Skip to main content

Abstract

Cell cycle progression requires the co-ordinated activation of several kinases, some of which are activated upon the binding of a cyclin subunit. At least four of these so-called cyclin-dependent kinases, namely Cdk4, Cdk6, Cdk2 and Cdkl, have specific roles at particular stages of the cell cycle, including passage through the various cell cycle transitions and the response to specific checkpoints. Not surprisingly, most human tumors carry mutations that deregulate at least one of these kinases. To analyze their specific role in vivo, we are generating strains of gene-targeted mice carrying either activated or defective alleles of these Cdks. As an example, Cdk4 expression appears to be expendable in most cell types since mice lacking Cdk4 are viable. Yet, Cdk4 mutant mice are smaller in size and infertile (only partial infertility in males). In addition, Cdk4 defective mice develop insulin dependent diabetes early in life. However, the importance of these Cdks in tumor cell cycles is underscored by the phenotype of knock in mice where the normal Cdk4 gene has been replaced by a Cdk4 R24C (insensitive to INK inhibitors) mutant. These animals develop a wide spectrum of spontaneous tumors and are highly susceptible to specific carcinogenic treatments. These models are being used now to understand how deregulation of these Cdks leads to cancer development and will be a valuable tool to design and validate new therapeutic strategies against tumour development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hanahan, D. and Weinberg, R.A. (2000) The hallmarks of cancer. Cell 100, 57–70.

    Article  PubMed  CAS  Google Scholar 

  2. Sherr, C.J. and Roberts, J.M. (1999) CDK inhibitors: positive and negative regulators of Gl-phase progression. Genes Dev. 13, 1501–1512.

    Article  PubMed  CAS  Google Scholar 

  3. Shen-C.J. (2000) Cancer cell cycles revisited. Cancer Res. 60, 3689–3695.

    PubMed  CAS  Google Scholar 

  4. Malumbres, M. and Barbacid, M. (2001) To cycle or not to cycle: a critical decision in cancer. Nat. Rev. Cancer 1, 222–231.

    CAS  Google Scholar 

  5. Hartwell, L.H. and Weinert, T.A. (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246, 629–634.

    Article  PubMed  CAS  Google Scholar 

  6. Paulovich, A.G., Toczyski, D.P. and Hartwell, L.H. (1997) When checkpoints fail. Cell 88, 315–321.

    Article  PubMed  CAS  Google Scholar 

  7. Dyson, N. (1998) The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262

    Article  PubMed  CAS  Google Scholar 

  8. Harbour, J.W. and Dean, D.C. (2000) The pRb/E2F pathway: expanding roles and emerging paradigms. Genes Dev. 14, 2393–2409.

    Article  PubMed  CAS  Google Scholar 

  9. Nevins, J.R. (2001) The Rb/E2F pathway and cancer. Hum. Mol. Genet. 10, 699–703.

    CAS  Google Scholar 

  10. Morgan, D.O. and De Bondt, H.L. (1994) Protein kinase regulation: insights from crystal structure analysis. Curr. Opin. Cell Biol. 6, 239–246.

    Article  PubMed  CAS  Google Scholar 

  11. Pavletich, N.P. (1999) Mechanisms of cyclin-dependent kinase regulation: structures of cdks, their cyclin activators, and Cip and INK4 inhibitors. J. Mol. Biol. 287, 821–828.

    Article  PubMed  CAS  Google Scholar 

  12. Carnero, A. and Hannon, G.J. (1998) The INK4 family of CDK inhibitors. Curr. Top. Microbiol. Immunol. 227, 43–55.

    Article  PubMed  CAS  Google Scholar 

  13. Blain, S.W., Montalvo, E. and Massagué, J. (1997) Differential interaction of the cyclin-dependent kinase (Cdk) inhibitor p27Kipl with cyclin A-Cdk2 and cyclin D2-Cdk4. J. Biol. Chem. 272, 25863–25872.

    Article  PubMed  CAS  Google Scholar 

  14. Cheng, M., Olivier, P., Diehl, J.A., Fero, M., Roussel, M.F., Roberts, J.M. and Sherr, C.J. (1999) The p21Cipl and p27Kipl Cdk inhibitors are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J. 18, 1571–1583.

    Article  PubMed  CAS  Google Scholar 

  15. LaBaer, J., Garrett, M.D., Stevenson, L.F., Slingerland, J.M., Sandhu, C., Chou, H.S., Fattaey, A. and Harlow, E. (1997). New functional activities for the p21 family of CDK inhibitors. Genes Dev. 11, 847–862.

    Article  PubMed  CAS  Google Scholar 

  16. Geng, Y., Whoriskey, W., Park, M.Y., Bronson, R.T., Medema, R.H., Li, T., Weinberg, R.A. and Sicinski, P. (1999) Rescue of cyclin D1 deficiency by knockin cyclin E. Cell 97, 767–777.

    CAS  Google Scholar 

  17. Geng, Y., Yu, Q., Sicinska, E., Das, M., Bronson, R.T. and Sicinski, P. (2001) Deletion of the p2716PIgene restores normal development in cyclin Dl-deficient mice. Proc. Natl. Acad. Sci. USA 98, 194–199.

    Article  PubMed  CAS  Google Scholar 

  18. Tong, W. and Pollard, J.W. (2001) Genetic evidence for the interactions of cyclin D1 and p27K’PIin mice. Mol. Cell. Biol. 21, 1319–1328.

    CAS  Google Scholar 

  19. Weinberg, R.A. (1995) The retinoblastoma protein and cell cycle control. Cell 81, 323–330.

    Article  PubMed  CAS  Google Scholar 

  20. Malumbres, M. and Carnero, A. (2002) Cell cycle deregulation: a common motif in cancer. Prog. Cell Cycle Res. 5, in press.

    Google Scholar 

  21. Ortega, S., Malumbres, M. and Barbacid, M. (2002) Cyclin D-dependent kinases, INK4 inhibitors and cancer.Biochim. Biophys. Acta 1602, 73–87.

    CAS  Google Scholar 

  22. Philipp-Staheli, J., Payne, S.R. and Kemp, C.J. (2001) p27(Kip1): regulation and function of a haploinsufficient tumor suppressor and its misregulation in cancer.Exp. Cell Res. 264, 148–168.

    Article  CAS  Google Scholar 

  23. Malek, N.P., Sundberg, H., McGrew, S., Nakayama, K., Kyriakides, T.R., Roberts, J.M. and Kyriakidis, T.R. (2001) A mouse knock-in model exposes sequential proteolytic pathways that regulate p27Kipl in GI and S phase. Nature 413, 323–7.

    Article  PubMed  CAS  Google Scholar 

  24. Latres, E., Chiarle, R., Schulman, B.A., Pavletich, N.P., Pellicer, A., Inghirami, G. and Pagano, M. (2001) Role of the F-box protein Skp2 in lymphomagenesis. Proc. Natl. Acad. Sci. USA 98, 2515–20.

    Article  PubMed  CAS  Google Scholar 

  25. Gstaiger, M., Jordan, R., Lim, M., Catzavelos, C, Mestan, J., Slingerland, J. and Krek, W. (2001). Skp2 is oncogenic and overexpressed in human cancers. Proc. Natl. Acad. Sci. USA 98, 5043–5048.

    Article  PubMed  CAS  Google Scholar 

  26. Moberg, K.H., Bell, D.W., Wahrer, D.C., Haber, D.A. and Hariharan, I.K. (2001) Archipelago regulates Cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature 413, 311–6.

    CAS  Google Scholar 

  27. Strohmaier, H., Spruck, C.H., Kaiser, P., Won, K.A., Sangfelt, O. and Reed, S.I. (2001) Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature 413, 316–22.

    CAS  Google Scholar 

  28. Paggi, M.G. and Giordano, A. (2001) Who is the boss in the retinoblastoma family? The point of view of Rb2/p130, the little brother. Cancer Res. 61, 4651–4654.

    PubMed  CAS  Google Scholar 

  29. Mulligan, G. and Jacks, T. (1998) The retinoblastoma gene family: cousins with overlapping interests. Trends Genet. 14, 223–229.

    Article  PubMed  CAS  Google Scholar 

  30. Jallepalli, P.V. and Lengauer, C. (2001) Chromosome segregation and cancer: cutting through the mystery. Nat Rev. Cancer 1,109–117.

    CAS  Google Scholar 

  31. Malumbres, M., Ortega, S. and Barbacid, M. (2000) Genetic analysis of mammalian cyclin-dependent kinases and their inhibitors. Biol. Chem. 381, 827–838.

    CAS  Google Scholar 

  32. Classon, M. and Dyson, N. (2001) p107 and p130: versatile proteins with interesting pockets. Exp. Cell Res. 264, 135–147.

    Article  PubMed  CAS  Google Scholar 

  33. Gomez Lahoz, E., Liegeois, N.J., Zhang, P. et al. (1999) Cyclin D- and E-dependent kinases and the p57K!P2inhibitor: cooperative interactions in vivo. Mol. Cell. Biol. 19, 353–363.

    CAS  Google Scholar 

  34. Miliani de Marval, P.L., Gimenez-Conti, I.B., LaCava, M. et al. (2001). Transgenic expression of cyclin-dependent kinase 4 results in epidermal hyperplasia, hypertrophy, and severe dermal fibrosis. Am. J. Pathol. 159, 369–379.

    Article  Google Scholar 

  35. Robles, A.I., Larcher, F. and Whalin, R.B. (1996) Expression of cyclin D1 in epithelial tissues of transgenic mice results in epidermal hyperproliferation and severe thymic hyperplasia. Proc. Natl. Acad. Sci. USA 93, 7634–7638.

    Article  PubMed  CAS  Google Scholar 

  36. Rodriguez-Puebla, M.L., LaCava, M., Miliani de Marval, P.L. et al. (2000). Cyclin D2 overexpression in transgenic mice induces thymic and epidermal hyperplasia whereas cyclin D3 expression results only in epidermal hyperplasia. Am. J. Pathol. 157, 1039–1050.

    Article  PubMed  CAS  Google Scholar 

  37. Wolfel, T., Hauer, M., Schneider, J., Serrano, M., Wolfel, C., Klehmann-Hieb, E., De Plaen, E., Hankeln, T., Meyer zum Buschenfelde, K.H. and Beach, D. (1995) A pI6Ink4a ­ insensitive Cdk4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269, 1281–1284.

    Article  PubMed  CAS  Google Scholar 

  38. Zuo, L., Weger, J., Yang, Q., Goldstein, A.M., Tucker, M.A., Walker, GJ., Hayward, N. and Dracopoli, N.C. (1996). Germline mutations in the p16INK4a binding domain of Cdk4 in familial melanoma. Nat. Genet. 12, 97–99.

    Article  PubMed  CAS  Google Scholar 

  39. Rane, S.G, Dubus, P., Mettus, R.V., Galbreath, E.J., Boden, G, Reddy, E.P. and Barbacid, M. (1999) Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in B-cell hyperplasia. Nat. Genet. 22, 44–52.

    Article  PubMed  CAS  Google Scholar 

  40. Rane SG, Cosenza SC, Mettus RV, Reddy EP. (2002) Germ line transmission of the Cdk4(R24C) mutation facilitates tumorigenesis and escape from cellular senescence. Mol. Cell. Biol. 22, 644–56.

    Article  PubMed  CAS  Google Scholar 

  41. Sotillo, S., Dubus, P., Martín, J., de la Cueva, E., Ortega, S., Malumbres, M. and Barbacid, M. (2001) Wide spectrum of tumors in knock-in mice carrying a Cdk4 protein insensitive to INK4 inhibitors. EMBO J. 20, 6637–6647.

    Article  PubMed  CAS  Google Scholar 

  42. Sotillo, R., García, J. F., Ortega, S., Martín, J., Dubus, P., Barbacid, M and Malumbres M. (2001) Invasive melanoma in Cdk4-targeted mice. Proc. Natl. Acad. Sci. USA 98, 13312–13317.

    Article  PubMed  CAS  Google Scholar 

  43. Latres, E., Malumbres, M., Sotillo, R., Martín, J., Ortega, S., Martín-Caballero, J., Flores, J.M., Cordón-Cardo, C. and Barbacid, M. (2000) Limited overlapping roles of p15INK4band p18INKcell cycle inhibitors in proliferation and tumorigenesis. EMBO J. 19, 3496–3506.

    Article  PubMed  CAS  Google Scholar 

  44. Sharpless, N.E., Bardeesy, N., Lee, K.H., Carrasco, D., Castrillon, D.H., Aguirre, A.J., Wu, E.A., Horner, J.W. and DePinho, R.A. (2001) Loss of pl6INK4awith retention of p19ARFpredisposes to tumorigenesis. Nature 413, 86–91.

    Article  PubMed  CAS  Google Scholar 

  45. Franklin, D. S., Godfrey, V.L., Lee, H., Kovalev, G.I., Schoonhoven, R., Chen-Kiang, S., Su, L. and Xiong, Y. (1998). Cdk inhibitors p18INK4c and p27Kip1 mediate two separate pathways to collaborative suppress pituitary tumorigenesis. Genes Dev. 12, 2899–2911.

    Article  PubMed  CAS  Google Scholar 

  46. Krimpenfort, P., Quon, K. C., Mooi, W. J., Loonstra, A. and Berns, A. (2001) Loss of pl6lnk4a confers susceptibility to metastatic melanoma in mice. Nature 413, 83–86.

    Article  PubMed  CAS  Google Scholar 

  47. Senderowicz, A.M. and Sausville, E.A. (2000) Preclinical and clinical development of cyclindependent kinase modulators. J. Natl. Cancer Inst. 92, 376–387.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Malumbres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Malumbres, M. et al. (2003). Driving the Cell Cycle to Cancer. In: Llombart-Bosch, A., Felipo, V. (eds) New Trends in Cancer for the 21st Century. Advances in Experimental Medicine and Biology, vol 532. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0081-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0081-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4914-3

  • Online ISBN: 978-1-4615-0081-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics