Skip to main content

Cytokines and Post Traumatic Stress Disorders

  • Chapter
Cytokines and Mental Health

Abstract

Posttraumatic stress disorder (PTSD) is unique among psychiatric syndromes in that a state of threatened homeostasis, or stress, is a known direct precipitant for the disorder. Thus, an essential diagnostic criterion for PTSD is exposure to an environmental traumatic event or stressor, during which the individual subjectively experiences extreme fear for self or someone else, feels helplessness and often a sense of horror, emotions that initiate a strong and prolonged psychophysiologic response. Although predisposing vulnerabilities are likely (13) the inability to fully re-establish pre-stress homeostasis and the subsequent post-stress maladaptive accommodation result in PTSD. The symptoms of PTSD, once established, often persist for years. The post-trauma emotional changes include persistent re-experiencing of the adverse event through intrusive thoughts and nightmares, emotional numbing, avoidance of stimuli that might be a reminder of the event, memory and cognitive difficulties, as well as a state of increased arousal experienced as difficulty sleeping, irritability, increased startle and hypervigilence. The disorder is associated with well-documented physiologic abnormalities in the major stress response systems, the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic nervous system (SNS) (46) as well as other brain systems (7) for review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. True, W.R., Rice, J., Eisen, S.A., et al. A twin study of genetic and environmental contributions to liability for posttraumatic stress symptoms. Arch.Gen.Psychiatry 1993; 50:257–264

    PubMed  CAS  Google Scholar 

  2. Yehuda, R., Bierer, L.M., Schmeidler, J., et al. Low Cortisol and risk for PTSD in adult offspring of holocaust survivors. Am. J. Psychiatry 2000; 157:1252–1259

    PubMed  CAS  Google Scholar 

  3. McFarlane, A.C. Posttraumatic stress disorder: a model of the longitudinal course and the role of risk factors. J. Clin. Psychiatry 2000; 6(5): 15–20; discussion 21–3.: 15–20

    Google Scholar 

  4. Yehuda, R., Boisoneau, D., Lowy, M.T., et al. Dose-response changes in plasma Cortisol and lymphocyte glucocorticoid receptors following dexamethasone administration in combat veterans with and without posttraumatic stress disorder. Arch.Gen.Psychiatry 1995; 52:583–593

    PubMed  CAS  Google Scholar 

  5. Baker, D.G., West, S.A., Nicholson, W.E., et al. Serial CSF corticotropin-releasing hormone levels and adrenocortical activity in combat veterans with posttraumatic stress disorder. Am. J. Psychiatry 1999; 156:585–588

    PubMed  CAS  Google Scholar 

  6. Geracioti, T.D., Jr., Baker, D.G., Ekhator, N.N., et al. Cerebrospinal fluid norepinephrine concentrations in post-traumatic stress disorder. Am. J. Psychiatry 2001; 158:1227–1230

    PubMed  Google Scholar 

  7. Friedman, M.J., Charney, D.S. and Deutch, A.Y. Neurobiological and Clinical Consequences of Stress: From Normal Adaptation to Posttraumatic Stress Disorder Philadelphia, Lippincott-Raven Publishers, 1995.

    Google Scholar 

  8. Besedovsky, H.O. and del Rey, A. Immune-neuro-endocrine interactions: facts and hypotheses. Endocr.Rev. 1996; 17:64–102

    PubMed  CAS  Google Scholar 

  9. Chrousos, G.P. Stressors, stress, and neuroendocrine integration of the adaptive response. The 1997 Hans Selye Memorial Lecture. Ann.N.Y.Acad.Sci 1998; 851:311–335

    PubMed  CAS  Google Scholar 

  10. Elenkov, I.J., Wilder, R.L., Chrousos, G.P., et al. The sympathetic nerve--an integrative interface between two supersystems: the brain and the immune system. Pharmacol. Rev. 2000; 52:595–638

    PubMed  CAS  Google Scholar 

  11. Crofford, L.J. and Demitrack, M.A. Evidence that abnormalities of central neurohormonal systems are key to understanding fibromyalgia and chronic fatigue syndrome. Rheum.Dis.Clin North Am. 1996; 22:267–284

    PubMed  CAS  Google Scholar 

  12. Shalev, A.Y., Freedman, S., Peri, T., et al. Prospective study of posttraumatic stress disorder and depression following trauma. Am. J. Psychiatry 1998; 155:630–637

    PubMed  CAS  Google Scholar 

  13. Heim, C., Newport, D.J, Heit, S., et al. Pituitary-adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood. JAMA 2000; 284:592–597

    PubMed  CAS  Google Scholar 

  14. Fairbank, J.A., Schienger, W.E., Saigh, P.A., et al. An epidemiologic profile of posttraumatic stress disorder. In Neurobiological and Clinical Consequences of Stress: From Normal Adaptation to PTSD Edited by Friedman MJ, Charney DS, Deutch AY. Philadelphia, Lippincott-Raven Publishers, 1995, pp. 415–427.

    Google Scholar 

  15. Baker, D.G., Mendenhall, C.L., Simbartl, L.A., et al. Relationship between posttraumatic stress disorder and self-reported physical symptoms in Persian Gulf War veterans. Arch.Intern.Med 1997; 157:2076–2078

    PubMed  CAS  Google Scholar 

  16. Amir, M., Kaplan, Z., Neumann, L., et al. Posttraumatic stress disorder, tenderness and fibromyalgia. J. Psychosom.Res. 1997; 42:607–613

    PubMed  CAS  Google Scholar 

  17. Baker, D.G., McQuarrie, I.G., Murray, M.G., et al. Diagnostic status and treatment recommendation for gulf war veterans with multiple non-specific symptoms. Mil.Med. 2001; 166: 972–981.

    PubMed  CAS  Google Scholar 

  18. Wong, M.L., Kling, M.A., Munson, P.J., et al. Pronounced and sustained central hypernoradrenergic function in major depression with melancholic features: relation to hypercortisolism and corticotropin-releasing hormone. Proc.Natl.Acad.Sci. U.S.A 2000; 97:325–330

    PubMed  CAS  Google Scholar 

  19. Legangneux, E., Mora, J.J., Spreux-Varoquaux, O., et al. Cerebrospinal fluid biogenic amine metabolites, plasma-rich platelet serotonin and [3H]imipramine reuptake in the primary fibromyalgia syndrome. Rheumatology.(Oxford) 2001; 40:290–296

    PubMed  CAS  Google Scholar 

  20. Torpy, D.J., Papanicolaou, D.A., Lotsikas, A.J., et al. Responses of the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis to interleukin-6: a pilot study in fibromyalgia. Arthritis Rheum. 2000; 43:872–880

    PubMed  CAS  Google Scholar 

  21. Neeck, G. and Crofford, L.J. Neuroendocrine perturbations in fibromyalgia and chronic fatigue syndrome. Rheum.Dis.Clin. North Am. 2000; 26:989–1002

    PubMed  CAS  Google Scholar 

  22. Cleare, A.J., Blair, D., Chambers, S., et al. Urinary free cortisol in chronic fatigue syndrome. Am. J. Psychiatry 2001; 158:641–643

    PubMed  CAS  Google Scholar 

  23. Roy, A., Guthrie, S., Pickar, D., et al. Plasma norepinephrine responses to cold challenge in depressed patients and normal controls. Psychiatry Res. 1987; 21:161–16834.

    PubMed  CAS  Google Scholar 

  24. Siever, L.J., Uhde, T.W., Jimerson, D.C., et al. Indices of noradrenergic output in depression. Psychiatry Res. 1986; 19:59–73

    PubMed  CAS  Google Scholar 

  25. Yunus, M.B., Dailey, J.W., Aldag, J.C., et al. Plasma and urinary catecholamines in primary fibromyalgia: a controlled study. J. Rheumatol. 1992; 19:95–97

    PubMed  CAS  Google Scholar 

  26. Mellman, T.A., Kumar, A., Kulick-Bell, R., et al. Nocturnal/daytime urine noradrenergic measures and sleep in combat-related PTSD. Biol. Psychiatry 1995; 38:174–179

    PubMed  CAS  Google Scholar 

  27. McFall, M.E., Murburg, M.M., Ko, G.N., et al. Autonomic responses to stress in Vietnam combat veterans with posttraumatic stress disorder. Biol. Psychiatry 1990; 27:1165–1175

    PubMed  CAS  Google Scholar 

  28. Laye, S., Parnet, P., Goujon, E., et al. Peripheral administration of lipopolysaccharide induces the expression of cytokine transcripts in the brain and pituitary of mice. Brain Res. Mol. Brain Res. 1994; 27:157–162

    PubMed  CAS  Google Scholar 

  29. Miller, A.H., Pariante, CM., Pearce BD Effects of cytokines on glucocorticoid receptor expression and function. Glucocorticoid resistance and relevance to depression. Adv. Exp. Med. Biol. 1999; 461:107–16.:107–116

    PubMed  CAS  Google Scholar 

  30. Path, G., Scherbaum, W.A. and Bornstein, S.R. The role of interleukin-6 in the human adrenal gland. Eur. J. Clin. Invest. 2000; 30:91–95

    PubMed  CAS  Google Scholar 

  31. McCann, S.M., Kimura, M., Karanth, S., et al. The mechanism of action of cytokines to control the release of hypothalamic and pituitary hormones in infection. Ann.N.Y.Acad.Sci. 2000; 917:4–18.:4–18

    PubMed  Google Scholar 

  32. Chrousos, G.P. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N.Engl.J. Med. 1995; 332:1351–1362

    Google Scholar 

  33. Maes, M., Lin, A.H., Verkerk, R., et al. Serotonergic and noradrenergic markers of post-traumatic stress disorder with and without major depression. Neuropsychopharmacology 1999; 20:188–197

    PubMed  CAS  Google Scholar 

  34. Licinio, J. and Wong, M.L. The role of inflammatory mediators in the biology of major depression: central nervous system cytokines modulate the biological substrate of depressive symptoms, regulate stress-responsive systems, and contribute to neurotoxicity and neuroprotection. Mol. Psychiatry 1999; 4:317–327

    PubMed  CAS  Google Scholar 

  35. Elenkov, I.J., Chrousos, G.P. and Wilder, R.L. Neuroendocrine regulation of IL-12 and TNF-alpha/IL-10 balance. Clinical implications. Ann.N.Y.Acad.Sci. 2000; 917:94–105, 94–105

    PubMed  Google Scholar 

  36. Gold, P.W., Chrousos, G.P. The endocrinology of melancholic and atypical depression: relation to neurocircuitry and somatic consequences. Proc.Assoc.Am. Physicians 1999; 111:22–34

    PubMed  CAS  Google Scholar 

  37. Asensio, V.C. and Campbell, I.L. Chemokines in the CNS: plurifunctional mediators in diverse states. Trends Neurosci. 1999; 22:504–512

    PubMed  CAS  Google Scholar 

  38. Schmidt, E.D., Schoffelmeer, A.N., De Vries, T.J., et al. A single administration of interleukin-1 or amphetamine induces long-lasting increases in evoked noradrenaline release in the hypothalamus and sensitization of ACTH and corticosterone responses in rats. Eur. J. Neurosci. 2001; 13:1923–1930

    PubMed  CAS  Google Scholar 

  39. Reichenberg, A., Yirmiya, R., Schuld, A., et al. Cytokine-associated emotional and cognitive disturbances in humans. Arch.Gen.Psychiatry 2001; 58:445–452

    PubMed  CAS  Google Scholar 

  40. Bluthe, R.M., Crestani, F., Kelley, K.W., et al. Mechanisms of the behavioral effects of interleukin 1. Role of prostaglandins and CRF. Ann.N.Y.Acad.Sci. 1992; 650:268–75.:268–275

    PubMed  CAS  Google Scholar 

  41. Turrin, N..P and Plata-Salaman, C.R. Cytokine-cytokine interactions and the brain. Brain Res. Bull. 2000; 51:3–9

    PubMed  CAS  Google Scholar 

  42. Ek, M., Engblom, D., Sana, S., et al. Inflammatory response: pathway across the blood-brain barrier. Nature 2001; 410:430–431

    PubMed  CAS  Google Scholar 

  43. Konsman, J.P., Luheshi, G.N., Bluthe, R.M., et al. The vagus nerve mediates behavioural depression, but not fever, in response to peripheral immune signals; a functional anatomical analysis. Eur. J. Neurosci. 2000; 12:4434–4446

    PubMed  CAS  Google Scholar 

  44. Hansen, M.K., O’Connor, K.A., Goehler, L.E., et al. The contribution of the vagus nerve in interleukin-1beta-induced fever is dependent on dose. Am. J. Physiol. Regul.Integr.Comp. Physiol. 2001; 280:R929–R934

    Google Scholar 

  45. Chen, G., Castro, W.L., Chow, H.H., et al. Clearance of 1251-labeled interleukin-6 from brain into blood following intracerebroventricular injection in rats. Endocrinology 1997; 138:4830–4836

    PubMed  CAS  Google Scholar 

  46. Banks, W.A. Enhanced leptin transport across the blood-brain barrier by alphal-adrenergic agents. Brain Res. 2001; 899:209–217

    PubMed  CAS  Google Scholar 

  47. Banks, W.A., Kastin, A.J. and Broadwell, R.D. Passage of cytokines across the blood-brain barrier. Neuroimmunomo. 1995; 2:241–248

    CAS  Google Scholar 

  48. Raju, T.N. The Nobel chronicles. 1927: Julius Wagner-Jauregg (1857–1940). Lancet 1998; 352:1714

    PubMed  CAS  Google Scholar 

  49. Vale, W., Rivier, C., Brown, M.R., et al. Chemical and biological characterization of corticotropin releasing factor. Recent Prog.Horm.Res. 1983; 39:245–70.:245–270

    PubMed  Google Scholar 

  50. Von Euler, U.S. The presence of a substance with sympathin E properties in spleen extracts. Acta Physiol. Scand. 1946; 11:168–173

    Google Scholar 

  51. Mastorakos, G., Chrousos, G.P. and Weber, J.S. Recombinant interleukin-6 activates the hypothalamic-pituitary-adrenal axis in humans. J. Clin. Endocrinol. Metab. 1993;77:1690–1694

    PubMed  CAS  Google Scholar 

  52. Maier, S.F. and Watkins, L.R. Cytokines for psychologists: implications of bidirectional immune-to-brain communication for understanding behavior, mood, and cognition. Psychol.Rev. 1998; 105:83–107

    PubMed  CAS  Google Scholar 

  53. Castanon, N., Bluthe, R.M. and Dantzer, R. Chronic treatment with the atypical antidepressant tianeptine attenuates sickness behavior induced by peripheral but not central lipopolysaccharide and interleukin-1 beta in the rat. Psychopharmacology (Berl) 2001; 154:50–60

    PubMed  CAS  Google Scholar 

  54. Papez, J.W. A proposed mechanism of emotion. 1937. J. Neuropsychiatry Clin. Neurosci. 1995; 7:103–112

    PubMed  CAS  Google Scholar 

  55. Downing, J.EG. and Kendall, M.D. Peripheral and central neural mechanisms for immune regulation through the innervation of immune effector sites. In The Physiology of Immunity Edited by Marsh JA, Kendall MD. Boca Raton, CRC Pres, 1996, pp. 103–125.

    Google Scholar 

  56. Smagin, G.N., Heinrichs, S.C. and Dunn, A.J. The role of CRH in behavioral responses to stress. Peptides 2001; 22:713–724

    PubMed  CAS  Google Scholar 

  57. Herman, J.P. and Cullinan, W.E. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci. 1997; 20:78–84

    PubMed  CAS  Google Scholar 

  58. Turrin, N.P., Gayle, D., Ilyin, S.E., et al. Pro-inflammatory and anti-inflammatory cytokine mRNA induction in the periphery and brain following intraperitoneal administration of bacterial lipopolysaccharide. Brain Res. Bull. 2001; 54:443–453

    PubMed  CAS  Google Scholar 

  59. Vallieres, L. and Rivest, S. Regulation of the genes encoding interleukin-6, its receptor, and gp130 in the rat brain in response to the immune activator lipopolysaccharide and the pro-inflamatory cytokine interleukin-1beta. J. Neurochem. 1997; 69:1668–1683

    PubMed  CAS  Google Scholar 

  60. Westerhaus, M.J. and Loewy, A.D. Central representation of the sympathetic nervous system in the cerebral cortex. Brain Res. 2001; 903:117–127

    PubMed  CAS  Google Scholar 

  61. Dunn, A.J. Systemic interleukin-1 administration stimulates hypothalamic norepinephrine metabolism parallelling the increased plasma corticosterone. Life Sci. 1988; 43:429–435

    PubMed  CAS  Google Scholar 

  62. Kabiersch, A., del Rey, A., Honegger, C.G., et al. Interleukin-1 induces changes in norepinephrine metabolism in the rat brain. Brain Behav.Immun. 1988; 2:261–274

    Google Scholar 

  63. Weidenfeld, J., Abramsky, O. and Ovadia, H. Evidence for the involvement of the central adrenergic system in interleukin 1-induced adrenocortical response. Neuropharmacology 1989; 28:1411–1414

    PubMed  CAS  Google Scholar 

  64. Day, T.A., Ferguson, A.V. and Renaud, L.P. Noradrenergic afférents facilitate the activity of tuberoinfundibular neurons of the hypothalamic paraventricular nucleus. Neuroendocrinology 1985; 41:17–22

    PubMed  CAS  Google Scholar 

  65. Feldman, S., Conforti, N. and Melamed, E. Hypothalamic norepinephrine mediates limbic effects on adrenocortical secretion. Brain Res. Bull. 1988; 21:587–590

    PubMed  CAS  Google Scholar 

  66. Bhatnagar, S. and Dallman, M. Neuroanatomical basis for facilitation of hypothalamic-pituitary-adrenal responses to a novel stressor after chronic stress. Neuroscience 1998; 84:1025–1039

    PubMed  CAS  Google Scholar 

  67. Dayas, C.V., Buller, K.M. and Day, T.A. Neuroendocrine responses to an emotional stressor: evidence for involvement of the medial but not the central amygdala. Eur J Neurosci. 1999; 11:2312–2322

    PubMed  CAS  Google Scholar 

  68. Minami, M., Kuraishi, Y., Yabuuchi, K., et al. Induction of interleukin-1 beta mRNA in rat brain after transient forebrain ischemia. J. Neurochem. 1992; 58:390–392

    PubMed  CAS  Google Scholar 

  69. Nguyen, K.T., Deak, T., Will, M.J., et al. Timecourse and corticosterone sensitivity of the brain, pituitary, and serum interleukin-1beta protein response to acute stress. Brain Res. 2000; 859:193–201

    PubMed  CAS  Google Scholar 

  70. Shintani, F., Nakaki, T., Kanba, S., et al. Involvement of interleukin-1 in immobilization stress-induced increase in plasma adrenocorticotropic hormone and in release of hypothalamic monoamines in the rat. J. Neurosci. 1995; 15:1961–1970

    PubMed  CAS  Google Scholar 

  71. Shintani, F., Nakaki, T., Kanba, S., et al. Role of interleukin-1 in stress responses. A putative neurotransmitter. Mol. Neurobiol. 1995; 10:47–71

    PubMed  CAS  Google Scholar 

  72. Maier, S.F., Nguyen, K.T., Deak, T., et al. Stress, learned helplessness, and brain interleukin-1 beta. Adv. Exp. Med. Biol. 1999; 461:235–49.:235–249

    PubMed  Google Scholar 

  73. Pugh, R., Nguyen, K.T., Gonyea, J.L., et al. Role of interleukin-1 beta in impairment of contextual fear conditioning caused by social isolation. Behav.Brain Res. 1999; 106:109–118

    PubMed  CAS  Google Scholar 

  74. Plata-Salaman, CR., Ilyin, S.E., Turrin, N.P., et al. Neither acute nor chronic exposure to a naturalistic (predator) stressor influences the interleukin-1 beta system, tumor necrosis factor-alpha, transforming growth factor-betal, and neuropeptide mRNAs in specific brain regions. Brain Res. Bull. 2000; 51:187–193

    PubMed  CAS  Google Scholar 

  75. Peri, T., Ben Shakhar, G., Orr, S.P., et al. Psychophysiologic assessment of aversive conditioning in posttraumatic stress disorder. Biol. Psychiatry 2000; 47:512–519

    PubMed  CAS  Google Scholar 

  76. Shalev, A.Y., Peri, T., Brandes, D., et al. Auditory startle response in trauma survivors with posttraumatic stress disorder: a prospective study. Am. J. Psychiatry 2000; 157:255–261

    PubMed  CAS  Google Scholar 

  77. Orr, S.P., Metzger, L.J., Lasko, N.B., et al. De novo conditioning in trauma-exposed individuals with and without posttraumatic stress disorder. J. Abnorm. Psychol. 2000; 109:290–298

    PubMed  CAS  Google Scholar 

  78. Papanicolaou, D.A., Petrides, J.S., Tsigos, C., et al. Exercise stimulates interleukin-6 secretion: inhibition by glucocorticoids and correlation with catecholamines. Am. J. Physiol. 1996; 271:E601–E605

    PubMed  CAS  Google Scholar 

  79. Bullman, T.A., Kang, H.K. and Thomas, T.L. Posttraumatic stress disorder among Vietnam veterans on the Agent Orange Registry. A case-control analysis. Ann. Epidemiol. 1991; 1:505–512

    CAS  Google Scholar 

  80. Ehde, D.M., Patterson, D.R., Wiechman, S.A., et al. Post-traumatic stress symptoms and distress 1 year after burn injury. J. Burn Care Rehabil. 2000; 21:105–111

    PubMed  CAS  Google Scholar 

  81. van Dijken, H.H., de Goeij, D.C., Sutanto, W., et al. Short inescapable stress produces long-lasting changes in the brain-pituitary-adrenal axis of adult male rats. Neuroendocrinology 1993; 58:57–64

    PubMed  Google Scholar 

  82. Schmidt, E.D., Binnekade, R., Janszen, A.W., et al. Short stressor induced long-lasting increases of vasopressin stores in hypothalamic corticotropin-releasing hormone (CRH) neurons in adult rats. J. Neuroendocrinol. 1996; 8:703–712

    PubMed  CAS  Google Scholar 

  83. Plotsky, P.M., Cunningham, E.T., Jr. and Widmaier, E.P. Catecholaminergic modulation of corticotropin-releasing factor and adrenocorticotropin secretion. Endocr. Rev. 1989; 10:437–458

    PubMed  CAS  Google Scholar 

  84. Buwalda, B., de Boer, S.F., Schmidt, E.D., et al. Long-lasting deficient dexamethasone suppression of hypothalamic-pituitary-adrenocortical activation following peripheral CRF challenge in socially defeated rats. J. Neuroendocrinol. 1999; 11:513–520

    PubMed  CAS  Google Scholar 

  85. McQuade, R. A microdialysis study of the noradrenergic response in rat frontal cortex and hypothalamus to a conditioned cue for aversive, naturalistic environmental stimuli. Psychopharmacology (Berl) 2000; 148:201–208

    CAS  Google Scholar 

  86. Marti, O., Garcia, A., Velles, A., et al. Evidence that a single exposure to aversive stimuli triggers long-lasting effects in the hypothalamus-pituitary-adrenal axis that consolidate with time. Eur. J. Neurosci. 2001; 13:129–136

    PubMed  CAS  Google Scholar 

  87. Pinnock, S.B. and Herbert, J. Corticosterone differentially modulates expression of corticotropin releasing factor and arginine vasopressin mRNA in the hypothalamic paraventricular nucleus following either acute or repeated restraint stress. Eur. J. Neurosci. 2001; 13:576–584

    PubMed  CAS  Google Scholar 

  88. Delahanty, D.L., Raimonde, A.J. and Spoonster, E. Initial posttraumatic urinary cortisol levels predict subsequent PTSD symptoms in motor vehicle accident victims. Biol. Psychiatry 2000; 48:940–947

    PubMed  CAS  Google Scholar 

  89. Rothwell, N.J. CRF is involved in the pyrogenic and thermogenic effects of interleukin 1 beta in the rat. Am. J. Physiol. 1989; 256:E111–E115

    PubMed  CAS  Google Scholar 

  90. Fisher, L.A. Central actions of corticotropin-releasing factor on autonomic nervous activity and cardiovascular functioning. Ciba Found. Symp. 1993; 172:243–253; discussion 253–7:243–253

    PubMed  CAS  Google Scholar 

  91. Kasckow, J.W., Regmi, A., Seasholtz, A.F., et al. Regulation of corticotropin-releasing factor-binding protein expression in amygdalar neuronal cultures. J Neuroendocrinology 1999; 11:959–966

    CAS  Google Scholar 

  92. Friedman, W.J. Cytokines regulate expression of the type 1 interleukin-1 receptor in rat hippocampal neurons and glia. Exp. Neurol. 2001; 168:23–31

    PubMed  CAS  Google Scholar 

  93. Schneider, H., Pitossi, F., Balschun, D., et al. A neuromodulator role of interleukin-1b0ta + 012.0.30. in the hippocampus. Proc. Natl. Acad. Sci. U.S.A 1998; 95:7778–7783

    PubMed  CAS  Google Scholar 

  94. Katsuki, H., Nakai, S., Hirai, Y., et al. Interleukin-1 beta inhibits long-term potentiation in the CA3 region of mouse hippocampal slices. Eur. J. Pharmacol. 1990; 181:323–326

    PubMed  CAS  Google Scholar 

  95. Reyes, T.M. and Coe, C.L. The pro-inflamatory cytokine network: interactions in the CNS and blood of rhesus monkeys. Am. J. Physiol. 1998; 274:R139–R144

    PubMed  CAS  Google Scholar 

  96. Arend, W.P. Cytokine imbalance in the pathogenesis of rheumatoid arthritis: The role of interleukin-1 receptor antagonist. Semin. Arthritis Rheum. 2001; 30:1–6

    PubMed  CAS  Google Scholar 

  97. Burgess-Watson, I.P., Muller, H.K., Hoffma, L., et al. Cell-mediated immunity in combat veterans with post-traumatic stress disorder. Med. J. Aust. 1995; 162:55–56

    Google Scholar 

  98. Laudenslager, M.L., Aasal, R., Adler, L., et al. Elevated cytotoxicity in combat veterans with long-term post-traumatic stress disorder: preliminary observations. Brain Behav. Immun. 1998; 12:74–79

    PubMed  CAS  Google Scholar 

  99. Ironson, G., Wynings, C., Schneiderman, N., et al. Posttraumatic stress symptoms, intrusive thoughts, loss, and immune function after Hurricane Andrew. Psychosom. Med. 1997; 59:128–141

    PubMed  CAS  Google Scholar 

  100. Boscarino, J.A. and Chang, J. Higher abnormal leukocyte and lymphocyte counts 20 years after exposure to severe stress: research and clinical implications. Psychosom. Med. 1999; 61:378–386

    PubMed  CAS  Google Scholar 

  101. Wilson, S.N., van der, K.B., Burbridge J., et al. Phenotype of blood lymphocytes in PTSD suggests chronic immune activation. Psychosomatics 1999; 40:222–225

    PubMed  CAS  Google Scholar 

  102. Kawamura, N., Kim, Y. and Asukai, N. Suppression of cellular immunity in men with a past history of posttraumatic stress disorder. Am. J. Psychiatry 2001; 158:484–486\

    PubMed  Google Scholar 

  103. Spivak, B., Shohat, B., Mester, R., et al. Elevated levels of serum interleukin-1 beta in combat-related posttraumatic stress disorder. Biol. Psychiatry 1997; 42:345–348

    PubMed  CAS  Google Scholar 

  104. Hagan, M.M., Havel, P.J., Seeley, R.J., et al. Cerebrospinal fluid and plasma leptin measurements: covariability with dopamine and cortisol in fasting humans. J. Clin. Endocrinol. Metab. 1999; 84:3579–3585

    PubMed  CAS  Google Scholar 

  105. Maes, M., Lin, A.H., Delmeire, L., et al. Elevated serum interleukin-6 (IL-6) and IL-6 receptor concentrations in posttraumatic stress disorder following accidental man-made traumatic events. Biol. Psychiatry 1999; 45:833–839

    PubMed  CAS  Google Scholar 

  106. Baker, D.G., Ekhator, N.N., Kasckow, J.W., et al. Plasma and cerebrospinal fluid interleukin-6 concentrations in posttraumatic stress disorder. Neuroimmunomo. 2001; 9: 209–217.

    CAS  Google Scholar 

  107. Wong, C.M., Rapaport, M.H., Golier, J.A., et al. Cytokine function in PTSD: Serum and LPS whole blood responses to the DST. Poster presented at the annual meeting of the ACNP, Puerto Rico, 2000;

    Google Scholar 

  108. Wong, C.M., Rapaport, M.H., Golier, J.A., et al. IL-10 alteration by trauma types in posttraumatic stress disorder. Poster presented at the annual meeting of the ADAA, Atlanta, GA, 2001.

    Google Scholar 

  109. Cava, F., Gonzalez, C., Pascual, M.J., et al. Biological variation of interleukin 6 (IL-6) and soluble interleukin 2 receptor (sIL2R) in serum of healthy individuals. Cytokine 2000; 12:1423–1425

    PubMed  CAS  Google Scholar 

  110. Kanabrocki, E.L., Sothern, R.B., Messmore, H.L., et al. Circadian interrelationships among levels of plasma fibrinogen, blood platelets, and serum interleukin-6. Clin. Appl. Thromb. Hemost. 1999; 5:37–42

    PubMed  CAS  Google Scholar 

  111. Vgontzas, A.N., Papanicolaou, D.A., Bixler, E.O., et al. Circadian interleukin-6 secretion and quantity and depth of sleep. J. Clin. Endocrinol. Metab. 1999; 84:2603–2607

    PubMed  CAS  Google Scholar 

  112. Lissoni, P., Rovelli, F., Brivio, F., et al. Circadian secretions of IL-2, IL-12, IL-6 and IL-10 in relation to the light/dark rhythm of the pineal hormone melatonin in healthy humans. Nat. Immun. 1998; 16:1–5

    PubMed  CAS  Google Scholar 

  113. Petrovsky, N., McNair, P. and Harrison, L.C. Diurnal rhythms of pro-inflammatory cytokines: regulation by plasma cortisol and therapeutic implications. Cytokine 1998; 10:307–312

    PubMed  CAS  Google Scholar 

  114. Redwine, L., Hauger, R.L., Gillin, J.C., et al. Effects of sleep and sleep deprivation on interleukin-6, growth hormone, cortisol, and melatonin levels in humans. J. Clin. Endocrinol. Metab. 2000; 85:3597–3603

    PubMed  CAS  Google Scholar 

  115. Bastard, J.P., Jardel, C., Bruckert, E., et al. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J. Clin. Endocrinol. Metab. 2000; 85:3338–3342

    PubMed  CAS  Google Scholar 

  116. Vgontzas, A.N., Bixler, E.O., Papanicolaou, D.A., et al. Chronic systemic inflammation in overweight and obese adults. JAMA 2000; 283:2235

    Google Scholar 

  117. Orban, Z., Remaley, A.T., Sampson, M., et al. The differential effect of food intake and beta-adrenergic stimulation on adipose-derived hormones and cytokines in man. J. Clin. Endocrinol. Metab. 1999; 84:2126–2133

    PubMed  CAS  Google Scholar 

  118. Wei, J., Xu, H., Davies, J.L., et al. Increase of plasma IL-6 concentration with age in healthysubjects. Life Science 1992; 51:1953–1956

    CAS  Google Scholar 

  119. Daynes, R.A., Araneo, B.A., Ershler, W.B., et al. Altered regulation of IL-6 production with normal aging. Possible linkage to the age-associated decline in dehydroepiandrosterone and its sulfated derivative. J. Immunol. 1993; 150:5219–5230

    PubMed  CAS  Google Scholar 

  120. Dugue, B. and Leppanen, E. Short-term variability in the concentration of serum interleukin-6 and its soluble receptor in subjectively healthy persons. Clin. Chem. Lab. Med. 1998; 36:323–325

    PubMed  CAS  Google Scholar 

  121. Ershler, W.B. and Keller, E.T. Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu. Rev. Med. 2000; 51:245–70.:245–270

    PubMed  Google Scholar 

  122. Yoshioka, M., Itoh, Y., Mori, K., et al. Effects of an interleukin-1 beta analogue [Lys-D-Pro-Thr], on incomplete cerebral ischemia-induced inhibition of long-term potentiation in rate hippocampal neurons in vivo. Neuroscience Letters 1999; 261:171–174

    PubMed  CAS  Google Scholar 

  123. Haack, M., Hinze-Selch, D., Fenzel, T., et al. Plasma levels of cytokines and soluble cytokine receptors in psychiatric patients upon hospital admission: effects of confounding factors and diagnosis. J. Psychiatr. Res. 1999; 33:407–418

    PubMed  CAS  Google Scholar 

  124. Puder, J.J., Freda, P.U., Goland, R.S., et al. Estrogen modulates the hypothalamic-pituitary-adrenal and inflammatory cytokine responses to endotoxin in women. J. Clin. Endocrinol. Metab. 2001; 86:2403–2408

    PubMed  CAS  Google Scholar 

  125. Chiu, K.M., Arnaud, C.D., Ju, J., et al. Correlation of estradiol, parathyroid hormone, interleukin-6, and soluble interleukin-6 receptor during the normal menstrual cycle. Bone 2000; 26:79–85

    PubMed  CAS  Google Scholar 

  126. Konecna, L., Yan, M.S., Miller, L.E., et al. Modulation of IL-6 production during the menstrual cycle in vivo and in vitro. Brain Behav. Immun. 2000; 14:49–61

    PubMed  CAS  Google Scholar 

  127. Angstwurm, M.W., Gartner, R. and Ziegler-Heitbrock, H.W. Cyclic plasma IL-6 levels during normal menstrual cycle. Cytokine 1997; 9:370–374

    PubMed  CAS  Google Scholar 

  128. Marz, P., Otten, U. and Rose-John, S. Neural activities of IL-6-type cytokines often depend on soluble cytokine receptors. Eur. J. Neurosci. 1999; 11:2995–3004

    PubMed  CAS  Google Scholar 

  129. Gaillard, J., Pugniere, M., Tresca, J., et al. Interleukin-6 receptor signaling. II. Bioavailability of interleukin-6 in serum. Eur. Cytokine Netw. 1999; 10:337–344

    PubMed  CAS  Google Scholar 

  130. Akira, S., Taga, T. and Kishimoto, T. Interleukin-1 in biology and medicine. Advanced Immunology 1993; 54:1–78

    CAS  Google Scholar 

  131. Van Wagoner, N.J. and Benveniste, E.N. Interleukin-6 expression and regulation in astrocytes. J. Neuroimmunol. 1999; 100:124–139

    PubMed  Google Scholar 

  132. Their, M., Marz, P., Otten, U., et al. Interleukin-6 (IL-6) and its soluble receptor support survival of sensory neurons. J. Neurosci. Res. 1999; 55:411–422

    Google Scholar 

  133. Gao, Y., Ng, Y.K., Lin, J.Y., et al. Expression of immunoregulatory cytokines in neurons of the lateral hypothalamic area and amygdaloid nuclear complex of rats immunized against human IgG. Brain Res. 2000; 859:364–368

    PubMed  CAS  Google Scholar 

  134. Keller, E.T., Wanagat, J. and Ershler, W.B. Molecular and cellular biology of interleukin-6 and its receptor. Front Biosci. 1996; 1:d340–57.:d340–d357

    Google Scholar 

  135. Yeager, M.P., Lunt, P., Arruda, J., et al. Cerebrospinal fluid cytokine levels after surgery with spinal or general anesthesia. Reg. Anesth. Pain Med. 1999; 24:557–562

    PubMed  CAS  Google Scholar 

  136. Chen, G., McCuskey, R.S. and Reichlin, S. Blood interleukin-6 and tumor necrosis factor-alpha elevation after intracerebroventricular injection of Escherichia coli endotoxin in the rat is determined by two opposing factors: peripheral induction by LPS transferred from brain to blood and inhibition of peripheral response by a brain-mediated mechanism. Neuroimmunomodulation 2000; 8:59–69

    PubMed  Google Scholar 

  137. Peltola, J., Palmio, J., Korhonen, L., et al. Interleukin-6 and interleukin-1 receptor antagonist in cerebrospinal fluid from patients with recent tonic-clonic seizures. Epilepsy Res. 2000; 41:205–211

    PubMed  CAS  Google Scholar 

  138. Maier, B., Schwerdtfeger, K., Mautes, A., et al. Differential release of interleukines 6, 8, and 10 in cerebrospinal fluid and plasma after traumatic brain injury. Shock 2001; 15:421–426

    PubMed  CAS  Google Scholar 

  139. Levine, J., Barak, Y., Chengappa, K.N., et al. Cerebrospinal cytokine levels in patients with acute depression. Neuropsychobiology 1999; 40:171–176

    PubMed  CAS  Google Scholar 

  140. Stubner, S., Schon, T., Padberg, F., et al. Interleukin-6 and the soluble IL-6 receptor are decreased in cerebrospinal fluid of geriatric patients with major depression: no alteration of soluble gp130. Neurosci. Lett. 1999; 259:145–148

    PubMed  CAS  Google Scholar 

  141. Murphy, P.G., Borthwick, L.A., Altares, M., et al. Reciprocal actions of interleukin-6 and brain-derived neurotrophic factor on rat and mouse primary sensory neurons. Eur. J. Neurosci. 2000; 12:1891–1899

    PubMed  CAS  Google Scholar 

  142. Biber, K., Lubrich, B., Fiebich, B.L., et al. Interleukin-6 enhances expression of adenosine A(l) receptor mRNA and signaling in cultured rat cortical astrocytes and brain slices. Neuropsychopharmacology 2001; 24:86–96

    PubMed  CAS  Google Scholar 

  143. Himms-Hagen, J. Physiological roles of the leptin endocrine system: differences between mice and humans. Crit. Rev. Clin. Lab. Sci. 1999; 36:575–655

    PubMed  CAS  Google Scholar 

  144. Ahima, R.S., Flier, J.S. Leptin. Annu. Rev. Physiol. 2000; 62:413–37.:413–437

    PubMed  CAS  Google Scholar 

  145. Buyse, M., Viengchareun, S., Bado, A., et al. Insulin and glucocorticoids differentially regulate leptin transcription and secretion in brown adipocytes. FASEB J. 2001; 15:1357–1366

    PubMed  CAS  Google Scholar 

  146. Burguera, B., Couce, M.E., Long, J., et al. The long form of the leptin receptor (OB-Rb) is widely expressed in the human brain. Neuroendocrinology 2000; 71:187–195

    PubMed  CAS  Google Scholar 

  147. Fei, H., Okano, H.J., Li, C., et al. Anatomie localization of alternatively spliced leptin receptors (Ob-R) in mouse brain and other tissues. Proc. Natl. Acad. Sci. U.S.A 1997; 94:7001–7005

    PubMed  CAS  Google Scholar 

  148. Fantuzzi, G. and Faggioni, R. Leptin in the regulation of immunity, inflammation, and hematopoiesis. J. Leukoc. Biol. 2000; 68:437–446

    PubMed  CAS  Google Scholar 

  149. Gaillard, R.C., Spinedi, E., Chautard, T., et al. Cytokines, leptin, and the hypothalamo-pituitary-adrenal axis. Ann. N.Y. Acad. Sci. 2000; 917:647–57:647–657

    PubMed  CAS  Google Scholar 

  150. Rayner, D.V. and Trayhurn, P. Regulation of liptin production: sympathetic nervous system interaction. J. Mol. Med. 2001; 79:8–20

    PubMed  CAS  Google Scholar 

  151. Tanida, M., Iwashita, S., Ootsuka, Y., et al. Leptin injection into white adipose tissue elevates renal sympathetic nerve activity dose-dependently through the afferent nerves pathway in rats. Neurosci. Lett. 2000; 293:107–110

    PubMed  CAS  Google Scholar 

  152. Caro, J.F., Kolaczynski, J.W., Nyce, M.R., et al. Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance. Lancet 1996; 348:159–161

    PubMed  CAS  Google Scholar 

  153. Reichlin, S., Chen, G. and Nicolson, M. Blood to brain transfer of leptin in normal and interleukin-1beta-treated male rats. Endocrinology 2000; 141:1951–1954

    PubMed  CAS  Google Scholar 

  154. Luheshi, G.N., Gardner, J.D., Rushforth, D.A., et al. Leptin actions on food intake and body temperature are mediated by IL-1. Proc. Natl Acad. Sci. USA 1999; 96:7047–7052

    PubMed  CAS  Google Scholar 

  155. Nye, E.J., Bornstein, S.R., Grice, J.E., et al. Interactions between the stimulated hypothalamic-pituitary-adrenal axis and leptin in humans. J. Neuroendocrinol. 2000; 12:141–145

    PubMed  CAS  Google Scholar 

  156. Figlewicz, D.P., Higgins, M.S., Ng-Evans, S.B., et al. Leptin reverses sucrose-conditioned place preference in food-restricted rats. Physiol. Behav. 2001; 73:229–234

    PubMed  CAS  Google Scholar 

  157. Dinarello, C.A. Pro-inflamatory cytokines. Chest 2000; 118:503–508

    PubMed  CAS  Google Scholar 

  158. Born, T.L., Smith, D.E., Garka, K.E., et al. Identification and characterization of two members of a novel class of the interleukin-1 receptor (IL-1R) family. Delineation of a new class of IL-1R-related proteins based on signaling. J. Biol. Chem. 2000; 275:29946–29954

    PubMed  CAS  Google Scholar 

  159. Rothwell, N.J. and Luheshi, G.N. Interleukin 1 in the brain: biology, pathology and therapeutic target. Trends Neurosci. 2000; 23:618–625

    PubMed  CAS  Google Scholar 

  160. Alheim, K. and Bartfai, T. The interleukin-1 system: receptors, ligands, and ICE in the brain and their involvement in the fever response. Ann. N.Y. Acad. Sci. 1998; 840:51–8.:51–58

    PubMed  CAS  Google Scholar 

  161. Krueger, J.M., Fang, J., Taishi, P., et al. Sleep. A physiologic role for IL-1 beta and TNF-alpha. Ann. N.Y. Acad. Sci. 1998; 856:148–59.: 148–159

    PubMed  Google Scholar 

  162. Elenkov, I. and Vizi, E.S. Negative feedback modulation of noradrenaline release from the spleen. Acta Physiol. Hung. 1990; 75(Suppl):89–90.:89–90

    PubMed  Google Scholar 

  163. Linthorst, A.C., Flachskamm, C., Hopkins, S., et al. Long-term intracerebroventricular infusion of corticotropin-releasing hormone alters neuroendocrine, neurochemical, autonomic, behavioral, and cytokine responses to a systemic inflammatory challenge. J. Neurosci. 1997; 17:4448–4460

    PubMed  CAS  Google Scholar 

  164. Maes, M., Lin, A.H., Verkerk, R., et al. Serontonergic and noradrenergic markers of post-traumatic stress disorder with and without major depression. Neuropsychopharmacology 1999; 20:188–197.

    PubMed  CAS  Google Scholar 

  165. Sondergaard, S.R., Ostrowski, K., Ullum, H., et al. Changes in plasma concentrations of interleukin-6 and interleukin-1 receptor antagonists in response to adrenaline infusion in humans. Eur. J. Appl. Physiol. 2000; 83:95–98

    PubMed  CAS  Google Scholar 

  166. Yehuda, R., Siever, L.J., Teicher, M.H., et al. Plasma norepinephrine and 3-methoxy-4-hydroxyphenylglycol concentrations and severity of depression in combat posttraumatic stress disorder and major depressive disorder. Biological Psychiatry 1998; 44:56–63

    PubMed  CAS  Google Scholar 

  167. Kubera, M., Maes, M., Holan, V., et al. Prolonged desipramine treatment increases the production of interleukin-10, an anti-inflammatory cytokine, in C57BL/6 mice subjected to the chronic mild stress model of depression. J. Affect. Disord. 2001; 63:171–178

    PubMed  CAS  Google Scholar 

  168. Maes, M., Song, C., Lin, A.H., et al. Negative immunoregulatory effects of antidepressants: inhibition of interferon-gamma and stimulation of interleukin-10 secretion. Neuropsychopharmacology 1999; 20:370–379

    PubMed  CAS  Google Scholar 

  169. Suzuki, E., Shintani, F., Kanba, S., et al. Immobilization stress increases mRNA levels of interleukin-1 receptor antagonist in various rat brain regions. Cell. Mol. Neurobiol. 1997; 17:557–562

    PubMed  CAS  Google Scholar 

  170. Linsell, C.R., Lightman, S.L., Mullen, P.E., et al. Circadian rhythms of epinephrine and norepinephrine in man. J. Clin. Endocrinol. Metab. 1985; 60:1210–1215

    PubMed  CAS  Google Scholar 

  171. Hansen, A.M., Garde, A.H., Skovgaard, L.T., et al. Seasonal and biological variation of urinary epinephrine, norepinephrine, and cortisol in healthy women. Clin. Chim..Acta 2001; 309:25–35

    PubMed  CAS  Google Scholar 

  172. Blanchard, E.B., Kolb, L.C., Prins, A., et al. Changes in plasma norepinephrine to combat-related stimuli among Vietnam veterans with posttraumatic stress disorder. J. Nerv. Ment. Dis. 1991; 179:371–373

    PubMed  CAS  Google Scholar 

  173. McFall, M.E., Murburg, M.M., Ko, G.N., et al. Autonomie responses to stress in Vietnam combat veterans with posttraumatic stress disorder. Biol. Psychiatry 1990; 27:1165–1175

    PubMed  CAS  Google Scholar 

  174. Pitman, R.K. and Orr, S.P. Twenty-four hour urinary cortisol and catecholamine excretion in combat-related posttraumatic stress disorder. Biol. Psychia.y 1990; 27:245–247

    CAS  Google Scholar 

  175. Murburg, M.M., McFall, M.E., Lewis, N., et al. Plasma norepinephrine kinetics in patients with posttraumatic stress disorder. Biological Psychiatry 1995; 38:819–825

    PubMed  CAS  Google Scholar 

  176. Kosten, T.R., Mason, J.W., Giller, E.L., et al. Sustained urinary norepinephrine and epinephrine elevation in post-traumatic stress disorder. Psychoneuroendocrinology 1987; 12:13–20

    PubMed  CAS  Google Scholar 

  177. Mason, J.W., Giller, E.L., Kosten, T.R., et al. Elevation of urinary norepinephrine/cortisol ratio in posttraumatic stress disorder. J. Nerv. Ment. Dis. 1988; 176:498–502

    PubMed  CAS  Google Scholar 

  178. Yehuda, R., Southwick, S., Giller, E.L., et al. Urinary catecholamine excretion and severity of PTSD symptoms in Vietnam combat veterans. J. Nerv. Ment. Dis. 1992; 180:321–325

    PubMed  CAS  Google Scholar 

  179. McFarlane, A.C., Atchison, M., Rafalowicz, E., et al. Physical symptoms in posttraumatic stress disorder. J. Psychosom. Res. 1994; 38:715–726

    PubMed  CAS  Google Scholar 

  180. Solomon, S.D. and Davidson, J.R. Trauma: prevalence, impairment, service use, and cost. J. Clin. Psychiatry 1997; 58(9):5-ll.:5-ll

    Google Scholar 

  181. Beckham, J.C., Moore, S.D., Feldman, M.E., et al. Health status, somatization, and severity of posttraumatic stress disorder in Vietnam combat veterans with posttraumatic stress disorder. Am. J. Psychiatry 1998; 155:1565–1569

    PubMed  CAS  Google Scholar 

  182. Felitti, V.J., Anda, R.F., Nordenberg, D., et al. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The Adverse Childhood Experiences (ACE) Study. Am. J. Prev. Med. 1998; 14:245–258

    PubMed  CAS  Google Scholar 

  183. Kagan, B.L., Leskin, G., Haas, B., et al. Elevated lipid levels in Vietnam veterans with chronic posttraumatic stress disorder. Biol. Psych. 1999; 45:374–377

    CAS  Google Scholar 

  184. Boscarino, J.A. and Chang, J. Electrocardiogram abnormalities among men with stress-related psychiatric disorders: implications for coronary heart disease and clinical research. Ann. Behav. Med. 1999; 21:227–234

    PubMed  CAS  Google Scholar 

  185. Lee, K.A., Vaillant, G.E., Torrey, W.C., et al. A 50-year prospective study of the psychological sequelae of World War II combat. Am. J. Psychiatry 1995; 152:516–522

    PubMed  CAS  Google Scholar 

  186. Elder, G.H., Jr., Shanahan, M.J., Clipp, E.C. Linking combat and physical health: the legacy of World War II in men’s lives. Am. J. Psychiatry 1997; 154:330–336

    PubMed  Google Scholar 

  187. Horner, K.C., Giraudet, F., Lucciano, M., et al. Sympathectomy improves the ear’s resistance to acoustic trauma-could stress render the ear more sensitive? Eur. J. Neurosci. 2001; 13:405–408

    PubMed  CAS  Google Scholar 

  188. Muraoka, M.Y., Carlson, J.G. and Chemtob, C.M. Twenty-four-hour ambulatory blood pressure and heart rate monitoring in combat-related posttraumatic stress disorder. J. Trauma. Stress. 1998; 11:473–484

    PubMed  CAS  Google Scholar 

  189. Beckham, J.C., Feldman, M.E., Barefoot, J.C., et al. Ambulatory cardiovascular activity in Vietnam combat veterans with and without posttraumatic stress disorder. J. Consult Clin. Psychol. 2000; 68:269–276

    PubMed  CAS  Google Scholar 

  190. Cohen, H., Benjamin, J., Geva, A.B., et al. Autonomic dysregulation in panic disorder and in post-traumatic stress disorder: application of power spectrum analysis of heart rate variability at rest and in response to recollection of trauma or panic attacks. Psychiatry Res. 2000; 96:1–13

    PubMed  CAS  Google Scholar 

  191. Kimbrell, D.A. and Beutler, B. The evolution and genetics of innate immunity. Nat. Rev. Genet. 2001; 2:256–267

    PubMed  CAS  Google Scholar 

  192. Lanier, L.L. The origin and functions of natural killer cells. Clin. Immunol. 2000; 95:S14–S18

    PubMed  CAS  Google Scholar 

  193. Bodner, G., Ho, A. and Kreek, M.J. Effect of endogenous Cortisol levels on natural killer cell activity in healthy humans. Brain Behav. Immun. 1998; 12:285–296

    PubMed  CAS  Google Scholar 

  194. Irwin, M., Hauger, R.L., Jones, L., et al. Sympathetic nervous system mediates central corticotropin-releasing factor induced suppression of natural killer cytotoxicity. J. Pharmacol. Exp. Ther. 1990; 255:101–107

    PubMed  CAS  Google Scholar 

  195. Dhabhar, F.S., Miller, A.H., McEwen, B.S., et al. Effects of stress on immune cell distribution. Dynamics and hormonal mechanisms. J. Immunol. 1995; 154:5511–5527

    PubMed  CAS  Google Scholar 

  196. Dhabhar, F.S., Satoskar, A.R., Bluethmann, H., et al. Stress-induced enhancement of skin immune function: A role for gamma interferon. Proc. Natl. Acad. Sci. USA 2000; 97:2846–2851

    PubMed  CAS  Google Scholar 

  197. Elenkov, I.J., Papanicolaou, D.A., Wilder, R.L., et al. Modulatory effects of glucocorticoids and catecholamines on human interleukin-12 and interleukin-10 production: clinical implications. Proc. Assoc. Am. Physicians 1996; 108:374–381

    PubMed  CAS  Google Scholar 

  198. Biotta, M.H., DeKruyff, R.H. and Umetsu, D.T. Corticosteroids inhibit IL-12 production in human monocytes and enhance their capacity to induce IL-4 synthesis in CD4+ lymphocytes. J. Immunol. 1997; 158:5589–5595

    Google Scholar 

  199. Panina-Bordignon, P., Mazzeo, D., Lucia, P.D., et al. Beta2-agonists prevent Th1 development by selective inhibition of interleukin 12. J. Clin. Invest. 1997; 100:1513–1519

    PubMed  CAS  Google Scholar 

  200. Delahanty, D.L., Dougall, A.L., Craig, K.J., et al. Chronic stress and natural killer cell activity after exposure to traumatic death. Psychosom, Med. 1997; 59:467–476

    CAS  Google Scholar 

  201. DeRijk, R.H., Petrides, J., Deuster, P., et al. Changes in corticosteroid sensitivity of peripheral blood lymphocytes after strenuous exercise in humans. J. Clin. Endocrinol. Metab. 1996; 81:228–235

    PubMed  CAS  Google Scholar 

  202. Ridker, P.M., Rifai, N., Stampfer, M.J., et al. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 2000; 101:1767–1772

    PubMed  CAS  Google Scholar 

  203. Yudkin, J.S., Kumari, M., Humphries, S.E., et al. Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis 2000; 148:209–214

    PubMed  CAS  Google Scholar 

  204. Miller, R.J., Sutherland, A.G., Hutchison, J.D., et al. C-reactive protein and interleukin 6 receptor in post-traumatic stress disorder: a pilot study. Cytokine 2001; 13:253–255

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Baker, D.G., Geracioti, T.D., Kasckow, J.W., Zoumakis, E., Chrousos, G.P. (2003). Cytokines and Post Traumatic Stress Disorders. In: Kronfol, Z. (eds) Cytokines and Mental Health. Neurobiological Foundation of Aberrant Behaviors, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0323-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0323-1_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5020-0

  • Online ISBN: 978-1-4615-0323-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics