Skip to main content

Ecni GC-MS Analysis of Picolinic and Quinolinic Acids and Their Amides in Human Plasma, CSF, and Brain Tissue

  • Chapter
Developments in Tryptophan and Serotonin Metabolism

Abstract

To study the complex inter-relationships between inflammatory and apoptotic responses and the kynurenine pathway, we have utilized electron-capture negative ion mass spectrometry to develop trace analyses to concurrently quantify nicotinic acid (NIC), picolinic acid (PIC) and quinolinic acid (QUIN) in biological samples. We have shown that MC and its amide nicotinamide (NAM) can be separately quantified by analyzing samples pre-and post-acid hydrolysis. We have now examined human plasma, CSF and brain tissue samples for the presence of putative picolinamide (PAM) and quinolinamide (QAM) by comparing PIC and QUIN concentrations pre-and post-gas phase hydrolysis. We report for the first time that, with respect to the free acids, relatively high concentrations of the amides (or, at least, hydrolysable precursors of the acids) are present in plasma and brain with marked relative increases in CSF. In normal control subjects (n=22) pre-hydrolysis plasma levels (¡À sem) of PIC and QUIN were 0.299 ¡À 0.034 and 0.47 ¡À 0.047 limolIL respectively. Following hydrolysis the concentrations rose more than 4-fold to 1.33 ¡À 0.115 and 2.2 ¡À 0.27 µmol/L respectively. In CSF samples from patients with no sign of brain injury or pathology (n=10) pre-hydrolysis concentrations of PIC and QUIN were 0.017 ¡À 0.005 and 0.018 ¡À 0.006 tmol/L, respectively, which rose to 0.30 ¡À 0.06 and 0.06 ¡À 0.008 imol/L respectively, after hydrolysis. In CSF samples from patients with a range of brain oedema or injury (eg subdural haemorrage, motor vehicle accident) (n=6) pre-hydrolysis concentrations of PIC and QUIN were 0.053 ¡À 0.03 and 0.29 ¡À 0.12 µmol/L, respectively. Following hydrolysis the concentrations were markedly increased to 6.06 ¡À 1.5 and 0.94 ¡À 0.63.tmol/L, respectively. The present investigation has shown for the first time that PAM and QAM are present endogenously with PAM being relatively higher than QAM, especially in CSF samples from patients with presumed brain inflammation. The site and mechanism of amidation of PIC and QUIN needs investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.W.. Stone, Neuropharmacology of quinolinic and kynurenic acids, Pharmacol Rev 45, 309–79 (1993).

    PubMed  CAS  Google Scholar 

  2. R.J. Beninger, A.M. Colton, J.L. Ingles, K. Jhamandas, R.J. Boegman, Picolinic acid blocks the neurotoxic but not the neuroexcitant properties of quinolinic acid in the rat brain: evidence from turning behaviour and tyrosine hydroxylase immunohistochemistry, Neuroscience 61, 603–12 (1994).

    Article  PubMed  CAS  Google Scholar 

  3. B.E. Kalisch, K. Jhamandas, R.J. Boegman, R.J. Beninger,. Picolinic acid protects against quinolinic acid-induced depletion ofNADPH diaphorase containing neurons in the rat striatum, Brain Res. 668, 1–8 (1994).

    Article  PubMed  CAS  Google Scholar 

  4. L. Vrooman, K. Jhamandas, R.J. Boegman, R.J. Beninger, Picolinic acid modulates kainic acid-evoked glutamate release from the striatum in vitro, Brain Res.627, 193–8 (1993).

    Article  PubMed  CAS  Google Scholar 

  5. G. Melillo, G.W. Cox, A. Biragyn, L.A. Sheffler, L. Varesio, Regulation of nitric-oxide synthase mRNA expression by interferon-gamma and picolinic acid, J. Biol. Chem. 269, 8128–33 (1994).

    PubMed  CAS  Google Scholar 

  6. K.H. Jhamandas, R.J. Boegman, R.J. Beninger, S. Flesher, Role of zinc in blockade ofexcitotoxic action of quinolinic acid by picolinic acid, Ammo Acids 14, 257–61 (1998).

    Article  CAS  Google Scholar 

  7. E. Ueda, Y. Yoshikawa, Y. Ishino, H. Sakurai, Y. Kojima, Potential insulinominetic agents ofzinc(11) complexes with picolinamide derivatives: preparations of complexes, in vitro and in vivo studies, Chem. Pharm. Bull. (Tokyo) 50, 337–40 (2002).

    Article  CAS  Google Scholar 

  8. S. Ogata, M. Takeuchi, H. Fujita, K. Shibata, K. Okumura, H. Taguchi, Apoptosis induced by nicotinamiderelated compounds and quinolinic acid in HL-60 cells, Biosci. Biotechnol. Biochem. 64, 327–32 (2000).

    Article  CAS  Google Scholar 

  9. G.A. Smythe, O. Braga, B.J. Brew, R.S. Grant, G.J. Guillemin, et al., Concurrent quantification of quinolinic, picolinic, and nicotinic acids using electron-capture negative-ion gas chromatography-mass spectrometry, Anal. Biochem. 301, 21–6 (2002).

    CAS  Google Scholar 

  10. S. Ogata, M. Takeuchi, K. Okumura, H. Taguchi, Apoptosis induced by niacin-related compounds in HL-60 cells, Biosci. Biotechnol. Biochem. 62, 2351 ¡ª2356 (1998).

    Google Scholar 

  11. T.F. Pais, R. Appelberg, Macrophage control of mycobacterial growth induced by picolinic acid is dependent on host cell apoptosis, J. Immunol. 164, 389–97 (2000).

    PubMed  CAS  Google Scholar 

  12. D.J. Bobilya, M. Briske-Anderson, P.G. Reeves, Ligands influence Zn transport into cultured endothelial cells, Proc. Soc. Exp. Bio1. Med. 202, 159–66 (1993).

    CAS  Google Scholar 

  13. I. Krieger, Picolinic acid in the treatment of disorders requiring zinc supplementation, Nutr. Rev. 38, 148–50 (1980).

    CAS  Google Scholar 

  14. M. Statter, I. Krieger, Zinc transport in human fibroblasts: kinetics and effects ofligands, Pediatr. Res. 17, 239–40 (1983).

    CAS  Google Scholar 

  15. M.J. Shaw, S.J. Hill, P. Jones, Chelation ion chromatography of metal ions using high performance substrates dynamically modified with heterocyclic carboxylic acids, Anal. Chim. Acta 401, 65–71 (1999).

    CAS  Google Scholar 

  16. R.A. Chemy, C.S. Atwood, M.E. Xilinas, D.N. Gray, W.D. Jones, et al., Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice, Neuron 30, 665–76 (2001).

    Article  Google Scholar 

  17. Y. Yoshiike, K. Tanemura, O. Murayama, T. Akagi, M. Murayama, et al., New insights on how metals disrupt amyloid beta-aggregation and their effects on amyloid-beta cytotoxicity, J. Biol. Chem. 276, 32293–9 (2001).

    Article  PubMed  CAS  Google Scholar 

  18. B. Regland, W. Lehmann, I. Abedini, K. Blennow, M. Jonsson, et al., Treatment of Alzheimer’s disease with clioquinol, Dement. Geriatr. Cogn. Disord. 12, 408–14 (2001).

    CAS  Google Scholar 

  19. A. Gnjec, J.A. Fonte, C. Atwood, R.N. Martins, Transition metal chelator therapy - a potential treatment for Alzheimer’s disease?, Front Biosci. 1, d1016–23 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Smythe, G.A. et al. (2003). Ecni GC-MS Analysis of Picolinic and Quinolinic Acids and Their Amides in Human Plasma, CSF, and Brain Tissue. In: Allegri, G., Costa, C.V.L., Ragazzi, E., Steinhart, H., Varesio, L. (eds) Developments in Tryptophan and Serotonin Metabolism. Advances in Experimental Medicine and Biology, vol 527. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0135-0_83

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0135-0_83

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4939-6

  • Online ISBN: 978-1-4615-0135-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics