Skip to main content

Structural Basis of Tumoral Angiogenesis

  • Chapter
New Trends in Cancer for the 21st Century

Abstract

Mammalian cells require oxygen and nutrients for metabolism and growth. In all cases tissues possess a vascular and lymphatic network assuring the supply of these needs within 200 to 250µm. Multicellular organisms that grow beyond this size require the recruitment of new blood vessels, although some normal tissues are devoid of specific vascularization (cartilage, cornea, epidermis), obtaining their oxygen and metabolic supply through perfusion

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folkman J. Tumor angiogenesis, therapeutic implications. N Engl J Med 1971, 285:1182–1186.

    Article  PubMed  CAS  Google Scholar 

  2. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other diseases. Nat Med 1995, 1:27–31.

    Article  PubMed  CAS  Google Scholar 

  3. Goldman E. The growth of malignant disease in man and in the lower animals with special reference to the vascular system. Lancet 1907, 2:1236–1240.

    Article  Google Scholar 

  4. Gullino FM. Angiogenesis and oncogenesis. J Nat Cancer Inst 1976, 6:111–124.

    Google Scholar 

  5. Shubik P. Vascularization of tumors: a review. J Cancer Res Clin Oncol 1982, 103:211–226.

    Article  PubMed  CAS  Google Scholar 

  6. Hanahan D, Folkman J. Patterns and emerging mechanims of the angiogenic switch during tumorogenesis. 1996 Cell, 86:363–364.

    Article  Google Scholar 

  7. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000, 100:57–70.

    Article  PubMed  CAS  Google Scholar 

  8. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature Insight 2000, 407: 249–257.

    Article  CAS  Google Scholar 

  9. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature Insight 2000, 407:242–248.

    Article  CAS  Google Scholar 

  10. Wilson KT, Fu S, Ramanujam KS, Meltzer SJ. Increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in Barrett’s esophagus and associated adenocarcinomas. Cancer Res 1998, 58:2929–2934.

    PubMed  CAS  Google Scholar 

  11. Daniel TO, Liu H, Morrow JD, Crews BC, Marnett LJ. Thromboxane A2 is a mediator of cyclooxygenase-2-dependent endothelial migration and angiogenesis. Cancer Res 1999, 59:45744577.

    Google Scholar 

  12. Fujiwaki R, lida K, Kanasaki H, Ozaki T, Hata K, Miyazaki K Cyclooxygenase-2 expression in endometrial cancer: correlation with microvessel count and expression of vascular endothelial growth factor and thymidine phosphorylase. Hum Pathol 2002, 33:213–219.

    Article  PubMed  CAS  Google Scholar 

  13. Masferrer JL, Leahy KM, Koki AT, Zweifel BS, Settle SL, Woerner BM, Edwards DA, Flickinger AG, Moore RJ, Seibert K. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res 2000, 60:1306–1311.

    PubMed  CAS  Google Scholar 

  14. Bahr Th Wolff JR The formation of capillaries basement membrane during internal vascularization of the rat’s cerebral cortex. Z.Zellforsch, 1972 133; 157–168.

    Google Scholar 

  15. Welt K Shippel K, Schippel G, Scheller W. Zu Ultrastruktur von Kapillarfeld im Skeletmuskel der weissen Ratte von 19 Fetaltag bis zum post-partum. Z. Mikr-Anat Forsch., 1974 88; 465–478.

    Google Scholar 

  16. Risau W. Mechanisms of angiogenesis. Nature 1997, 386:671–674.

    Article  PubMed  CAS  Google Scholar 

  17. Sims DE. The pericyte: a review. Tissue Cell 1986, 18:153–174.

    Article  PubMed  CAS  Google Scholar 

  18. Beck L Jr, D’Amore PA. Vascular development: cellular and molecular regulation. FASEB J 1997, 11:365–73.

    PubMed  CAS  Google Scholar 

  19. Patan S. TIE1 and TIE2 receptor tyrosine kinases inversely regulate embryonic angiogenesis by the mechanism of intussusceptive microvascular growth. Microvasc Res 1998, 56:1–21.

    Article  PubMed  CAS  Google Scholar 

  20. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ. Multi-organ, multi-lineage engraftment by single bone marrow derived stem cell. Cell 2001, 105:639–677.

    Article  Google Scholar 

  21. Hattori K, Heissig B, Wu Y, Dias S, Tejada R, Ferris B, Hicklin DJ, Zhu Z, Bohlen P, Witte L, Hendrikx J, Hackett NR, Crystal RG, Moore MA, Werb Z, Lyden D, Rafii S. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFRI+ stem cells from bone-marrow microenviroment Nature Medicine 2002, 8:841–849.

    CAS  Google Scholar 

  22. Epstein SE, Komowski R, Fuchs S, Dvorak HF. Angiogenesis therapy. Amides the type, the neglected potential for serius side effects. Circulation 2001, 1104:115–119.

    Article  Google Scholar 

  23. Gerber HP, Malik AK, Solar GP, Sherman D, Liang XH, Meng G, Hong K, Marsters JC, Ferrara N. VEGF regulates hematopoietic stem cell survival by internal autocrine loop mechanism. Nature 2002, 417: 954–958.

    Article  PubMed  CAS  Google Scholar 

  24. Eriksson U, Alitalo K. VEGF receptor 1 stimulates stem-cell recruitment and new hope for angiogenesis therapies. Nature Medicine 2002, 8: 775–777.

    Article  PubMed  CAS  Google Scholar 

  25. Gonzalez Crussi, F. Vasculogenesis in the chick embryo. An ultrastructural study. Amer J Anat 1970, 130:441–460.

    Article  Google Scholar 

  26. Rosai J, Gold J, Landy R. The hystiocytoid hemangiomas. A unifying concept embracing several previously described entities of skin, soft tissue, large vessels bone and heart. Human Pathol 1979, 10:707–730.

    Article  CAS  Google Scholar 

  27. Brem S, Cotran R, Folkman J. Tumor angiogenesis: a quantitative method for histologic grading. J Natl Cancer Inst 1972, 48:347–356.

    PubMed  CAS  Google Scholar 

  28. Mlynek ML, van Beunigen D, Leder LD, Streffer C. Measurement of the grade of vascularisation in histological tumour tissue sections. Br J Cancer 1985, 52:945–948.

    Article  PubMed  CAS  Google Scholar 

  29. Srivastava A, Laidler P, Davies RP, Horgan K, Hughes LE. The prognostic significance of tumor vascularity in intermediate-thickness (0.76–4.0 mm thick) skin melanoma. A quantitative histologic study. Am J Pathol 1988, 133:419–423.

    PubMed  CAS  Google Scholar 

  30. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma. N Engl J Med 1991, 324:1–8.

    Article  PubMed  CAS  Google Scholar 

  31. Hlatky L, Hahnfeldt P, Folkman J. Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Natl Cancer Inst 2002, 94:883–893.

    Article  PubMed  Google Scholar 

  32. Folkman J. Endothelial cells and angiogenic growth factors in cancer growth and metastasis. Introduction. Cancer Metastasis Rev 1990, 9:171–174.

    Article  PubMed  CAS  Google Scholar 

  33. Albonico G, Querzoli P, Ferretti S, Rinaldi R, Nenci I. Biological heterogeneity of breast carcinoma in situ. Ann N Y Acad Sci 1996, 784:458–461.

    Article  PubMed  CAS  Google Scholar 

  34. Bosari S, Lee AK, DeLellis RA, Wiley BD, Heatley GJ, Silverman ML. Microvessel quantitation and prognosis in invasive breast carcinoma. Hum Pathol 1992, 23:755–761.

    Article  PubMed  CAS  Google Scholar 

  35. Charpin C, Devictor B, Bergeret D, Andrac L, Boulat J, Horschowski N, Lavaut MN, Piana L. CD31 quantitative immunocytochemical assays in breast carcinomas. Correlation with current prognostic factors. Am J Clin Pathol 1995, 103:443–448.

    PubMed  CAS  Google Scholar 

  36. Fox SB. Tumour angiogenesis and prognosis. Histopathology 1997, 30:294–301.

    Article  PubMed  CAS  Google Scholar 

  37. Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2002, 2:727739.

    Google Scholar 

  38. Guidi AJ, Schnitt SJ, Fischer L, Tognazzi K, Harris JR, Dvorak HF, Brown LF. Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in patients with ductal carcinoma in situ of the breast. Cancer 1997, 80:1945–1953.

    Article  PubMed  CAS  Google Scholar 

  39. Harris AL, Zhang H, Moghaddam A, Fox S, Scott P, Pattison A, Gatter K, Stratford I, Bicknell, R. Breast cancer angiogenesis--new approaches to therapy via antiangiogenesis, hypoxic activated drugs, and vascular targeting. Breast Cancer Res Treat 1996, 38:97–108.

    Article  PubMed  CAS  Google Scholar 

  40. Miliaras D, Kamas A, Kalekou H. Angiogenesis in invasive breast carcinoma: is it associated with parameters of prognostic significance?. Histopathology 1995, 26:165–169.

    Article  PubMed  CAS  Google Scholar 

  41. Santinelli A, Baccarini M, Colanzi P, Fabris G. Microvessel quantitation in intraductal and early invasive breast carcinomas. Anal Quant Cytol Histol 2000, 22:277–284.

    PubMed  CAS  Google Scholar 

  42. Ruiz A, Almenar S, Cerda M, Hidalgo JJ, Puchades A, Llombart-Bosch A. Ductal carcinoma in situ of the breast: a comparative analysis of histology, nuclear area, ploidy, and neovascularization provides differentiation between low-and high-grade tumors. Breast J 2002, 8:139–144.

    Article  PubMed  Google Scholar 

  43. Hammersen F, Endrich B, Messmer K. The fine structure of tumor blood vessels. I. Participation of non-endothelial cells in tumor angiogenesis. Int J Microcirc Clin Exp 1985, 4:31–43.

    PubMed  CAS  Google Scholar 

  44. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 2000, 156:1363–80.

    Article  PubMed  CAS  Google Scholar 

  45. Feng Y, Venema VJ, Venema RC, Tsai N, Behzadian MA, Caldwell RB. VEGF-induced permeability increase is mediated by caveolae. Invest Ophthalmol Vis Sci 1999, 40:157–67.

    PubMed  CAS  Google Scholar 

  46. Hellstrom M, Gerhardt H, Kalen M, Li X, Eriksson U, Wolburg H, Betsholtz C. Lack of pericytes leads to endothelial hyperplasic and abnormal vascular morphogenesis. J Cell Biol 2001, 153:543563.

    Google Scholar 

  47. Bertossi M, Virgintino D, Maiorano E, Occhiogrosso M, Roncali L. Ultrastructural and mophometric investigation of human brain capillaries in normal and peritumoral tissues. Ultrastruct Pathol 1997, 21:41–49.

    Article  PubMed  CAS  Google Scholar 

  48. Llombart-Bosch A, Peydro-Olaya A, Gomar F. Ultrastructure of one Ewing’s sarcoma of bone with endothelial character and comparative review of the vessels in 27 cases of typical Ewing’s sarcoma. Path Res Pract 1980, 167:71–87.

    Article  PubMed  CAS  Google Scholar 

  49. Llombart-Bosch A, Peydro-Olaya A, Lopez-Fernandez A, Zuzuarregui C. Sur le sarcomes reticulaires de la moelle osseuse type Ewing. Etude optique, histochimique and electronique de deux cas. Ann Anat Path 1970, 15:431–452.

    Google Scholar 

  50. Llombart-Bosch A, Pellin A, Carda C, Noguera R, Navarro S, Peydro-Olaya A. Soft tissue Ewing sarcoma--peripheral primitive neuroectodermal tumor with atypical clear cell pattern shows a new type of EWS-FEV fusion transcript. Diagn Mol Pathol 2000, 9:137–144.

    Article  PubMed  CAS  Google Scholar 

  51. Warren BA, Shubik P. The growth of the blood supply to melanoma transplants in the hamster cheek pouch. Lab Invest 1966, 15:464–478.

    PubMed  CAS  Google Scholar 

  52. Maniotis AJ, Folberg R, Hess A, Seltor EA, Gardner LMG, Peér J, Trent JM, Meltzer PS, Hendrix MJC. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 1999, 155:739–752.

    Article  PubMed  CAS  Google Scholar 

  53. Chang YS, Di Tomaso E, McDonald DM, Jones RS, Jain RK, Munn LL. Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Porc Nat Acad Sci USA 2000, 97:14608–14613.

    Article  CAS  Google Scholar 

  54. Liotta LA, Kleinerman J, Saidel GM. Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer Res 1974, 34:997–1004.

    PubMed  CAS  Google Scholar 

  55. Butler TP, Gullino PM. Quantitation of cell shedding into efferent blood of mammary adenocarcinoma. Cancer Res 1975, 35:512–516.

    PubMed  CAS  Google Scholar 

  56. Mancuso P, Burlini A, Pruneri G, Goldhirsch A, Martinelli G, Bertolini F. Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood 2001, 97;3658–3661.

    Article  PubMed  CAS  Google Scholar 

  57. Browder T, Butterfield CE, Kraling BM, Shi B, Marshall B, O’Reilly MS, Folkman J. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 2000, 60;1878–1886.

    PubMed  CAS  Google Scholar 

  58. Leu AJ, Berk DA, Lymboussaki A, Alitalo K, Jain RK. Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res 2000, 60:4324–4327.

    PubMed  CAS  Google Scholar 

  59. Jackson DG, Prevo R, Clasper S, Banerji S. LYVE-1, the lymphatic system and tumor lymphangiogenesis. Trends Immunol 2001, 22:317–321.

    Article  PubMed  CAS  Google Scholar 

  60. Breitender-Geleff S, Soleiman A, Kowalski H, Horvat R, Amann G, Kriehuber E, Diem K, Weninger W, Tschachler E, Alitalo K, Kerjaschki D. Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am J Pathol 1999, 154:385–394.

    Article  Google Scholar 

  61. Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R, Banerji S, Huarte J, Montesano R, Jackson DG, Orci L, Alitalo K, Christofori G, Pepper MS. Vascular endothelial growth factor-Cmediated lymphangiogenesis promotes tumour metastasis. EMBO J 2001, 20:672–682.

    Article  PubMed  CAS  Google Scholar 

  62. Mouta-Carreira C, Nasser SM, di Tomaso E, Padera TP, Boucher Y, Tomarev SI, Jain RK. LYVE-1 is not restricted to the lymph vessels: expression in normal liver blood sinusoids and down-regulation in human liver cancer and cirrhosis. Cancer Res 2001, 61:8079–8084.

    PubMed  CAS  Google Scholar 

  63. Ruoslahti E. Spezialization of tumour vasculature. Nature Reviews 2002, 2: 83–90.

    Article  PubMed  Google Scholar 

  64. Barth A, Craig PH, Silverstein MJ. Predictors of axillary lymph node metastases in patients with T1 breast carcinoma. Cancer 1997, 79:1918–19.

    Article  PubMed  CAS  Google Scholar 

  65. Leak LV. Electron microscopic observations on lymphatic capillaries and the structural components of the connective tissue-lymph interface. Microvasc Res 1970, 2:361–391.

    Article  PubMed  CAS  Google Scholar 

  66. O’Morchoe CC, O’Morchoe PJ. Differences in lymphatic and blood capillary permeability: ultrastructural-functional correlations. Lymphology 1987, 20:205–209.

    PubMed  Google Scholar 

  67. Kaipainen A, Korhonen J, Mustonen T, van Hinsbcrgh VW, Fang GH, Dumont D, Breitman M, Alitalo K. Expression of the fms-like tyrosine kynase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 1995, 92:3566–3570.

    Article  PubMed  CAS  Google Scholar 

  68. Jussila L, Valtola R, Partanen TA, Salven P, Heikkila P, Matikainen MT, Renkonen R, Kaipainen A, Detmar M, Tschachler E, Alitalo R, Alitalo K.Lymphatic endothelium and Kaposi sarcoma spindle cells detected by antibodies against the vascular endothelial growth factor receptor-3. Cancer Res 1998, 58:1599–1604.

    PubMed  CAS  Google Scholar 

  69. Lymboussaki A, Partanen TA, Olofsson B, Thomas-Crusells J, Fletcher CD, de Waal RM, Kaipainen A, Alitalo K. Expression of the vascular endothelial growth factor C receptor VEGFR-3 in lymphatic endothelium of the skin and in vascular tumors. Am J Pathol 1998, 153:395–403.

    Article  PubMed  CAS  Google Scholar 

  70. Plate KH. From angiogenesis to lymphangiogensis. Nature Med 2001, 7:151–152.

    Article  PubMed  CAS  Google Scholar 

  71. Valtola R, Salven P, Heikkila P, Taipale J, Joensuu H, Rehn M, Pihlajaniemi T, Weich H, deWaal R, Alitalo K. VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am J Pathol 1999, 154:1381–1390.

    Article  PubMed  CAS  Google Scholar 

  72. Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, Riccardi L, Alitalo K, Claffey K, Detmar M. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 2001, 7:192–198.

    Article  PubMed  CAS  Google Scholar 

  73. Stacker SA, Caesar C, Badwin ME, Thorrnton GE, Williams RA, Prevo R, Jackson DG, Nishikawa S, Kubo H, Achen MG. VEGF-D promotes the metastatic spread of tumor cells via lymphatics. Nature Med 2001;7:186–191.

    Article  PubMed  CAS  Google Scholar 

  74. Pezzella F, Pastorino U, Tagliabue E, Andreola S, Sozzi G, Gasparini G, Menard S, Gatter KC, Harris AL, Fox S, Buyse M, Pilotti S, Pierotti M, Rilke F. Non-small-cell lung carcinoma tumor growth without morphological evidence of neoangiogenesis. Am J Pathol 1997, 151:1417–1423.

    PubMed  CAS  Google Scholar 

  75. Pezzella F, Harris AL, Gatter KC. Ways of escape: are all tumors angiogenic? Histopathology 2001, 39:551–553.

    Article  PubMed  CAS  Google Scholar 

  76. Pastorino U, Andreola S, Tagliabue E, Pezzella F, Incarbone M, Sozzi G, Buyse M, Menard S, Pierotti M, Rilke F. Immunoghistochemical markers in stage I lung cancer: relevance to prognosis. J Clin Oncol 1997, 15:2858–2865.

    PubMed  CAS  Google Scholar 

  77. Pezzella F. Evidence for novel non-angiogenic pathways in breast cancer metatasis. Breast Cancer Progression. Working Party. Lancet 2000, 355:1787–1788.

    Article  Google Scholar 

  78. Willis RA. Pathology of tumors. London. Butterworth & Co.,Ltd 1948; pp136.

    Google Scholar 

  79. Vaupel P, Kallinowki F, Okunieff P. Blood flow, oxygen, and nutrients supply and metabolic microenvironment of human tumors. Cancer Res 1989, 49:6449–6465.

    PubMed  CAS  Google Scholar 

  80. Majno G, Joris I. Cells Tissue and Disease.Principles of General Pathology. Cambridge. MA Blackwell Science, 1996 pp783.

    Google Scholar 

  81. Warren BA. The vascular morphology of tumors in Tumor Blood and Circulation: Angiogenesis, vascular morphology and blood flow of experimental and human tumors. Ed. Peterson H.I., Boca Raton, CRC Press Inc 1979. pp.1–48.

    Google Scholar 

  82. Folberg R, Hendrix MJC, Maniotis AJ. Vasculogenic mimicry and tumor angiogenesis. Am J Pathol 2000, 156:361–381.

    Article  PubMed  CAS  Google Scholar 

  83. McDonald DM, Munn L, Jain RK. Vasculogenic mimicry: How convincing, how novel, and how significant? Am J Pathol 2000, 156:383–388.

    Article  PubMed  CAS  Google Scholar 

  84. Foldberg R, Pe’er J, Gruman LM, Wooolson RF, Jeng G, Montangue PR, Moninger TO, YI H, Moore KC. The morphologic characteristics of tumor blood vessels as a marker of tumor progression in primary uveal melanoma: a matched case-control study. Human Pathol 1992, 23:1298–1305.

    Article  Google Scholar 

  85. Foldberg R, Rummelt V, Parys-Van Ginderdeuren R, Hwang T, Woolson RF, Pe’er J, Gruman LM. The prognostic value of tumor blood vessel morphology in primary uveal melanoma. Ophtalmology 1993, 100:1369–1398.

    Google Scholar 

  86. Sakamoto T, Sakamoto M, Yoshikawa H, Hatta Y, Ishibashi T, Ohnishi Y, Inomata H. Histologic finding and prognosis of uveal malignant melanoma in Japanese patients. Am J Ophtalmology 1996, 12:276–283.

    Google Scholar 

  87. McLean IW, Keele KS, Bumier MN. Uveal melanoma: comparison of the prognostic value of fibrovascular lops, mean of the ten largest nucleoli, cell type and tumor size. Ophtalmology 1997, 104:777–780.

    CAS  Google Scholar 

  88. Pandey A, Shao H, Marks RM, Polverini PJ, Dixit VM. Role of B61 the ligand for the Eck receptor tyrosine kinase in TNF-alpha induced angiogenesis. Science 1995, 268:567–569.

    Article  PubMed  CAS  Google Scholar 

  89. Veilkola T, Karkainen M, Claesson-Welsh L, Alitalo K. Regulation of angiogenesis via vascular endothelial growth factor receptor. Cancer Res 2000, 60:203–212.

    Google Scholar 

  90. Konerding MA, Fait E, Dimitropoulou C, Malkusch W, Ferri C, Giavazzi R, Coltrini D, Presta M. Impact of fibroblast growth factor-2 on tumor microvascular architecture. A tridimensional morphometric study. Am J Pathol 1998, 152:1607–1616.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Llombart-Bosch, A., López-Guerrero, J.A., Batalla, C.C., Suarí, A.R., Peydró-Olaya, A. (2003). Structural Basis of Tumoral Angiogenesis. In: Llombart-Bosch, A., Felipo, V. (eds) New Trends in Cancer for the 21st Century. Advances in Experimental Medicine and Biology, vol 532. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0081-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0081-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4914-3

  • Online ISBN: 978-1-4615-0081-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics