burned mice. J Burn Care Rehabil 1999; 20:42–9.

    PubMed  CAS  Google Scholar 

  207. Storey DG, Ujack EE, Rabin HR, Mitchell I. Pseudomonas aeruginosa lasR transcription correlates with the transcription of lasA, lasB, and toxA in chronic lung infections associated with cystic fibrosis. Infect Immun 1998; 66:2521–8.

    PubMed  CAS  Google Scholar 

  208. Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 2000; 407:762–764.

    PubMed  CAS  Google Scholar 

  209. Whitchurch C, Young M, Kennedy H, Beatson S, Leech A, Semmler A, Duefel H, Jaeger K-E, Comolli J, Nguyen L, Engel J, Hobbs M, Martin P, Alm R, Darzins A, Mattick J. Characterisation of a complex signal transduction system which controls twitching motility and the production of multiple virulence factors of Pseudomonas aeruginosa Submitted.

    Google Scholar 

  210. Reimmann C, Beyeler M, Latifi A, Winteler H, Foglino M, Lazdunski A, Haas D. The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol 1997; 24:309–19.

    PubMed  CAS  Google Scholar 

  211. Albus AM, Pesci EC, Runyen-Janecky LI, West SE, Iglewski BH. Vfr controls quorum sensing in Pseudomonas aeruginosa. J Bacteriol 1997; 179:3928–35.

    PubMed  CAS  Google Scholar 

  212. West SE, Sample AK, Runyen-Janecky LJ. The vfr gene product, required for Pseudomonas aeruginosa exotoxin A and protease production, belongs to the cyclic amp receptor protein family. J Bacteriol 1994; 176:7532–42.

    PubMed  CAS  Google Scholar 

  213. Beatson S, Whitchurch CB, Sargent J, Levesque R, Mattick JS. Differential regulation of twitching motility and elastase production by Vfr in Pseudomonas aeruginosa. J Bacteriol 2002; 184:3605–3613.

    PubMed  CAS  Google Scholar 

  214. Laville J, Voisard C, Keel C, Maurhofer M, Defago G, Haas D. Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. Proc Natl Acad Sci USA 1992; 89:1562–6.

    PubMed  CAS  Google Scholar 

  215. Gaffney TD, Lam ST, Ligon J, Gates K, Frazelle A, Di Maio J, Hill S, Goodwin S, Torkewitz N, Allshouse AM et al. Global regulation of expression of antifungal factors by a Pseudomonas fluorescens biological control strain. Mol Plant Microbe Interact 1994; 7:455–63.

    PubMed  CAS  Google Scholar 

  216. Sacherer P, Defago G, Haas D. Extracellular protease and phospholipase C are controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHAO. FEMS Microbiol Lett 1994; 116:155–60.

    PubMed  CAS  Google Scholar 

  217. Rahme LG, Stevens EJ, Wolfort SF, Shao J, Tompkins RG, Ausubel FM. Common virulence factors for bacterial pathogenicity in plants and animals. Science 1995; 268:1899–902.

    PubMed  CAS  Google Scholar 

  218. Tan MW, Rahme LG, Sternberg JA, Tompkins RG, Ausubel FM.Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci USA 1999; 96:2408–13.

    PubMed  CAS  Google Scholar 

  219. Cao H, Krishnan G, Goumnerov B, Tsongalis J, Tompkins R, Rahme LG. A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proc Natl Acad Sci USA 2001; 98:14613–8.

    PubMed  CAS  Google Scholar 

  220. Diggle SP, Winzer K, Lazdunski A, Williams P, Camara M. Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J Bacteriol 2002; 184:2576–86.

    PubMed  CAS  Google Scholar 

  221. Rashid MH, Rumbaugh K, Passador L, Davies DG, Hamood AN, Iglewski BH, Kornberg A. Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 2000; 97:9636–41.

    PubMed  CAS  Google Scholar 

  222. Finlay BB. Bacterial disease in diverse hosts. Cell 1999; 96:315–8.

    PubMed  CAS  Google Scholar 

  223. Mahan MJ, Slauch JM, Mekalanos JJ. Selection of bacterial virulence genes that are specifically induced in host tissues. Science 1993; 259:686–688.

    PubMed  CAS  Google Scholar 

  224. Hensel M, Shea JE, Gleeson C, Jones MD, Dalton E, Holden DW. Simultaneous identification of bacterial virulence genes by negative selection. Science 1995; 269:400–403.

    PubMed  CAS  Google Scholar 

  225. Rahme LG, Tan MW, Le L, Wong SM, Tompkins RG, Calderwood SB, Ausubel FM. Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc Natl Acad Sci USA 1997; 94:13245–50.

    PubMed  CAS  Google Scholar 

  226. Jander G, Rahme LG, Ausubel FM. Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol 2000; 182:3843–3845.

    PubMed  CAS  Google Scholar 

  227. Handfield M, Lehoux DE, Sanschagrin F, Mahan MJ, Woods DE, Levesque RC. In vivo-induced genes in Pseudomonas aeruginosa. Infect Immun 2000; 68:2359–2362.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Engel, J.N. (2003). Molecular Pathogenesis of Acute Pseudomonas Aeruginosa Infections. In: Hauser, A.R., Rello, J. (eds) Severe Infections Caused by Pseudomonas Aeruginosa . Perspectives on Critical Care Infectious Diseases, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0433-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0433-7_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5074-3

  • Online ISBN: 978-1-4615-0433-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics