Skip to main content

Mitochondrial regulation by melatonin And its metabolites

  • Chapter
Developments in Tryptophan and Serotonin Metabolism

Abstract

Our results show that melatonin and N-acetyl-5-methoxykynurenamine (aMK) physiologically regulate both the electron transport chain (ETC) and OXPHOS, increasing the electron transport and ATP synthesis by normal mitochondria. Melatonin also counteracts mitochondrial oxidative damage induced by t-butyl hydroperoxide, recovering glutathione levels and ATP production. However, the effects of melatonin not only depend of its antioxidant properties, since the indoleamine specifically interacts with complex I and IV of the ETC increasing their activity. Experimentsin vivoshowed that melatonin administration prevents sepsis-induced ETC damage decreasing the activity and expression of INOS and mtNOS, thus reducing intramitochondrial nitric oxide (NO) and peroxynitrite (ONO()) levels. Consequently, mitochondrial ETC ad ATP production recovered to normal conditions. The presence of specific binding of melatonin in mitochondrial matrix led us to explore the genomic role of the indoleamine in these organelles.In vivoandin vitroexperiments showed that administration of melatonin increased mtONA transcriptional activity of the subunits 1-3 of the complex IV. These effects correlated well with the effects of melatonin on complex IV activity. The data suggest a new rate for melatonin to regulate mitochondrial homeostasis. Due to the relationships between mitochondrial damage, aging and neurodegenerative diseases, the effects of melatonin here described further support its antiaging and neuroprotective properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Conway, J.E. Drew, E.S. Mowat, P. Barret, P. Delagrange, P.J. Morgan, Chimeric melatonin mtl and melatonin-related receptors. Identification of domains and residues participating in ligand binding and receptor activation of the melatonin mtl receptor, J Bio! Chem 275, 20602–20609 (2000).

    Article  CAS  Google Scholar 

  2. D. Acuña-Castroviejo, R.J. Reiter, A. Men¨¦ndez-Pel¨¢ez, M.l. Pablos, A. Burgos, Characterization of high-affinity melatonin binding sites in purified cell nuclei of rat liver, J. Pineal Res. 16, 100–112 (1994).

    Article  PubMed  Google Scholar 

  3. M.-Becker-Andr¨¦, I. Wiesenberg, N. Schaeren-Wiemers, E. Andr¨¦, M. Missbach, J.H. Saurat, C. Carlberg, Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily, J. Biol. Chem. 269, 28531–28534 (1994).

    Google Scholar 

  4. C. Carlberg, I. Wiesenberg, The orphan receptor family RZR/ROR, melatonin and 5-lipoxygenase: An unexpected relationships, J. Pineal Res. 18, 171–178 (1995).

    Article  PubMed  CAS  Google Scholar 

  5. D. Steinhilber, M. Brungs, O. Werz, I. Wiesenberg, C. Danielsson, J.P. Kahlen, S. Nayeri, M. Schrader, C. Carlberg, The nuclear receptor for melatonin represses 5-lipoxygenase gene expression in human B lymphocytes, J. Biol. Chem. 270, 7037–7040 (1995).

    Article  PubMed  CAS  Google Scholar 

  6. I. Antolin, C. Rodriguez, R.M. Sainz, J.C. Mayo, H. Uria, M.L. Kotler, M.J. Rodriguez-Colunga, D. Tolivia, A. Men¨¦ndez-Pel¨¢ez, Neurohormone melatonin prevents cell damage: Effect on gene expression for antioxidant enzymes, FASEB J. 10, 882–890 (1996).

    PubMed  CAS  Google Scholar 

  7. E. Crespo, M. Macias, D. Pozo, G. Escames, M. Mart¨ªn, F. Vives, J.M. Guerrero, D. Acuña-Castroviejo, Melatonin inhibits expression of the inducible NO synthase 11 in liver and lung and prevents endotoxemia in lipopolysaccharide-induced multiple organ dysfunction syndrome in rats, FASEB J. 13, 1537–1546 (1999).

    PubMed  CAS  Google Scholar 

  8. S. Garc¨ªa-Mauriño, D. Pozo, J.R. Calvo,.I.M. Guerreo, Correlation between nuclear melatonin receptor expression and enhanced cytokine production in human lymphocytic and monocytic cell lines, J. Pineal Res. 29, 29–137 (2000).

    Google Scholar 

  9. J. LeÓn, M. Macias, G. Escames, E. Camacho, H. Khaldy, A. Espinosa, M.A. Gallo, D. Acuña-Castroviejo, Structure-related inhibiton of calmodulin-dependent nNOS activity by melatonin and synthetic kynurenines, Mol. Pharmacol. 58, 967–975 (2000).

    Google Scholar 

  10. D. Acuña-Castroviejo, M. Martin, M. Macias, G. Escames, J. LeÓn, H. Khaldy, R.J. Reiter, Melatonin, mitochondria and cellular bioenergetics, J. Pineal Res. 30, 65–74 (2001).

    Article  Google Scholar 

  11. D. Acuña-Castroviejo, G. Escames, M. Macias, A. Muñoz-Hoyos, A. Molina-Carballo, M. Arauzo, R. Montes, F. Vives, Cell protective role of melatonin in the brain, J. Pineal Res. 19, 57–63 (1995).

    Article  PubMed  Google Scholar 

  12. A. Molina-Carballo, A. Muñoz-Hoyos, R.J. Reiter, M. Sanchez-Forte, F. Moreno-Madrid, M. Rufo-Campos, J.A. Molina-Font, D. Acuña-Castroviejo, Utility of high doses of melatonin as adjunctive anticonvulsant therapy in a child with severe myoclonic epilepsy: Two years’ experience, J. Pineal Res. 23, 97–105 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. H. Manev, T. Uz, H. Tolga, A. Kharlamov, J.Y. Joo, Increased brain damage after stroke or excitotoxic seizures in melatonin-deficient rats, FASEB J. 10, 1546–1551 (1996).

    PubMed  CAS  Google Scholar 

  14. J. Cabrera, R.J. Reiter, D.X. Tan, W. Qi, R.M. Sainz, J.C. Mayo, J.J. Garcia, S.J. Kim, G. El-Sakkary, Melatonin reduces oxidative neurotoxicity due to quinolinic acid: In vitro and in vivo findings, Neuropharmacology 39, 507–514 (2000).

    Article  PubMed  CAS  Google Scholar 

  15. G. Escames, M. Macias, J. LeÓn, J.J. Garcia, H. Khaldy, M. Mart¨ªn, F. Vives, D. Acuña-Castroviejo, Calcium-dependent effects of melatonin inhibition of glutamatergic response in rat striatum, J. Neuroendocrinol. 13, 459–466 (2001).

    Article  PubMed  CAS  Google Scholar 

  16. D. Acuña-Castroviejo, A. Coto-Montes, M.G. Monti, G.G. Ortiz, R.J. Reiter, Melatonin is protective against MPTP-induced striatal and hippocampal lesions, Life Sci. 60, PL23–PL29 (1997).

    Google Scholar 

  17. F. Dabbeni-Sala, S. Di Santo, S. Franceschini, S.D. Skaper, P. Giusti, Melatonin protects against 6-OHDAinduced neurotoxicity in rats: A role for itochondrial complex I activity, FASEB J. 15, 164–170 (2001).

    Article  PubMed  CAS  Google Scholar 

  18. H. Khaldy, G. Escames, J. Leon, F. Vives, J.D. Luna, D. Acuña-Castroviejo, Comparative effects of melatonin, L-deprenyl, Trolox and ascorbate in the suppression of hydroxyl radical formation during dopamine autoxidation in vitro, J. Pineal Res. 29, 100–107 (2000).

    Article  PubMed  CAS  Google Scholar 

  19. M.A. Pappolla, Y.J. Chyan, B. Poeggeler, B. Frangione, G. Wilson, J. Ghiso, R.J. Reiter, An assessment of the antioxidant and antiamyloidogenic properties of melatonin: Implications for Alzheimer’s disease, J. Neural Transm. 107, 203–231 (2000).

    Article  PubMed  CAS  Google Scholar 

  20. J.M. Guerrero, R.J. Reiter, G.G. Ortiz, M.I. Pablos, E. Sewerynek, J.1.. Chuang, Melatonin prevents increases in neural nitric oxide and cyclic GMP production after transient brain ischemia and reperfusion in the Mongolian gerbil (Meriones unguiculatus), J. Pineal Res. 23, 24–31 (1997).

    Article  PubMed  CAS  Google Scholar 

  21. R.J. Reiter, Oxidative damage in the central nervous system: Protection by melatonin, Prog. Neurobiol. 56, 359–384 (1998).

    CAS  Google Scholar 

  22. R.J. Reiter, J.M. Guerrero, G. Escames, M.A. Papolla, D. Acuña-Castroviejo, Prophylactic actions of melatonin in oxidative neurotoxicity, Ann. N.Y. Acad. Sc.i 825, 70–78 (1997).

    Article  CAS  Google Scholar 

  23. J.J. Garcia, R.J. Reiter, J. Pie, G.G. Ortiz, J. Cabrera, R.M. Sainz, D. Acuña-Castroviejo, Role of pinoline and melatonin in stabilizing hepatic microsomal membranes against oxidative damage, J. Bioenerg. Biomem. 31, 609–616 (1999).

    Article  CAS  Google Scholar 

  24. Y. Okatani, A. Wakatsuki, R.J. Reiter, Y. Miyahara, Melatonin reduces oxidative damage of neural lipids and proteins in senescence-accelerated mouse, Neurobiol, Aging 23, 639–44 (2002).

    CAS  Google Scholar 

  25. R.J. Reiter, D.X. Tan, W. Qi, L.C. Manchester, M. Karbownik, J.R. Calvo. Pharmacology and physiology of melatonin in the reduction of oxidative stress in vivo, Biol. Signals Recept. 9, 160–171 (2000).

    Article  PubMed  CAS  Google Scholar 

  26. D.X. Tan, L.C. Manchester, R.J. Reiter, B.F. Plummer, J. Limson, S.T. Weintraub, W. Qi, Melatonin directly scavenges hydrogen peroxide: A potentially new metabolic pathway of melatonin biotransformation, Free Rad. Biol. Med. 29, 1177–1185 (2000).

    CAS  Google Scholar 

  27. M. Mart¨ªn, M. Macias, G. Escames, J. LeÓn, D. Acuña-Castroviejo, Melatonin but not vitamins C and E maintains glutathione homeostasis in t-butyl hydroperoxyde-induced mitochondrial oxidative stress, FASEBJ. 14, 1677–1679 (2000).

    Google Scholar 

  28. A.D.N.J. De Grey, The Mitochondrial Free Radical Theory of Aging, R.G. Landes Company, Austin, Texas, (1999).

    Google Scholar 

  29. D.G. Nicholls, S.L. Budd, Mitochondria and neuronal survival, Physiol. Rev. 80, 315–360 (2000).

    CAS  Google Scholar 

  30. V.P. Skulachev, Mitochondrial physiology and pathology: Concepts or programmed death of organelles, cells and organisms, Mol. Aspects Med. 20, 139–184 (2000).

    Article  Google Scholar 

  31. G.C. Brown, Nitric oxide and mitochondrial respiration, Biochim. Biophys. Acta 1411, 351–369 (1999).

    CAS  Google Scholar 

  32. P. Ghafourifar, U. Schenk, S.D. Klein, C. Richter, Mitochondrial nitric-oxide synthase stimulation causes cytochrome c release from isolated mitochondria, J. Biol. Chem. 274, 31185–31188 (1999).

    Article  PubMed  CAS  Google Scholar 

  33. A.H.V. Scapira, Mitochondrial involvement in Parkinson’s disease, Huntington’s disease, hereditary spastic paraplegia and Friedreich’s ataxia, Biochim. Biophys. Acta 1410, 159–170 (1999).

    Google Scholar 

  34. M. Crompton, The mitochondrial permeability transition pore and its role in cell death, Biochem. J. 341, 233–249 (1999).

    Article  PubMed  CAS  Google Scholar 

  35. D. Harman, Aging: A theory based on free radical and radiation chemistry, J. Gerontol. I I, 98–300 (1956).

    Google Scholar 

  36. J. Miguel, A.C. Economos, J. Fleming, J.E. Johnson Jr., Mitochondrial role in cell aging, Exp. Gerontol. 15, 579–591 (1980).

    Google Scholar 

  37. R.J. Reiter, Garc¨ªa J.J., J. Pi¨¦, Oxidative toxicity in models of neurodegeneration: Responses to melatonin, Res. Neurol. Neurosci. 12, 135–142 (1998).

    CAS  Google Scholar 

  38. D. Acuña-Castroviejo, G. Escames, A. Carazo, J. LeÓn, H. Khaldy, R.J. Reiter, Melatonin, mitochondrial homeostasis and mitochondrial-related diseases, Curr. Top Med. Chem. 2, 133–151 (2002).

    Google Scholar 

  39. M. Mart¨ªn, M. Mac¨ªas, G. Escames, R.J. Reiter, M.T. Agapito, G.G. Ortiz, D. Acuña-Castroviejo, Melatonin-induced increased activity of the respiratory chain complexes I and IV can prevent mitochondrial damage induced by ruthenium red in vivo, J. Pineal Res. 28, 242–248 (2000).

    Article  Google Scholar 

  40. M. Martin, M. Macias, J. LeÓn, G. Escames, H. Khaldy, D. Acuña-Castroviejo, Melatonin increases the activity of the complexes 1 and IV of the electron transport chain and the ATP production in rat brain and liver mitochondria, Int. J. Biochem. Cell Biol. 34, 348–357 (2002).

    Article  PubMed  CAS  Google Scholar 

  41. E. Camacho, J. LeÓn, A. CarriÓn, A. Entrena, G. Escames, H. Khaldy, D. Acuña-Castroviejo, M.A. Gallo, A. Espinosa, Inhibition of nNOS activity in rat brain by synthetic kynurenines: Structure-activity dependence, J. Med. Chem. 45, 263–274 (2002).

    Article  PubMed  CAS  Google Scholar 

  42. E. Gilad, S. Cuzzocrea, B. Zingarelli, A.L. Salzman, C. SzabÓ, Melatonin is a scavenger of peroxynitrite, Life Sci, 60, 169–174 (1997).

    Article  Google Scholar 

  43. B. Prunet-Marcassus, L. Ambid, N. Viguerie-Bascands, L. P¨¦nicaud, L. Casteilla, Evidence for a direct effect of melatonin on mitochondrial genome expression of Siberian hamster brown adipocytes, J. Pineal. Res. 30, 108–115 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Acuña-Castroviejo, D., Escames, G., LeÓn, J., Carazo, A., Khaldy, H. (2003). Mitochondrial regulation by melatonin And its metabolites. In: Allegri, G., Costa, C.V.L., Ragazzi, E., Steinhart, H., Varesio, L. (eds) Developments in Tryptophan and Serotonin Metabolism. Advances in Experimental Medicine and Biology, vol 527. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0135-0_63

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0135-0_63

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4939-6

  • Online ISBN: 978-1-4615-0135-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics