Skip to main content

Accumulation of Quinolinic Acid With Neuroinflammation: Does It Mean Excitotoxicity?

  • Chapter
Developments in Tryptophan and Serotonin Metabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 527))

Abstract

The quinolinic acid (QUIN) accumulation that is associated with neuroinflammation is often considered capable of promoting excitotoxic neuronal damage, but QUIN is a relatively weak agonist of N-methyl-D-aspartate (NMDA) receptors. Our study aimed to determinein vivowhich extracellular concentrations of QUIN must be reached to initiate electrophysiological changes indicative of excitotoxic stress in the cerebral cortex of rats, under normal conditions and when superimposed to a challenge involving NMDA-receptor activation, i.e. repeated cortical spreading depression (CSD). Our experimental strategy relied on microdialysis probes incorporating an electrode, implanted in the brain of halothane-anaesthetised rats. These devices were used to apply QUIN or NMDA locally to the cortical area under study (with or without co-perfusion of high K’ for repetitive induction of CSD), and to record the associated changes in the extracellular DC potential (for information on the membrane polarisation of the cellular population surrounding the probe) and lactate (for the detection of increased local energy demand).

The extracellular EC50for induction of local depolarisation in the normal cortex was around 30 times higher than the extracellular QUIN levels measured in the immunoactivated brain of gerbils. Within the range of concentrations 0.03 to 0.3 mM in the perfusion medium, QUIN suppressed concentration-dependently the elicitation of CSD by K’, presumably because of NMDA-receptor desensitisation. Finally, on-line monitoring of changes in extracellular lactate with local application of QUIN indicated that extracellular concentration of QUIN in the low micromolar range are well tolerated by the brain parenchyma, at least in cortical regions. All these data do not support the notion that QUIN accumulation adds an excitotoxic component to neuroinflammation.

the kynurenine pathway in invading macrophages and activated microglia;134(ii) QUIN is an agonist of N-methylD-aspartate (NMDA) receptors.56However, QUIN is a relatively weak agonist of NMDA-receptors,’ and millimolar concentrations of this excitotoxin had to be microinjected in the striatum of rats to cause acute neurodegeneration.56

Ourin vivostudies had two complementary objectives: (i) To determine which extracellular concentrations of QUIN must be reached to initiate electrophysiological changes indicative of excitotoxic stress in the cerebral cortex of rats under normal conditions; and (ii) to examine how increased extracellular concentrations of QUIN alter a well-characterised phenomenon that involves glutamate/NMDA-receptor-mediated synaptic transmission, i.e. cortical spreading depression (CSD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.P. Heyes, The kynurenine pathway and neurologic disease. Therapeutic strategiesAdv. Exp. Med. Biol.398,125–129 (1996).

    Article  PubMed  CAS  Google Scholar 

  2. G.J. Guillemin, S.J. Kerr, G.A. Smythe, D.G. Smith, V. Kapoor, P.J. Armati, J. Croitoru, B.J. Brew, Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protectionJ. Neurochem.78, 842–853 (2001).

    Article  PubMed  CAS  Google Scholar 

  3. D. Alberati-Giani, P. Ricciardi-Castagnoli, C. Köhler, A.M. Cesura, Regulation of the kynurenine metabolic pathway by interferon-y in murine cloned macrophages and microglial cellsJ. Neurochem. 66996–1004 (1996).

    Article  PubMed  CAS  Google Scholar 

  4. G.J. Guillemin, S.J. Kerr, L.A. Pemberton, D.G. Smith, G.A. Smythe, P.J. Armati, J. Croitoru, B.J. Brew, lFN-01b induces kynurenine pathway metabolism in human macrophages: potential implications for multiple sclerosis treatmentJ. Interferon Cytokine Res. 211097–1101 (2001).

    Article  PubMed  CAS  Google Scholar 

  5. R. Schwarcz, W.O. Jr. Whetsell, R.M. Mangano, Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brainScience 219316–318 (1983).

    Article  PubMed  CAS  Google Scholar 

  6. M. Levivier, S. Przedborski, Quinolinic acid-induced lesions of the rat striatum: quantitative autoradiographic binding assessmentNeurol. Res. 2046–56 (1998).

    PubMed  CAS  Google Scholar 

  7. M.C. Curras, R. Dingledine, Selectivity of amino acid transmitters acting at N-methyl-D-aspartate and amino-3hydroxy-5-methyl-isoxazoleproprionate receptorsMo!. Pharmacol. 41520–526 (1992).

    CAS  Google Scholar 

  8. T.P. Obrenovitch, D.A. Richards, G.S. Sama, L. Symon, Combined intracerebral microdialysis and electrophysiological recording: Methodology and applicationsJ. Neurosci. Meth. 47139–145 (1993).

    Article  CAS  Google Scholar 

  9. T.P. Obrenovitch J. Urenjak, E. Zilkha Intracerebral microdialysis combined with recording of extracellular field potential: a novel method for investigation of depolarizing drugsin vivo Br. J. Pharmacol. 113 1295–1302 (1994).

    Article  PubMed  CAS  Google Scholar 

  10. T.P. Obrenovitch, J. Urenjak, E. Zilkha. Intracerebral microdialysis combinedwithrecording of extracellular field potential: a novel method for investigation of depolarizing drugsin vivo Br. J. Pharmacol. 1131295–1302 (1994).

    Article  PubMed  CAS  Google Scholar 

  11. R. Exley, E. Zilkha, J. Urenjak, T.P. Obrenovitch, Continuous monitoring of changes in brain extracellular lactate using microdialysis coupled to enzyme-amperometric analysisBr. J. Pharmacol. 131(Suppl.)219 (2000).

    Google Scholar 

  12. K.E. Beagles, P.F. Morrison, M.P. Heyes, Quinolinicacid in vivosynthesis rates, extracellular concentrations, and intercompartmental distributions in normal and immune-activated brain as determined by multiple-isotope microdialysisJ. Neurochem. 70281–291 (1998).

    Article  PubMed  CAS  Google Scholar 

  13. M. Minervini, A. Atlante, S. Gagliardi, M.T. Ciotti, E. Marra, P. Calissano, Glutamate stimulates 2deoxyglucose uptake in rat cerebellar granule cellsBrain Res. 76857–62 (1997).

    Article  PubMed  CAS  Google Scholar 

  14. Y.M. Bordelon, M.-F. Chesselet, M. Erecinska, I.A. Silver, EtTects of intrastriatal injection of quinolinic acid on electrical activity and extracellular ion concentrations in rat striatumin vivo Neuroscience 83459–469 (1998).

    Article  PubMed  CAS  Google Scholar 

  15. M. Demestre, M. Boutelle, M. Fillenz, Stimulated release of lactate in freely moving rats is dependent on the uptake of glutamateJ. Physiol. 499825–832 (1997)

    PubMed  CAS  Google Scholar 

  16. A.E. Fray, R.J. Forsyth, M.G. Boutelle, M. Fillenz, The mechanisms controlling physiologically stimulated changes in rat brain glucose and lactate: a microdialysis studyJ. Physiol. 49649–57 (1996).

    PubMed  CAS  Google Scholar 

  17. T.P. Obrenovitch TP, E. Zilkha, Microdialysis coupled to online enzymatic assaysMethods 2363–71 (2001).

    Article  PubMed  CAS  Google Scholar 

  18. T.P. Obrenovitch, E. Zilkha, Inhibition of cortical spreading depression by L-701,324, a novel antagonist at the glycine site of the N-methyl-D-aspartate receptor complexBr. J. Pharmacol. 117931–937 (1996).

    Article  PubMed  CAS  Google Scholar 

  19. F.S. Menniti, M.J. Pagnozzi, P. Butler, B.L. Chenard, S.S. Jaw-Tsai, W. Frost, White CP-101,606, an NR2B subunit selective NMDA receptor antagonist, inhibits NMDA and injury induced c-fos expression and cortical spreading depression in rodentsNeuropharmacology 391147–1155 (2000).

    Article  PubMed  CAS  Google Scholar 

  20. T.P. Obrenovitch, E. Zilkha, J. Urenja, Evidence against high extracellular glutamate promoting the elicitation of spreading depression by potassiumJ. Cereb. Blood Flow Melab.16,923–93 I (1996).

    Article  CAS  Google Scholar 

  21. W.O. Whetsell, R. Schwarcz, Prolonged exposure to submicromolar concentrations of quinolinic acid causes excitotoxic damage in organotypic cultures of rat corticostriatal systemNeurosci. Lett 97271–275 (1989).

    Article  PubMed  CAS  Google Scholar 

  22. S.J. Kerr, P.J. Armati, G.J. Guillemin, B.J. Brew, Chronic exposure of human neurons to quinolinic acid results in neuronal changes consistent with AIDS dementia complex.AIDS 12, 3555–363 (1998).

    Article  Google Scholar 

  23. R. Balazs, N. Hack, O.S. Jorgensen, C.W. Cotman, N-methyl-D-aspartate promotes the survival of cerebellar granule cells: pharmacological considerationsNeurosci. Lett. 101,242–246 (1989).

    Article  Google Scholar 

  24. D.M. Chuang, X.M. Gao, S.M. Paul, N-methyl-D-aspartate exposure blocks glutamate toxicity in cultured cerebellar granule cellsMol. Pharmacol. 42,210–216 (1992).

    PubMed  CAS  Google Scholar 

  25. N.J. Pantazis, D.P. Dohrman, J. Luo, J.D. Thomas, C.R. Goodlett, J.R. West, NMDA prevents alcohol-induced neuronal cell death of cerebellar granule cells in cultureAlcohol Clin. Exp. Res 19, 846–853 (1995).

    Article  PubMed  CAS  Google Scholar 

  26. A.M. Marini, Y. Ueda, C.H. June, Intracellular survival pathways against glutamate receptor agonist excitotoxicity in cultured neurons. Intracellular calcium responsesAnn. N.Y. Acad. Sci. 890,421–437 (1999).

    Article  PubMed  CAS  Google Scholar 

  27. A.M. Marini, S.J. Rabin, R.H. Lipsky, I. Mocchetti, Activity-dependent release of brain-derived neurotrophic factor underlies the neuroprotective effect of N-methyl-D-aspartateJ. Biol. Chem. 273,29394–29399 (1998).

    Article  PubMed  CAS  Google Scholar 

  28. Y. Sei, L. Fossom, G. Gaping, P. Skolnick, A.S. Basile, Quinolinic acid protects rat cerebellar granule cells from glutamate-induced apoptosisNeurosci. Lett. 241,180–184 (1998).

    Article  PubMed  CAS  Google Scholar 

  29. Z.H. Qin, R.W. Chen, Y. Wang, M. Nakai, D.M. Chuang, T.N. Chase, Nuclear factor kappaB nuclear translocation upregulates c-Myc and p53 expression during NMDA receptor-mediated apoptosis in rat striatumJ. Neurosci. 19,4023–4033 (1999).

    PubMed  CAS  Google Scholar 

  30. W.M. Behan, M. McDonald, L.G. Darlington, T.W. Stone, Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and deprenylBr. J. Pharmacol. 128,1754–1760 (1999).

    Article  Google Scholar 

  31. T.W. Stone. Endogenous neurotoxins from tryptophanToxicon. 39,61–73 (2001).

    Article  PubMed  CAS  Google Scholar 

  32. H. Lehnert, R.J. Wurtman, Amino acid control of neurotransmitter synthesis and release: physiological and clinical implicationsPsychother. Psychosom. 60,18–32 (1993).

    Article  PubMed  CAS  Google Scholar 

  33. F.A. Moreno, C. McGavin, T.P. Malan, A.J. Gelenberg, G.R. Heninger, A.A. Mathe, P.L. Delgado, Tryptophan depletion selectively reduces CSF 5-HT metabolites in healthy young men: results from single lumbar puncture sampling techniqueInt. J. Neuropsychopharmacol. 3.277–283 (2000).

    Article  PubMed  CAS  Google Scholar 

  34. C. Bell, J. Abrams, D. Nutt, Tryptophan depletion and its implications for psychiatryBr. J. Psychiatry 178,399–405 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Obrenovitch, T.P., Urenjak, J. (2003). Accumulation of Quinolinic Acid With Neuroinflammation: Does It Mean Excitotoxicity?. In: Allegri, G., Costa, C.V.L., Ragazzi, E., Steinhart, H., Varesio, L. (eds) Developments in Tryptophan and Serotonin Metabolism. Advances in Experimental Medicine and Biology, vol 527. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0135-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0135-0_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4939-6

  • Online ISBN: 978-1-4615-0135-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics