Skip to main content

Angiogenic Therapy by Coronary Collateral Recruitment and Arteriogenesis

  • Chapter
Myocardial Ischemia and Preconditioning

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 6))

Summary

Despite the rapid progress of coronary revascularization procedures, there are some patients with ischemic heart disease for whom catheter or surgical revascularizing procedures are not feasible because of the complicated coronary lesions. An alternative therapeutic option to conventional interventions is angiogenic therapy, which is defined as enhancement of collateral function by acute or chronic administration of some agents for the preservation of ischemic myocardium. Augmentation of collateral circulation is achieved by collateral recruitment and/or arteriogenesis. Promotion of collateral function in patients with intractable anginal pain, for whom no effective therapy exists, has many attractive features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hirai T, Fujita M, Sasayama S, Ohno A, Yamanishi K, Nakajima H, Asanoi H. 1987. Importance of coronary collateral circulation for kinetics of serum creatine kinase in acute myocardial infarction. Am J Cardiol 60:446–450.

    Article  PubMed  CAS  Google Scholar 

  2. Hirai T, Fujita M, Nakajima H, Asanoi H, Yamanishi K, Ohno A, Sasayama S. 1989. Importance of collateral circulation for prevention of left ventricular aneurysm formation in acute myocardial infarction. Circulation 79:791–796.

    Article  PubMed  CAS  Google Scholar 

  3. Nakae I, Fujita M, Tamaki S, Nohara R, Sasayama S. 1994. Clinical and angiographic determinants of ventricular remodeling after acute myocardial infarction. Coronary Artery Dis 5:793–798.

    CAS  Google Scholar 

  4. Fujita M, Ohno A, Wada O, Miwa K, Nozawa T, Yamanishi K, Sasayama S. 1991. Collateral circulation as a marker of the presence of viable myocardium in patients with recent myocardial infarction. Am Heart J 122:409–414.

    Article  PubMed  CAS  Google Scholar 

  5. Fujita M, Yamanishi K, Hirai T, Miwa K, Ejiri M, Asanoi H, Sasayama S. 1990. Significance of collateral circulation in reversible left ventricular asynergy by nitroglycerin in patients with relatively recent myocardial infarction. Am Heart J 120:521–528.

    Article  PubMed  CAS  Google Scholar 

  6. Sabia PJ, Powers ER, Ragosta M, Sarembock IJ, Burwell LR, Kaul S. 1992. An association between collateral blood flow and myocardial viability in patients with recent myocardial infarction. N Engl J Med 327:1825–1831.

    Article  PubMed  CAS  Google Scholar 

  7. Pohl T, Seiler C, Billinger M, Herren E, Wustmann K, Mehta H, Windecker S, Eberli FR, Meier B. 2001. Frequency distribution of collateral flow and factors influencing collateral channel development. J Am Coll Cardiol 38:1872–1878.

    Article  PubMed  CAS  Google Scholar 

  8. van Liebergen RA, Piek JJ, Koch KT, de Winter RJ, Schotborgh CE, Lie KI. 1999. Quantification of collateral flow in humans: a comparison of angiographic, electorocardiographic and hemodynamic variables. J Am Coll Cardiol 33:670–677.

    Article  PubMed  Google Scholar 

  9. Fujita M, Ohno A, Miwa K, Moriuchi I, Mifune J, Sasayama S. 1993. A new method for assessment of collateral development after acute myocardial infarction. J Am Coll Cardiol 21:68–72.

    Article  PubMed  CAS  Google Scholar 

  10. Yamanishi K, Fujita M, Ohno A, Sasayama S. 1990. Importance of myocardial ischaemia for recruitment of coronary collateral circulation in dogs. Cardiovasc Res 24:271–277.

    Article  PubMed  CAS  Google Scholar 

  11. Arras M, Ito WD, Scholz D, Winkler B, Schaper J, Schaper W 1998. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J Clin Invest 101:41–50.

    Article  Google Scholar 

  12. Ohno A, Fujita M, Miwa K, Ejiri M, Asanoi H, Sasayama S. 1991. Importance of coronary collateral circulation for increased treadmill exercise capacity by nitrates in patients with stable effort angina pectoris. Cardiology 78:323–328.

    Article  PubMed  CAS  Google Scholar 

  13. Wright L, Homans DC, Laxson DD, Dai X, Bache RJ. 1992. Effect of serotonin and thromboxane A2 on blood flow through moderately well developed coronary collateral vessels. J Am Coll Cardiol 19:687–693.

    Article  PubMed  CAS  Google Scholar 

  14. Tanaka T, Fujita M, Nakae I, Tamaki S, Hasegawa K, Kihara Y, Nohara R, Sasayama S. 1998. Improvement of exercise capacity by sarpogrelate as a result of augmented collateral circulation in patients with effort angina. J Am Coll Cardiol 32:1982–1986.

    Article  PubMed  CAS  Google Scholar 

  15. Shou M, Thirumurti V, Rajanayagam MAS, Lazarous DF, Hodge E, Stiber JA, Pettiford M, Elliott E, Shah SM, Unger EE 1997. Effect of basic fibroblast growth factor on myocardial angiogenesis in dogs with mature collateral vessels. J Am Coll Cardiol 29:1102–1106.

    Article  PubMed  CAS  Google Scholar 

  16. Fujita M, Sasayama S, Asanoi H, Nakajima H, Sakai O, Ohno A. 1988. Improvement of treadmill capacity and collateral circulation as a result of exercise with heparin pretreatment in patients with effort angina. Circulation 77:1022–1029.

    Article  PubMed  CAS  Google Scholar 

  17. Fujita M, Yamanishi K, Hirai T, Ohno A, Miwa K, Sasayama S. 1991. Comparative effect of heparin treatment with and without strenuous exercise on treadmill capacity in patients with stable effort angina. Am Heart J 122:453–457.

    Article  PubMed  CAS  Google Scholar 

  18. Fujita M, Sasayama S, Kato K, Takaori S, the Enoxaparin Study Group. 1995. Prospective, randomized, placebo-controlled, double-blind, multicenter study of exercise with enoxaparin pretreatment for stable-effort angina. Am Heart J 129:535–541.

    Article  PubMed  CAS  Google Scholar 

  19. Schumacher B, Pecher P, von Specht BU, Stegmann T. 1998. Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation 97:645–650.

    Article  PubMed  CAS  Google Scholar 

  20. Losordo DW, Vale PR, Symes J, Dunnington CH, Esakof DD, Maysky M, Ashare AB, Lathi K, Isner JM. 1998. Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 98:2800–2804.

    Article  PubMed  CAS  Google Scholar 

  21. Fujita M, Ikemoto M, Kishishita M, Otani H, Nohara R, Tanaka T, Tamaki S, Yamazato A, Sasayama S. 1996. Elevated basic fibroblast growth factor in pericardial fluid of patients with unstable angina. Circulation 94:610–613.

    Article  PubMed  CAS  Google Scholar 

  22. Fujita M, Ikemoto M, Tanaka T, Tamaki S, Yamazato A, Sawamura T, Hasegawa K, Kihara Y, Nohara R, Sasayama S. 1998. Marked elevation of vascular endothelial growth factor and basic fibroblast growth factor in pericardial fluid of patients with angina pectoris. Angiogenesis 2:105–108.

    Article  PubMed  CAS  Google Scholar 

  23. Arora RR, Chou TM, Jain D, Fleishman B, Crawford L, McKiernan T, Nesto RW. 1999. The multicenter study of enhanced external counterpulsation (MUST-EECP): Effect of EECP on exercise-induced myocardial ischemia and anginal episodes. J Am Coll Cardiol 33:1833–1840.

    Article  PubMed  CAS  Google Scholar 

  24. Urano H, Ikeda H, Ueno T, Matsumoto T, Murohara T, Imaizumi T. 2001. Enhanced external counterpulsation improves exercise tolerance, reduces exercise-induced myocardial ischemia and improves left ventricular diastolic filling in patients with coronary artery disease. J Am Coll Cardiol 37:93–99.

    Article  PubMed  CAS  Google Scholar 

  25. Masuda D, Nohara R, Hirai T, Kataoka K, Chen LG, Hosokawa R, Inubushi M, Tadamura E, Fujita M, Sasayama S. 2001. Enhanced external counterpulsation improved myocardial perfusion and coronary flow reserve in patients with chronic stable angina: evaluation by 13N-ammonia positron emission tomography. Eur Heart J 22:1451–1458.

    Article  PubMed  CAS  Google Scholar 

  26. Masuda D, Nohara R, Kataoka K, Hosokawa R, Kanbara N, Fujita M. 2001. Enhanced external counterpulsation promotes angiogenesis factors in patients with chronic stable angina (abstract). Circulation 104:II–445.

    Google Scholar 

  27. Unger EF, Banai S, Shou M, Lazarous DF, Jaklitsch MT, Scheinowitz M, Correa R, Klingbeil C, Epstein SE. 1994. Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am J Physiol 266:H1588–H1595.

    PubMed  CAS  Google Scholar 

  28. Harada K, Grossman W, Friedman M, Edelman ER, Prasad PV, Keighley CS, Manning WJ, Sellke FW, Simons M. 1994. Basic fibroblast growth factor improves myocardial function in chronically ischemic porcine hearts. J Clin Invest 94:623–630.

    Article  PubMed  CAS  Google Scholar 

  29. Banai S, Jaklitsch MT, Shou M, Lazarous DF, Scheinowitz M, Biro S, Epstein SE, Unger EF. 1994. Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 89:2183–2189.

    Article  PubMed  CAS  Google Scholar 

  30. Giordano FJ, Ping P, McKirnan D, Nozaki S, DeMaria AN, Dillmann WH, Mathieu-Costello O, Hammond HK. 1996. Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nature Med 2:534–539.

    Article  PubMed  CAS  Google Scholar 

  31. Lazarous DF, Shou M, Stiber JA, Dadhania DM, Thirumurti V, Hodge E, Unger EF. 1997. Pharmacodynamics of basic fibroblast growth factor: route of administration determines myocardial and systemic distribution. Cardiovasc Res 36:78–85.

    Article  PubMed  CAS  Google Scholar 

  32. Tio RA, Tkebuchava T, Scheuermann TH, Lebherz C, Magner M, Kearny M, Esakof DD, Isner JM, Symes JE 1999. Intramyocardial gene therapy with naked DNA encoding vascular endothelial growth factor improves collateral flow to ischemic myocardium. Human Gene Ther 10:2953–2960.

    Article  CAS  Google Scholar 

  33. Lee LY, Patel SR, Hackett NR, Mack CA, Poke DR, El-Sawy T, Hachamovitch R, Zanzonico P, Sanborn TA, Parikh M, Isom OW, Crystal RG, Rosengart TK. 2000. Focal angiogen therapy using intramyocardial delivery of an adenovirus vector coding for vascular endothelial growth factor 121. Ann Thorac Surg 69:14–24.

    Article  PubMed  CAS  Google Scholar 

  34. Rosengart TK, Lee LY, Patel SR, Sanborn TA, Parikh M, Bergman GW, Hachamovitch R, Szulc M, Kligfield PD, Okin PM, Hahn RT, Devereux RB, Post MR, Hackett NR, Foster T, Grasso TM, Lesser ML, Isom OW, Crystal RG. 1999. Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 100:468–474.

    Article  PubMed  CAS  Google Scholar 

  35. Laham RJ, Sellke FW, Edelman ER, Laham RG, Sellke FW, Edelman ER, Pearlman JD, Ware JA, Brown DL, Gold JP, Simons M. 1999. Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of a phase 1 randomized, double-blind, placebo-controlled trial. Circulation 100:1865–1871.

    Article  PubMed  CAS  Google Scholar 

  36. Hendel RC, Henry TD, Rocha-Singh K, Isner JM, Kereiakes DJ, Giordano FJ, Simons M, Bonow RO. 2000. Effect of intracoronary recombinant human vascular endothelial growth factor on myocardial perfusion: evidence for a dose-dependent effect. Circulation 101:118–121.

    Article  PubMed  CAS  Google Scholar 

  37. Vale PR, Losordo DW, Milliken CE, Maysky M, Esakof DD, Symes JF, Isner JM. 2000. Left ventricular electromechanical mapping to assess efficacy of phVEGF165 gene transfer for therapeutic angiogenesis in chronic myocardial ischemia. Circulation 102:965–974.

    Article  PubMed  CAS  Google Scholar 

  38. Deindl E, Buschmann I, Hoefer IE, Podzuweit T, Boengier K, Vogel S, van Royen N, Fernandez B, Schaper W. 2001. Role of ischemia and of hypoxia-inducible genes in arteriogenesis after femoral artery occlusion in the rabbit. Circ Res 89:779–786.

    Article  PubMed  CAS  Google Scholar 

  39. Seiler C, Pohl T, Wustmann K, Hutter D, Nicolet PA, Windecker S, Eberli FR, Meier B. 2001. Promotion of collateral growth by granulocyte-macrophage colony-stimulating factor in patients with coronary artery disease: a randomized, double-blind, placebo-controlled study. Circulation 104: 2012–2017.

    Article  PubMed  CAS  Google Scholar 

  40. Lazarous DF, Shou M, Scheinowitz M, Hodge E, Thirumurti V, Kitsiou AN, Stiber JA, Lobo AD, Hunsberger S, Guetta E, Epstein SE, Unger EE 1996. Comparative effects of basic fibroblast growth factor and vascular endothelial growth factor on coronary collateral development and arterial response to injury. Circulation 94:1074–1082.

    Article  PubMed  CAS  Google Scholar 

  41. Pijls NH, van Son JA, Kirkeeide RL, De Bruyne B, Gould KL. 1993. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 87:1354–1367.

    Article  PubMed  CAS  Google Scholar 

  42. Rentrop KP, Cohen M, Blanke H, Phillips RA. 1985. Changes in collateral channel filling immediately after controlled coronary artery occlusion by an angioplasty balloon in human subjects. J Am Coll Cardiol 5:587–592.

    Article  PubMed  CAS  Google Scholar 

  43. Fujita M, McKown DP, McKown MD, Franklin D. 1991. Effects of stenoses of donor arteries on collateral flow and regional myocardial function in conscious dogs with well-developed coronary collateral circulation. Coronary Artery Dis 2:815–822.

    Google Scholar 

  44. Ejiri M, Fujita M, Miwa K, Nozawa T, Asanoi H, Sasayama S. 1993. Importance of non-stenosed donor coronary arteries for collateral flow reserve. Int J Cardiol 39:5–11.

    Article  PubMed  CAS  Google Scholar 

  45. Araie E, Fujita M, Miwa K, Miyagi K, Sasayama S. 1991. Heparin exercise treatment following percutaneous transluminal coronary angioplasty in a patient with effort angina. Heart Vessels 6:181–183.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatoshi Fujita MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fujita, M. (2003). Angiogenic Therapy by Coronary Collateral Recruitment and Arteriogenesis. In: Dhalla, N.S., Takeda, N., Singh, M., Lukas, A. (eds) Myocardial Ischemia and Preconditioning. Progress in Experimental Cardiology, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0355-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0355-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5036-1

  • Online ISBN: 978-1-4615-0355-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics