Skip to main content

Abstract

Photosynthesis is a physiological process that couples the energy of light to certain metabolic changes in biochemical reactions, via photochemical processes. Importantly, these metabolic changes would be endothermic in the absence of light, meaning that they would not proceed spontaneously. It is by this means that plants, algae, photosynthetic bacteria, and other organisms that have some kind of photosynthetic ability, are able to assemble energy-rich molecules, such as carbohydrates or lipids, from energy-poor starting materials, such as carbon dioxide or water. Even if these biochemical transformations are spatially and also partly temporally removed from the photochemical events, they are dependent upon physical and chemical changes that follow the absorption of light. This coupling permits the free-energy of light to produce metabolic change. This physiological trick is the energetic foundation of most life on earth. Only chemosynthetic organisms (e. g. non-photosynthetic sulphur bacteria) and those that prey upon them are fundamentally independent of the energy of light. It is the purpose of this chapter to lay out the basic physical and physiological processes associated with this coupling, and to show how these changes are linked to other physical processes that allow us to measure the operation and progress of the coupling of light-absorption to physiology. The essential raw material for this process is light itself, so we shall begin with a brief overview of light, especially in relation to energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam, W. 1975. Singlet molecular oxygen and its role in organic peroxide chemistry. Chem. Ztg. 99:142–155.

    CAS  Google Scholar 

  • Anonymous. 2002. PhotochemCAD spectra page of the Oregon Medical Laser Center. http://omlc.ogi.edu/spectra/PPhotochemCAD/html/index.html.

    Google Scholar 

  • Asada, K., and M. Takahashi. 1987. Production and scavenging of active oxygen in photosynthesis, p. 227–287. In: D.J. Kyle, C.B. Osmond, and C.J. Arntzen (eds.), Photoinhibition. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Croce, R., R. Remelli, C. Varotto, J. Breton, and R. Bassi. 1999. The neoxanthin binding site of the major light harvesting complex (LHCII) from higher plants. FEBS Lett. 456: 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams, B. 1990. Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin. Biochim. Biophys. Acta 1020:1–24.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B., and W.W. Adams. 1992. Photoprotection and other responses of plants to high light stress. Ann. Rev. Plant Physiol. Plant Mol. Biol. 43:599– 626.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B., and W.W. Adams. 1994. Capacity for energy dissipation in the pigment bed in leaves with different xanthophyll cycle pools. Aust. J. Plant Physiol. 21:575–588.

    Article  CAS  Google Scholar 

  • Enoch, H.Z., and B.A. Kimball. 1986. Appendix A, p. 161–163. In: H.Z. Enoch and B.A.Kimball (eds.), Carbon Dioxide Enrichment of Greenhouse Crops, Vol. 1. CRC Press,Boca Raton.

    Google Scholar 

  • Foyer, C.H., and J. Harbinson. 1994. Oxygen metabolism and the regulation of photosynthetic electron transport, p. 1–42. In: C.H. Foyer and P.M. Mullineaux (eds.), Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants. CRC Press, Boca Raton.

    Google Scholar 

  • Foyer, C.H., and J. Harbinson. 1999. Relationships between antioxidant metabolism and carotenoids in the regulation of photosynthesis, p. 305–325. In: H.A. Frank, A.J. Young, G.Britton, and R.J. Cogdell (eds.), The Photochemistry of the Carotenoids. Springer Science+Business Media New York, Dorderecht.

    Google Scholar 

  • Foyer, C.H., and G. Noctor. 2000. Tansley Review No. 112. Oxygen processing in photosynthesis: regulation and signalling. New Phytol. 146:359–388.

    Article  CAS  Google Scholar 

  • Foyer, C.H., M. Lelandais, and K.J. Kunert. 1994. Photooxidative stress in plants. Physiol.Plant. 92:696–717.

    Article  CAS  Google Scholar 

  • Frank, H.A., J.A. Bautista, J.S. Josue, and A.J. Young. 2002. Mechanism of non-photochemical quenching in green plants: Energies of the lowest excited singlet state of violaxanthin and zeaxanthin. Biochem. 39:2832–2837.

    Google Scholar 

  • Genty, B., and J. Harbinson. 1996. The regulation of light utilisation for photosynthetic electron transport, p. 67–99. In: N.R. Baker (ed.), Environmental Stress and Photosynthesis. Kluwer Academic Press, Dordrecht.

    Google Scholar 

  • Genty, B., J. Wonders, and N.R. Baker. 1990. Non-photochemical quenching of Fo in leaves is emission wavelength dependent: consequences for quenching analysis and its interpretation. Photosyn. Res. 26:133–139.

    Article  CAS  Google Scholar 

  • Genty, B., Y. Goulas, B. Dimon, J.M. Peltier, and I. Moya. 1992. Modulation effciency of primary conversion in leaves, mechanisms involved at PSII, p. 603–610. In: N. Murata (ed.), Research in Photosynthesis, Vol. 4. Springer Science+Business Media New York, Dordrecht.

    Google Scholar 

  • Girotti, A.W. 1998. Lipid hydroperoxide generation, turnover and effector action in biological systems. J. Lipid Res. 39:1529–1542

    PubMed  CAS  Google Scholar 

  • Goedheer, J.C. 1966. Visible absorption and fluorescence of chlorophyll and its aggregates in solution, p. 147–184. In: L.P. Vernon, and G.R. Seely (eds.), The Chlorophylls.Academic Press, New York.

    Google Scholar 

  • Govindjee. 1995. Sixty-Three Years Since Kautsky - Chlorophyll a Fluorescence. Aust. J.Plant Physiol. 22:131–160.

    Article  CAS  Google Scholar 

  • Harwood, J.L. 1997. Plant lipid metabolism, p. 237–272. In: P.M. Dey, and J.B. Harborne (eds.), Plant Biochemistry. Academic Press, San Diego.

    Chapter  Google Scholar 

  • Hastings, G., F.A.M. Kleinherenbrink, S. Lin, and R.E. Blankenship. 1994. Time-resolved fluorescence and absorption spectroscopy of photosytem I. Biochem. 33:3185–3192.

    Article  CAS  Google Scholar 

  • Horton, P., and A.V. Ruban. 1992. Regulation of Photosystem II. Photosyn. Res. 34:375–385

    Article  CAS  Google Scholar 

  • Horton, P., A.V. Ruban, and R.G. Walters. 1996. Regulation of light harvesting in green plants. Annu. Rev. Plant Physiol. Mol. Biol. 47:655–684.

    Article  CAS  Google Scholar 

  • Huheey, J.E. 1975. Inorganic Chemistry: Principles of structure and reactivity. Harper and Row, London.

    Google Scholar 

  • Jansson, S. 1994. The light-harvesting chlorophyll ab binding proteins. Biochim. Biophys.Acta 1184:1–19.

    Article  PubMed  CAS  Google Scholar 

  • Kleima, F.J., S. Hobe, F. Calkoen, M.L. Urbanus, E.J.G. Peterman, R. van Grondelle, H. Paulsen, and H. van Amerongen. 1999. Decreasing the chlorophyll ab ratio in reconstituted LHCII: Structural and functional consequences. Biochem. 38:6587–6596.

    Article  CAS  Google Scholar 

  • Klessinger, M., and J. Michl. 1995. Excited states and photochemistry of organic molecules. VCH, New York.

    Google Scholar 

  • Kramer, H., and P. Mathis. 1980. Quantum yield and rate of formation of the carotenoid triplet state in photosynthetic structures. Biochim. Biophys. Acta 593:319–329.

    Article  PubMed  CAS  Google Scholar 

  • Krause, G.H., and E. Weis. 1991. Chlorophyll fluorescence and photosynthesis: the basics. Ann. Rev. Plant. Physiol. Plant Mol. Biol. 42:313–349.

    Article  CAS  Google Scholar 

  • Kuhlbrandt, W., D.N. Wang, and Y. Fujiyoshi. 1994. An atomic model of plant light-harvesting complex by electron crystallography. Nature 367:614–621.

    Article  PubMed  CAS  Google Scholar 

  • Lavergne, J., and H.-W. Trissl. 1995. Theory of fluorescence induction in photosystem II: Derivation of analytical expressions in a model including exciton-radical-pair equilibrium and restricted energy transfer between photosynthetic units. Biophys. J. 68:2474–2492.

    Article  PubMed  CAS  Google Scholar 

  • Li, Z.-P., O. Bjorkmann, C. Shih, A.R. Grossman, M. Rosenquist, S. Jansson, and K.K. Niyogi. 2000. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature Lond. 403:391–395.

    Article  PubMed  CAS  Google Scholar 

  • Milgrom, L.R. 1997. The colours of life. An introduction to the chemistry of porphyrins and related compounds. Oxford University Press, Oxford.

    Google Scholar 

  • Niyogi, K. 2000. Safety valves for photosynthesis. Curr. Opin. Plant Biol. 3:455–460.

    Article  PubMed  CAS  Google Scholar 

  • Nuijs, A.M., V.A. Shuvalov, H.J. van Gorkom, J.J. Plijter, and L.N.M. Duysens. 1986. Picosecond absorbance difference spectroscopy on the primary reactions and the antenna excited states in photosystem I particles. Biochim. Biophys. Acta 850:310–318.

    Article  CAS  Google Scholar 

  • Ort, D.R., and C.F. Yocum (eds.). 1996. Oxygenic photosynthesis: The light reactions. Kluwer Academic Press, Dorderecht.

    Google Scholar 

  • Polivka, T., J.L. Herek, D. Zigmantas, and H.-E. Akerlund. 1999. Direct observation of the (forbidden) S1 state in carotenoids. Proc. Natl. Acad. Sci. USA 96:4914–4917.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, W. 1988. Luminescence of organic molecules. Theory and analytical applications in photosynthesis, p. 211–216. In: H.K. Lichtenthaler (ed.), Applications of Chlorophyll Fluorescence in Photosynthesis Research, Stress Physiology, Hydrobiology and Remote Sensing. Springer Science+Business Media New York, Dordrecht.

    Chapter  Google Scholar 

  • Trissl, H.-W. 1997. Determination of the quenching coeffcient of the oxidised primary donor of photosystem I, P700+. Photosyn. Res. 54:237–240.

    Article  CAS  Google Scholar 

  • Trissl, H-W., and J. Lavergne. 1995. Fluorescence induction from photosystem 2. Analytical equations for the yields of photochemistry and fluorescence derived from analysis of a model including excitonradical pair equilibrium and restricted energy transfer between photosynthetic units. Aust. J. Plant Physiol. 22:183–193.

    Article  CAS  Google Scholar 

  • van Amerongen, H., L. Valkunas, and R. van Grondelle. 2000. Photosynthetic Excitons. World Scientific, Singapore.

    Book  Google Scholar 

  • Vogelmann, T.C. 1993. Plant tissue optics. Ann. Rev. Plant Physiol. Plant Mol. Biol. 44: 231–251.

    Article  Google Scholar 

  • Witt, H.T. 1979. Energy conversion in the functional membrane of photosynthesis. Analysis by light pulse and electric pulse methods. The central role of the electric field. Biochim. Biophys. Acta 505:355–427.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Harbinson, J., Rosenqvist, E. (2003). An Introduction to Chlorophyll Fluorescence. In: DeEll, J.R., Toivonen, P.M.A. (eds) Practical Applications of Chlorophyll Fluorescence in Plant Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0415-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0415-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5065-1

  • Online ISBN: 978-1-4615-0415-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics