Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 527))

Abstract

In recent years the “dopamine (DA) hypothesis of schizophrenia”, has been modified into a more diversified view where an attenuated glutamatergic neurotransmission is believed to participate in the pathogenesis of the disease. Thus, schizophrenia may be regarded as a glutamate deficiency disorder. Kynurenic acid (KYNA) is an endogenous glutamate antagonist with a preferential action at the glycine-site of the N-methyl D-aspartate (NMDA) -receptor. Mounting evidence indicates that the compound is significantly involved in basal neurophysiological processes in the brain. Thus, in anaesthetized rats, pharmacologically elevated KYNA concentration (by means of PNU 156561A) was associated with increased firing rate and burst firing activity of midbrain DA neurons. Similar alterations in basal firing characteristics are also observed following systemic administration of PCP or ketamine, indicating per se that elevated levels of brain KYNA is associated with psychotomimetic effects. Indeed, cerebrospinal fluid (CSF) level of kynurenic acid was elevated in 28 male first episode schizophrenic patients (1.67 ¡À0.27 nM) as compared to 17 male healthy controls (0.97 ¡À0.07 nM. Elevated brain KYNA concentration was also found to dramatically affect the responsivity of rat midbrain DA neurons to the atypical antipsychotic drug clozapine. Thus, whereas clozapine produced increased firing rate and burst firing activity of these neurons in untreated rats, elevation of brain KYNA levels was found to reverse the action of clozapine into a pure inhibitory response. The present study suggests a contribution of KYNA in the pathogenesis of schizophrenia and link the dopamine hypothesis of schizophrenia together with the idea of a deficiency of glutamate function in this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.T. Carpenter Jr and R.W. Buchanan, SchizophreniaN. Engl. J. Med.330, 681–690 (1994).

    Article  PubMed  Google Scholar 

  2. P. Asherson, R. Mant and P. McGuffin, Genetics and schizophrenia. In: Schizophrenia (Hirsch SR, Weinberger DR eds) Oxford: Blackwell Science 253–274 (1996).

    Google Scholar 

  3. E. Armstrong, A. Schleicher, H. Omran, M. Curtis and K. Zilles, The ontogeny of human gyrificationCereb. Cortex5, 56–63 (1995).

    Article  PubMed  CAS  Google Scholar 

  4. B.T. Woods, Is schizophrenia a progressive neurodevelopmental disorder? Toward a unitary pathogenetic mechanismAm. J. Psychiatry155, 1661–1670 (1998).

    PubMed  CAS  Google Scholar 

  5. H.Y. Meltzer, Long-term effects of neuroleptic drugs on the neuroendocrine systemAdv. Biochem. Psychopharmacol.40, 59–68 (1985).

    PubMed  CAS  Google Scholar 

  6. A. Carlsson, The current status of the dopamine hypothesis of schizophreniaNeuropsychopharmacology I179–186 (1988).

    Article  Google Scholar 

  7. H.D. Brenner, S.J. Dencker, M.J. Goldstein, J.W. Hubbard, D.L. Keegan, G. Kruger, F. Kulhanek, R.P. Liberman, U. Malm and K.K. Midha, Defining treatment refractoriness in schizophreniaSchizophr. Bull.16, 551–561 (1990).

    Article  PubMed  CAS  Google Scholar 

  8. A. Carlsson and M. Lindqvist, Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brainActa Pharmacol. Toxicol.20, 140–144 (1963).

    Article  CAS  Google Scholar 

  9. L. Farde, F.A. Wiesel, S. Stone-Elander, C. Halldin, A.L. Nordstrom, H. Hall and G. Sedvall, D2 dopamine receptors in neuroleptic-naive schizophrenic patients. A positron emission tomography study with [1 1 C]racloprideArch. Gen. Psychiau7.47, 213–219 (1990).

    Article  CAS  Google Scholar 

  10. A. Abi-Dargham, J. Rodenhiser, D. Printz, Zea- Y. Ponce, R. Gil, L.S. Kegeles, R. Weiss, T.B. Cooper, J.J. Mann, R.L. Van Heertum,.I.M. Gorman and M. Laruetle, From the cover: increased baseline occupancy of D2 receptors by dopamine in schizophreniaProc. Natl. Acad. Sci. U.S.A.97, 8104–8109 (2000).

    Article  PubMed  CAS  Google Scholar 

  11. D.H. lngvar and G. Franzen, Abnormalities of cerebral blood flow distribution in patients with chronic schizophreniaActa Psychiatr. Scand.50, 425–462 (1974).

    Article  Google Scholar 

  12. F. Karoum, C.N. Carson, L.B. Bigelow, W.B. Lawson and R.J. Wyatt, Preliminary evidence of reduced combined output of dopamine and its metabolites in chronic schizophreniaArch. Gen. Psychiatry 44604–607 (1987).

    Article  PubMed  CAS  Google Scholar 

  13. D.B. Carr and S.R. Sesack, GABA-containing neurons in the rat ventral tegmental area project to the prefrontal cortexSynapse38,114–123 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. A.A. Grace,Phasic versus tonic dopamine release and the modulation of dopamine systems responsivity: A hypothesis for the etiology of schizophreniaNeuroscience41,1–24 (1991).

    Article  PubMed  CAS  Google Scholar 

  15. T.H. Svensson, Dysfunctional brain dopamine systems induced by psychotomimetic NMDA-receptor antagonists and the effects of antipsychotic drugsBrain. Res. Brain Res. Rev.31, 320–329 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. A. Carlsson, N. Waters, S. Waters and M.L. Carlsson, Network interactions in schizophrenia - therapeutic implications.Brain Res. Rev.31, 342–349 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. F.E. Greifenstein, M. DeVault, J. Yoshitake and J.E. Gajewski, A study of 1-arul cyclo hexyl amine for analgesiaAnesth. Analg.37, 283–294 (1958).

    Article  PubMed  CAS  Google Scholar 

  18. S.N. Pradhan, Phencyclidine (PCP): some human studiesNeurosc. Biobehay. Rev. 8, 493–501 (1984).

    Article  CAS  Google Scholar 

  19. E.D. Luby, B.D. Cohen, G. Rosenbaum, J.S. Gottlieb and R. Kelly, Study of a new schizophrenomimetic drug ¡ª SeernylArch. Neurol. Psychiat. 81363–369 (1959).

    Article  CAS  Google Scholar 

  20. J.A. Yesavage and A.M. Freman, Acute phencyclidine (PCP) intoxication: psychopathology and prognosisJ. Clin. Psychiatry 39664–666 (1978).

    PubMed  CAS  Google Scholar 

  21. J. Crotta, W. Clark, B. Coull, L.C. Pettigrew, B. Mackay, L.B. Goldstein, I. Meissner, D. Murphy and L. LaRue, Safety and tolerability of the glutamate antagonist CGS 19755 (Selfotel) in patients with acute ischemic stroke. Results of a phase Ha randomized trialStroke 26602–5 (1995).

    Article  Google Scholar 

  22. E.D. French, A. Mura and T. Wang, MK-801, phencyclidine (PCP), and PCP-like drugs increase burst firing in rat A10 dopamine neurons: comparison to competitive NMDA antagonistsSynapse 13108–116 (1993).

    Article  PubMed  CAS  Google Scholar 

  23. E.D. French, Phencyclidine and the midbrain dopamine system: electrophysiology and behaviorNeurotoxicol. Teratol. 16355–362 (1994).

    Article  PubMed  CAS  Google Scholar 

  24. E. Carboni, A. Imperato, L. Perezzani and G. Di Chiara, Amphetamine, cocaine, phencyclidine and nomifensine increase extracellular dopamine concentrations preferentially in the nucleus accumbens of freely moving ratsNeuroscience 28653–661 (1989).

    Article  PubMed  CAS  Google Scholar 

  25. P. Hertel, J.M. Mathe, G.G. Nomikos, M. lurio, A.A. Mathe and T.H. Svensson, Effects of D-amphetamine and phencyclidine on behavior and extracellular concentrations ofneurotensin and dopamine in the ventral striatum and the medial prefrontal cortex of the ratBehay. Brain Res. 72103–114 (1995).

    Article  CAS  Google Scholar 

  26. J.D. Jentsch and R.H. Roth, The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophreniaNeuropsychopharmacol. 20201–225 (1999).

    Article  CAS  Google Scholar 

  27. D.R. Weinberger, K.F. Berman and B.P. Illowsky, Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. Ill. A new cohort and evidence for a monoaminergic mechanismArch. Gen. Psychiatry 45609–615 (1988).

    Article  PubMed  CAS  Google Scholar 

  28. M.A. Geyer and D.L. Braff, Startle habituation and sensorimotor gating in schizophrenia and related animal modelsSchizophr. Bull. 13643–668 (1987).

    Article  PubMed  CAS  Google Scholar 

  29. D.L. Braff, C. Grillon and M.A. Geyer, Gating and habituation of the startle reflex in schizophrenic patientsArch. Gen. Psychiatry 49206–215 (1992).

    Article  PubMed  CAS  Google Scholar 

  30. V.P. Bakshi, M. Tricklebank, H.C. Neijt, V. Lehmann-Masten and M.A. Geyer, Disruption of prepulse inhibition and increases in locomotor activity by competitive N-methyl-D-aspartate receptor antagonists in ratsJ. Pharmacol. Exp. Ther. 288643–652 (1999).

    PubMed  CAS  Google Scholar 

  31. T.W. Stone, Neuropharmacology of quinolinic and kynurenic acidsPharmacol. Rev. 45309–379 (1993).

    PubMed  CAS  Google Scholar 

  32. P.J. Birch, C.J. Grossman and A.G. Hayes, Kynurenic acid antagonises responses to NMDA via an action at the strychnine-insensitive glycine receptorEur. J. PharmacoL 15485–87 (1988).

    Article  PubMed  CAS  Google Scholar 

  33. F. Moroni, P. Russi, G. Lombard, M. Beni and V. Carla, Presence of kynurenic acid in the mammalian brainJ. Neurochem. 51177–180 (1988).

    Article  PubMed  CAS  Google Scholar 

  34. W.A. Turski, M. Nakamura, W.P. Todd, B.K. Carpenter, W.O. Whetsell Jr and R. Schwarcz, Identification and quantification of kynurenic acid in human brain tissueBrain Res .454, 164–169(1988).

    Article  PubMed  CAS  Google Scholar 

  35. C. Speciale, H.Q. Wu, M. Cini, M. Marconi, M. Varasi and R. Schwarcz, (R,S)-3,4-dichlorobenzoylalanine (FCE 28833A) causes a large and persistent increase in brain kynurenic acid levels in ratsEur. J. Pharmacol. 315263–267 (1996).

    Article  PubMed  CAS  Google Scholar 

  36. S. Erhardt, H. Öberg and G. Engberg, Pharmacologically elevated levels of endogenous kynurenic acid prevent nicotine-induced activation of nigral dopamine neuronsNaunyn-Schmiedeberg’s Arch. Pharmacol. 36321–27 (2001).

    Article  CAS  Google Scholar 

  37. S. Erhardt, K. Blennow, C. Nordin, E. Skogh, L.H. Lindstrom and G. Engberg, Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophreniaNeurosci. Lett. 31396–8 (2001).

    Article  PubMed  CAS  Google Scholar 

  38. S. Erhardt and G. Engberg, Increased phasic activity of dopaminergic neurones in the rat ventral tegmental area following pharmacologically elevated levels of endogenous kynurenic acidActa Physiol. Scand. 17545–53 (2002).

    Article  PubMed  CAS  Google Scholar 

  39. A.A. Grace and B.S. Bunney, The control of firing pattern in nigral dopamine neurons: single spike firingJ. Neurosci. 42866–2876 (1984).

    PubMed  CAS  Google Scholar 

  40. A.A. Grace and B.S. Bunney, The control of firing pattern in nigral dopamine neurons: burst firingJ. Neurosci.4, 2877–2890 (1984).

    PubMed  CAS  Google Scholar 

  41. H.E. ScharfmanJ.H.Goodman and R. Schwarcz. Electrophysiological effects of exogenous and endogenous kynurenic acid in the rat brain: studies in vivo and in vitroAmino Acids 19283–297 (2000).

    Article  PubMed  CAS  Google Scholar 

  42. S. Erhardt, J.M. Mathe, K. Chergui, G. Engberg, and T.H. Svensson, GABA(B) receptor-mediated modulation of the firing pattern of ventral tegmental area dopamine neurons in vivoNaunyn Schmiedebergs Arch. Pharmacol. 365173–180 (2002).

    Article  PubMed  CAS  Google Scholar 

  43. R. Schwarcz, A. Rassoulpour, H.Q. Wu, D. Medoff, C.A. Tamminga and R.C. Roberts, Increased cortical kynurenate content in schizophreniaBiol. Psychiatry 50521–530 (2001).

    Article  PubMed  CAS  Google Scholar 

  44. G. Ceresoli-Borroni, H.Q. Wu, P. Guidetti, A. Rassoulpour, R.C. Roberts and R. Schwarcz, Chronic haloperidol administration decreases kynurenic acid levels in rat brainSoc. Neurosci. Abstr. 25727–728 (1999).

    Google Scholar 

  45. J.B. Gramsbergen, P.S. Hodgkins, A. Rassoulpour, W.A. Turski, P. Guidetti and R. Schwarcz, Brain-specific modulation of kynurenic acid synthesis in the ratJ. Neurochem. 69290–298 (1997).

    Article  PubMed  CAS  Google Scholar 

  46. A. Rassoulpour, H.Q. Wu, C. Hilmas, E.X. Albuquerque, R. Schwarcz, Repeated nicotine administration results in biphasic charges in kynurenate levels in the rat brainSoc. Neurosci. Abstr. 26526.4 (2000).

    Google Scholar 

  47. T.H. Svensson, J.M. Mathe, J.L. Andersson, G.G. Nomikos, B.E. Hildebrand and M. Marcus, Mode of action of atypical neuroleptics in relation to the phencyclidine model of schizophrenia: role of 5-HT2 receptor and alpha 1-adrenoceptor antagonism, J.Clin. Psychopharmacol. 15(1 Suppl I), I I S-I 8S (1995).

    Google Scholar 

  48. U. Heresco-Levy, D.C. Javitt, M. Ermilov, G. Silipo and J. Shimoni, Double-blind, placebo-controlled, crossover trial of D-cycloserine adjuvant therapy for treatment-resistant schizophrenia/ni. J. Neuropsychopharmhcol. 1131–135 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Erhardt, S., Schwieler, L., Engberg, G. (2003). Kynurenic Acid And Schizophrenia. In: Allegri, G., Costa, C.V.L., Ragazzi, E., Steinhart, H., Varesio, L. (eds) Developments in Tryptophan and Serotonin Metabolism. Advances in Experimental Medicine and Biology, vol 527. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0135-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0135-0_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4939-6

  • Online ISBN: 978-1-4615-0135-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics