Skip to main content

ADP-Ribosyl Cyclases - A Family of cADPR and NAADP Metabolizing Enzymes

  • Chapter
Cyclic ADP-Ribose and NAADP

Abstract

ADP-ribosyl cyclase cyclizes NAD to produce cyclic ADP-ribose (cADPR) and releases nicotinamide in the process [1]. It is a ubiquitous enzyme widely present in animal cells [1, 2] and has even been identified in Euglena, a protozoan [4]. The first cyclase purified was from Aplysia ovotestis [1, 5]. It is a soluble protein of approximately 30 kDa. Sequence comparison reveals that CD38, a lymphocyte antigen, is a mammalian homolog [6]. CD38 is a transmembrane glycoprotein of approximately 45 kDa [7]. It catalyzes not only the synthesis of cADPR but also its hydrolysis to ADP-ribose [8, 11]. Additionally, both CD38 and the Aplysia cyclase use NADP as a substrate and catalyze the exchange of the nicotinamide group with nicotinic acid, producing nicotinic acid adenine dinucleotide phosphate (NAADP) [12]. The Aplysia cyclase has been crystallized and its structure solved [13, 14]. Current knowledge of the structures of these enzymes and the novel multiplicity of their catalytic activities are described in this chapter. Since both of their products are Ca2+ messengers, this class of enzymes is crucial in mediating Ca2+ signaling functions in cells. Some of their physiological functions have now been revealed by gene ablation and are summarised here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lee HC and Aarhus R. 1991. ADP-ribosyl cyclase: an enzyme that cyclizes NAD+ into a calcium-mobilizing metabolite. Cell Regul. 2: 203–209.

    PubMed  CAS  Google Scholar 

  2. Rusinko N and Lee HC. 1989. Widespread occurrence in animal tissues of an enzyme catalyzing the conversion of NAD+ into a cyclic metabolite with intracellular Ca2+-mobilizing activity. J. Biol. Chem. 264: 11725–11731.

    PubMed  CAS  Google Scholar 

  3. Lee HC and Aarhus R. 1993. Wide distribution of an enzyme that catalyzes the hydrolysis of cyclic ADP-ribose. Biochim. Biophys. Acta 1164: 68–74.

    Article  PubMed  CAS  Google Scholar 

  4. Masuda W, Takenaka S, Tsuyama S, Inui H, Miyatake K and Nakano Y. 1999. Purification and characterization of ADP-ribosyl cyclase from Euglena gracilis. J. Biochem. 125:449–453.

    Article  PubMed  CAS  Google Scholar 

  5. Hellmich MR and Strumwasser F. 1991. Purification and characterization of a molluscan egg-specific NADase, a second-messenger enzyme. Cell Regul. 2: 193–202.

    PubMed  CAS  Google Scholar 

  6. States DJ, Walseth TF and Lee HC. 1992. Similarities in amino acid sequences of Aplysia ADP-ribosyl cyclase and human lymphocyte antigen CD38. Trends Biochem. Sci. 17: 495.

    Article  PubMed  CAS  Google Scholar 

  7. Jackson DG and Bell JI. 1990. Isolation of a cDNA encoding the human CD38 (T10) molecule, a cell surface glycoprotein with an unusual discontinuous patern of expression during lymphocyte differentiation. J. Immunol. 144: 2811–2815.

    PubMed  CAS  Google Scholar 

  8. Lee HC, Zocchi E, Guida L, Franco L, Benatti U and De Flora A. 1993. Production and hydrolysis of cyclic ADP-ribose at the outer surface of human erythrocytes. Biochem. Biophys. Res. Commun. 191: 639–645.

    Article  PubMed  CAS  Google Scholar 

  9. Howard M, Grimaldi JC, Bazan JF, Lund FE, Santos-Argumedo L, Parkhouse RM, Walseth TF and Lee HC. 1993. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science 262: 1056–1059.

    Article  PubMed  CAS  Google Scholar 

  10. Kim H, Jacobson EL and Jacobson MK. 1993. Synthesis and degradation of cyclic ADP-ribose by NAD glycohydrolases. Science 261: 1330–1333.

    Article  PubMed  CAS  Google Scholar 

  11. Takasawa S, Tohgo A, Noguchi N, Koguma T, Nata K, Sugimoto T, Yonekura H and Okamoto H. 1993. Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38 and inhibition of the hydrolysis by ATP. J. Biol. Chem. 268: 26052–26054.

    PubMed  CAS  Google Scholar 

  12. Aarhus R, Graeff RM, Dickey DM, Walseth TF and Lee HC. 1995. ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. J. Biol. Chem. 270: 30327–30333.

    Article  PubMed  CAS  Google Scholar 

  13. Prasad GS, Levitt DG, Lee HC and Stout CD. 1996. Crystallization of ADP-ribosyl cyclase from Aplysia californica. Proteins 24: 138–140.

    Article  CAS  Google Scholar 

  14. Prasad GS, McRee DE, Stura EA, Levitt DG, Lee HC and Stout CD. 1996. Crystal structure of Aplysia ADP ribosyl cyclase, a homologue of the bifunctional ectozyme CD38. Nature Struct. Biol. 3: 957–964.

    Article  PubMed  CAS  Google Scholar 

  15. Hirata Y, Kimura N, Sato K, Ohsugi Y, Takasawa S, Okamoto H, Ishikawa J, Kaisho T, Ishihara K and Hirano T. 1994. ADP ribosyl cyclase activity of a novel bone marrow stromal cell surface molecule, BST-1. FEBS Lett. 356: 244–248.

    Article  PubMed  CAS  Google Scholar 

  16. Itoh M, Ishihara K, Tomizawa H, Tanaka H, Kobune Y, Ishikawa J, Kaisho T and Hirano T. 1994. Molecular cloning of murine BST-1 having homology with CD38 and Aplysia ADP-ribosyl cyclase. Biochem. Biophys. Res. Commun. 203: 1309–1317.

    Article  PubMed  CAS  Google Scholar 

  17. Graeff RM, Walseth TF, Fryxell K, Branton WD and Lee HC. 1994. Enzymatic synthesis and characterizations of cyclic GDP-ribose. A procedure for distinguishing enzymes with ADP-ribosyl cyclase activity. J. Biol. Chem. 269: 30260–30267.

    PubMed  CAS  Google Scholar 

  18. Graeff RM, Mehta K and Lee HC. 1994. GDP-ribosyl cyclase activity as a measure of CD38 induction by retinoic acid in HL-60 cells. Biochem. Biophys. Res. Commun. 205: 722–727.

    Article  PubMed  CAS  Google Scholar 

  19. Graeff RM, Walseth TF, Hill HK and Lee HC. 1996. Fluorescent analogs of cyclic ADP-ribose: synthesis, spectral characterization, and use. Biochemistry 35: 379–386.

    Article  PubMed  CAS  Google Scholar 

  20. Lee HC, Graeff R and Walseth TF. 1995. Cyclic ADP-ribose and its metabolic enzymes. Biochimie 11: 345–355.

    Article  Google Scholar 

  21. Graeff RM, Franco L, Deflora A and Lee HC. 1998. Cyclic GMP-dependent and -independent effects on the synthesis of the calcium messengers cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate. J. Biol. Chem. 273: 118–125.

    Article  PubMed  CAS  Google Scholar 

  22. Takada T. Iida K and Moss J. 1994. Expression of NAD glycohydrolase activity by rat mamary adenocarcinoma cells transformed with rat T cell alloantigen RT6.2. J. Biol. Chem. 269: 9420–9423.

    PubMed  CAS  Google Scholar 

  23. Walseth TF and Lee HC. 1993. Synthesis and characterization of antagonists of cyclic-ADP-ribose-induced Ca2+ release. Biochim. Biophys. Acta 1178: 235–242.

    Article  PubMed  CAS  Google Scholar 

  24. Walseth TF, Aarhus R, Gurnack ME, Wong L, Breitinger H-GA, Gee KR and Lee HC. 1997. Preparation of cyclic ADP-ribose antagonists and caged cyclic ADP-ribose. Meth. Enzymol.  280: 294–305.

    Article  PubMed  CAS  Google Scholar 

  25. Ashamu GA, Sethi JK, Galione A and Potter BVL. 1997. Roles for adenosine ribose hydroxyl groups in cyclic adenosine 5’-diphosphate ribose-mediated Ca2+ release. Biochemistry 36: 9509–9517.

    Article  PubMed  CAS  Google Scholar 

  26. Bailey VC. Sethi JK. Galione A and Potter BVL. 1997. Synthesis of 7-deaza-8-bromo cyclic adenosine 5’-diphosphate ribose - The first hydrolysis resistant antagonist at the cADPR receptor. Chem. Commun.: 695–696.

    Google Scholar 

  27. Wong L, Aarhus R, Lee HC and Walseth TF. 1999. Cyclic 3-deaza-adenosine diphosphoribose: a potent and stable analog of cyclic ADP-ribose. Biochim. Biophys. Acta 1472:555–564.

    Article  PubMed  CAS  Google Scholar 

  28. Sethi JK, Empson RM, Bailey VC, Potter BVL and Galione A. 1997. 7-Deaza-8-bromo-cyclic ADP-ribose. the first membrane-permeant, hydrolysis-resistant cyclic ADP-ribose antagonist. J. Biol. Chem. 272: 16358–16363.

    Article  PubMed  Google Scholar 

  29. Lee HC and Aarhus R. 1997. Structural determinants of nicotinic acid adenine dinucleotide phosphate important for its calcium-mobilizing activity. J. Biol. Chem. 272: 20378–20383.

    Article  PubMed  CAS  Google Scholar 

  30. Lee HC. 1997. Mechanisms of calcium signaling by cyclic ADP-ribose and NAADP. Physiol. Rev. 11: 1133–1164.

    Google Scholar 

  31. Lee HC. 2000. Enzymatic functions and structures of CD38 and homologs. Chem. Immunol. 75: 39–59.

    Article  PubMed  CAS  Google Scholar 

  32. Munshi C. Thiel DJ, Mathews II, Aarhus R, Walseth TF and Lee HC. 1999. Characterization of the active site of ADP-ribosyl cyclase. J. Biol. Chem. 274: 30770–30777.

    Article  PubMed  CAS  Google Scholar 

  33. Munshi C, Aarhus R, Graeff R, Walseth TF, Levitt D and Lee HC. 2000. Identification of the enzymatic active site of CD38 by site-directed mutagenesis. J. Biol. Chem. 275: 21566–21571.

    Article  PubMed  CAS  Google Scholar 

  34. Hussain AMM, Lee HC and Chang CF. 1998. Functional expression of secreted mouse BST-1 in yeast. Prot. Express. Purif. 12: 133–137.

    Article  CAS  Google Scholar 

  35. Kontani K, Nishina H, Ohoka Y, Takahashi K and Katada T. 1993. NAD glycohydrolase specifically induced by retinoic acid in human leukemic HL-60 cells. J. Biol. Chem 268: 16895–16898.

    PubMed  CAS  Google Scholar 

  36. De Flora A, Franco L, Guida L, Bruzzone S, Usai C and Zocchi E. 2000. Topology of CD38. Chem. Immunol. 15: 79–98.

    Article  Google Scholar 

  37. Franco L, Guida L, Bruzzone S, Zocchi E, Usai C and Flora AD. 1998. The transmembrane glycoprotein CD38 is a catalytically active transporter responsible for generation and influx of the second messenger cyclic ADP-ribose across membranesFASEB J. 12: 1507–1520.

    PubMed  CAS  Google Scholar 

  38. Franco L, Zocchi E, Usai C, Guida L, Bruzzone S, Costa A and De Flora A. 2001. Paracrine roles of NAD+ and cyclic ADP-ribose in increasing intracellular calcium and enhancing cell proliferation of 3T3 fibroblasts. J. Biol. Chem. 276: 21642–21648.

    PubMed  CAS  Google Scholar 

  39. Verderio C, Bruzzone S, Zocchi E, Fedele E, Schenk U, De Flora A and M. M. 2001. Evidence of a role for cyclic ADP-ribose in calcium signalling and neurotransmitter release in cultured astrocytes. J. Neurochem. 78: 646–657.

    Article  PubMed  CAS  Google Scholar 

  40. Sun L, Adebanjo OA, Moonga BS, Corisdeo S, Anandatheerthavarada HK, Biswas G, Arakawa T, Hakeda Y, Koval A, Sodam B, Bevis PJR, Moser AJ, Lai FA, Epstein S, Troen BR, Kumegawa M and Zaidi M. 1999. CD38/ADP-ribosyl cyclase: A new role in the regulation of osteoclastic bone resorption. J. Cell Biol. 146: 1161–1171.

    Article  PubMed  CAS  Google Scholar 

  41. Detlora A, Guida L, Franco L, Zocchi E, Pestarino M, Usai C, Marchetti C, Fedele E, Fontana G and Raiteri M. 1996. Ectocellular in vitro and in vivo metabolism of cADP-ribose in cerebellum. Biochem. J. 320: 665–671.

    Google Scholar 

  42. Zocchi E, Franco L, Guida L, Piccini D, Tacchetti C and Deflora A. 1996. NAD+-dependent internalization of the transmembrane glycoprotein CD38 in human Namalwa ß cells. FEBS Lett. 396: 327–332.

    Article  PubMed  CAS  Google Scholar 

  43. Zocchi E, Usai C, Guida L, Franco L, Bruzzone S, Passalacqua M and De Flora A. 1999. Ligand-induced internalization of CD38 results in intracellular Ca2+ mobilization: role of NAD+ transport across cell membranes. FASEB J. 13: 273–283.

    PubMed  CAS  Google Scholar 

  44. Yamada M, Mizuguchi M, Otsuka N, Ikeda K and Takahashi H. 1997. Ultrastructural localization of CD38 immunoreactivity in rat brain. Brain Res. 756: 52–60.

    Article  PubMed  CAS  Google Scholar 

  45. Adebanjo OA, Anandatheerthavarada HK, Koval AP, Moonga BS, Biswas G, Sun L, Sodam BR, Bevis PJR, Huang CLH, Epstein S, Lai FA, Avadhani NG and Zaidi M. 1999. A new function for CD38/ADP-ribosyl cyclase in nuclear Ca2+ homeostasis. Nature Cell Biol. 1:409–414.

    Article  PubMed  CAS  Google Scholar 

  46. Khoo KM, Han M-K, Park JB, Chae SW, Kim U-H, Lee HC, Bay BH and Chang CF. 2000. Localization of the cyclic ADP-ribose-dependent calcium signaling pathway in hepatocyte nucleus. J. Biol. Chem. 275: 24807–24817.

    Article  PubMed  CAS  Google Scholar 

  47. Khoo KM and Chang CF. 2001. Identification and characterization of nuclear CD38 in the rat spleen. Int. J. Biochem. Cell Biol. 34: 43–54.

    Article  Google Scholar 

  48. Santella L, Deriso L, Gragnaniello G and Kyozuka E. 1998. Separate activation of the cytoplasmic and nuclear calcium pools in maturing starfish oocytes. Biochem. Biophys. Res. Commun. 252: 1–4.

    Article  PubMed  CAS  Google Scholar 

  49. Reinherz EL, Kung PC, Goldstein G, Levey RH and Schlossman SF. 1980. Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage. Proc. Natl. Acad. Set. USA 77: 1588–1592.

    Article  CAS  Google Scholar 

  50. Zocchi E, Franco L, Guida L, Benatti U, Bargellesi A, Malavasi F, Lee HC and De Flora A. 1993. A single protein immunologically identified as CD38 displays NADV glycohydrolase, ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase activities at the outer surface of human erythrocytes. Biochem. Biophys. Res. Commun. 196: 1459–1465.

    Article  PubMed  CAS  Google Scholar 

  51. Fernandez JE, Deaglio S, Donati D, Svoboda-Beusan I, Corno F, Aranega A, Forni M, Falini B and Malavasi F. 1998. Analysis of the distribution of human CD38 and of its ligand CD31 in normal tissues. J. Biol. Regul.Homeostatic Agents 12: 81–91.

    CAS  Google Scholar 

  52. Khoo KM and Chang CF. 1999. Characterization and localization of CD38 in the vertebrate eye. Brain Res. 821: 17–25.

    Article  PubMed  CAS  Google Scholar 

  53. Kato I, Takasawa S, Akabane A, Tanaka O, Abe H, Takamura T, Suzuki Y, Nata K, Yonekura H, Yoshimoto T and et al. 1995. Regulatory role of CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase) in insulin secretion by glucose in pancreatic beta cells. Enhanced insulin secretion in CD38-expressing transgenic mice. J. Biol. Chem. 270: 30045–30050.

    Article  PubMed  CAS  Google Scholar 

  54. Kato I, Yamamoto Y, Fujimura M, Noguchi N, Takasawa S and Okamoto H. 1998. CD38 disruption impairs glucose-induced increases in cyclic ADP-ribose, [Ca2+]i and insulin secretion. J. Biol. Chem. 274: 1869–1872.

    Article  Google Scholar 

  55. Ishihara K and Hirano T. 2000. BST-1/CD157 regulates the humoral immune responses in vivo. Chem. Immunol. 75: 235–255.

    Article  PubMed  CAS  Google Scholar 

  56. Itoh M, Ishihara K, Hiroi T, Ok Lee B, Maeda H, Iijima H, Yanagita M, Kiyono H and Hirano T. 1998. Deletion of bone marrow stromal cell antigen-1 (CD 157) gene Impaired systemic thymus independent-2 antigen-induced IgG3 and mucosal TD antigen-elicited IgA responses. J Immunol 161: 3974–3983.

    PubMed  CAS  Google Scholar 

  57. Mothet JP, Fossier P, Meunier FM Stinnakre J, Tauc L and Baux G. 1998. Cyclic ADP-ribose and calcium-induced calcium release regulate neurotransmitter release at a cholinergic synapse of Aplysia. J. Physiol. 507.2: 405–414.

    Article  PubMed  CAS  Google Scholar 

  58. Chameau P, Van De Vrede Y, Fossier P and Baux G. 2001. Ryanodine-, IP3- and NAADP-dependent calcium stores control acetylcholine release. Pflugers Arch. 443: 289–296.

    Article  PubMed  CAS  Google Scholar 

  59. Masuda W, Takenaka S, Inageda K, Nishina H, Takahashi K, Katada T, Tsuyama S, Inui H, Miyatake K and Nakano Y. 1997. Oscillation of ADP-ribosyl cyclase activity during the cell cycle and function of cyclic ADP-ribose in a unicellular organism, Euglena Gracilis. FEBS Lett. 405: 104–106.

    Article  PubMed  CAS  Google Scholar 

  60. Masuda W, Takenaka S, Tsuyama S, Tokunaga M, Yamaji R, Inui H, Miyatake K and Nakano Y. 1997. Inositol 1,4.5-trisphosphate and cyclic ADP-ribose mobilize Ca2+ in a protist, Euglena Gracilis. Comp. Biochem. Physiol. 118: 279–283.

    CAS  Google Scholar 

  61. Koradi R, Billeter M and Wuthrich K. 1996. MOLMOL: a program for display and analysis of macromolecular structures. J. Mot. Graphics 14: 51–55.

    Article  CAS  Google Scholar 

  62. Lee HC, Aarhus R and Levitt D. 1994. The crystal structure of cyclic ADP-ribose. Nature Struct Biol. 1:143–144.

    CAS  Google Scholar 

  63. Bolduc JM, Dyer DH, Scott WG, Singer P, Sweet RM, Koshland DE and Stoddard BL. 1995. Mutagenesis and Laue structures of enzyme intermediates-Isocitrate dehydrogenase. Science 268: 1312–1318.

    Article  PubMed  CAS  Google Scholar 

  64. Munshi C, Baumann C, Levitt D, Bloomfield VA and Lee HC. 1998. The homo-dimeric form of ADP-ribosyl cyclase in solution. Biochim. Biophys. Acta 1388: 428–436.

    Article  PubMed  CAS  Google Scholar 

  65. Sauve AA, Deng HT, Angeletti RH and Schramm VL. 2000. A covalent intermediate in CD38 is responsible for ADP-ribosylation and cyclization reactions. J. Am. Chem. Soc. 122:7855–7859.

    Article  CAS  Google Scholar 

  66. Graeff R, Munshi C, Aarhus R, Johns M and Lee HC. 2001. A single residue at the active site of CD38 determines its NAD cyclizing and hydrolyzing activities. J. Biol. Chem. 276: 12169–12173.

    Article  PubMed  CAS  Google Scholar 

  67. Tohgo A, Munakata H, Takasawa S, Nata K, Akiyama T, Hayashi N and Okamoto H. 1997. Lysine 129 of CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase) participates in the binding of ATP to inhibit the cyclic ADP-ribose hydrolase. J. Biol. Chem. 272: 3879–3882.

    Article  PubMed  CAS  Google Scholar 

  68. Tohgo A, Takasawa S, Noguchi N, Koguma T, Nata K, Sugimoto T, Furuya Y, Yonekura H and Okamoto H. 1994. Essential cysteine residues for cyclic ADP-ribose synthesis and hydrolysis by CD38. J. Biol. Chem. 269: 28555–28557.

    PubMed  CAS  Google Scholar 

  69. Yamamoto-Katayama S, Sato A, Ariyoshi M, Suyama M, Ishihara K, Hirano T, Nakamura H, Morikawa K and Jingami H. 2001. Site-directed removal of N-glycosylation sites in BST-1/CD157: effects on molecular and functional heterogeneity. Biochem. J. 357: 385–392.

    Article  PubMed  CAS  Google Scholar 

  70. Yamamoto-Katayama S, Ariyoshi M, Ishihara K, Hirano T, Jingami H and Morikawa K. 2002. Crystallographic studies on human BST-1/CD157 with ADP-ribosyl cyclase and NAD glycohydrolase activities. J. Mol. Biol. 316: 711–723.

    Article  PubMed  CAS  Google Scholar 

  71. Lee HC. 1999. A unified mechanism for enzymatic synthesis of two calcium messengers, cyclic ADP-ribose and NAADP. Biol. Chem. 380: 785–793.

    Article  PubMed  CAS  Google Scholar 

  72. Muller-Steffner HM, Augustin A and Schuber F. 1996. Mechanism of cyclization of pyridine nucleotides by bovine spleen NAD+ glycohydrolase. J. Biol. Chem. 271: 23967–23972.

    Article  PubMed  CAS  Google Scholar 

  73. Sauve AA, Munshi C, Lee HC and Schramm VL. 1998. The reaction mechanism for CD38. A single intermediate is responsible for cyclization, hydrolysis, and base-exchange chemistries. Biochemistry 37: 13239–13249.

    Article  PubMed  CAS  Google Scholar 

  74. Deterre P, Berthelier V, Bauvois B, Dalloul A, Schuber F and Lund F. 2000. CD38 in T-and B-cell functions. Chem. Immunol. 75: 146–168.

    Article  PubMed  CAS  Google Scholar 

  75. Campana D, Suzuki T, Todisco E and Kitanaka A. 2000. CD38 in hematopoiesis. Chem. Immunol. 75: 169–188.

    Article  PubMed  CAS  Google Scholar 

  76. Morra M, Zubiaur M, Terhorst C, Sancho J and Malavasi F. 1998. CD38 is functionally dependent on the TCR/CD3 complex in human T cells. FASEB J. 12: 581–592.

    PubMed  CAS  Google Scholar 

  77. Deaglio S, Morra M, Mallone R, Ausiello CM, Prager E, Garbarino G, Dianzani U, Stockinger H and Malavasi F. 1998. Human CD38 (ADP-ribosyl cyclase) is a counter-receptor of CD31, an Ig superfamily member. J. Immunol. 160: 395–402.

    PubMed  CAS  Google Scholar 

  78. Deaglio S, Mallone R, Baj G, Arnulfo A, Surico N, Dianzani U, Mehta K and Malavasi F. 2000. CD38/CD31, a receptor/1 igand system ruling adhesion and signaling in human leukocytes. Chem. Immunol. 75: 99–120.

    Article  PubMed  CAS  Google Scholar 

  79. Funaro A, De Monte LB, Dianzani U, Forni M and Malavasi F. 1993. Human CD38 is associated to distinct molecules which mediate transmembrane signaling in different lineages. Eur. J. Immunol. 23: 2407–2411.

    Article  PubMed  CAS  Google Scholar 

  80. Deaglio S, Zubiaur M, Gregorini A, Bottarel F, Ausiello CM, Dianzani U, Sancho J and Malavasi F. 2002. Human CD38 and CD 16 are functionally dependent and physically associated in natural killer cells. Blood 99: 2490–2498.

    Article  PubMed  CAS  Google Scholar 

  81. Lund FE, Muller-Steffner HM, Yu NX, Stout CD, Schuber F and Howard MC. 1999. CD38 signaling in B lymphocytes is controlled by its ectodomain but occurs independently of enzymatically generated ADP-ribose or cyclic ADP-ribose. J. Immunol. 162:2693–2702.

    PubMed  CAS  Google Scholar 

  82. Zocchi E, Daga A, Usai C, Franco L, Guida L, Bruzzone S, Costa A, Marchetti C and Deflora A. 1998. Expression of CD38 increases intracellular calcium concentration and reduces doubling time in HeLa and 3T3 cells. J. Biol. Chem. 273: 8017–8024.

    Article  PubMed  CAS  Google Scholar 

  83. Cockayne DA, Muchamuel T, Grimaldi JC, Mullersteffner H, Randall TD, Lund FE, Murray R, Schuber F and Howard MC. 1998. Mice deficient for the ecto-nicotinamide adenine dinucleotide glycohydrolase CD38 exhibit altered humoral immune responses. Blood 92: 1324–1333.

    PubMed  CAS  Google Scholar 

  84. Partida-Sanchez S, Cockayne D, Monard S, Jacobson EL, Oppenheimer N, Garvy B, Kusser K, Goodricj S, Howard M, Harmsen A, Randall T and Lund FE. 2001. Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nature Med. 7: 1209–1216.

    Article  PubMed  CAS  Google Scholar 

  85. Fukushi Y, Kato I, Takasawa S, Sasaki T, Ong BH, Sato M, Ohsaga A, Sato K, Shirato K, Okamoto H and Maruyama Y. 2001. Identification of cyclic ADP-ribose-dependent mechanisms in pancreatic muscarinic Ca2+ signaling using CD38 knockout mice. J. Biol. Chem. 276: 649–655.

    Article  PubMed  CAS  Google Scholar 

  86. Takasawa S, Nata K, Yonekura H and Okamoto H. 1993. Cyclic ADP-ribose in ß cells. Science 262: 585.

    Article  PubMed  CAS  Google Scholar 

  87. Okamoto H. 1999. The CD38-cyclic ADP-ribose signaling system in insulin secretion. Mol Cell. Biochem. 193: 115–118.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lee, H.C., Munshi, C.B., Graeff, R. (2002). ADP-Ribosyl Cyclases - A Family of cADPR and NAADP Metabolizing Enzymes. In: Lee, H.C. (eds) Cyclic ADP-Ribose and NAADP. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0269-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0269-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4996-9

  • Online ISBN: 978-1-4615-0269-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics