Skip to main content

Modeling of Oxygen Diffusion from the Blood Vessels to Intracellular Organelles

  • Chapter
Oxygen Transport to Tissue XXIV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 530))

Abstract

We describe recent models of oxygen transport in tissue along the pathwayfrom the hemoglobin molecule to the mitochondria and illustrate their applications. Microvasculature is the major site of exchange between blood and parenchymal cells for gases (O2, CO2, CO, NO), nutrients, metabolic products, and drugs. These exchange processes are affected by the architecture of the microvessels and the surrounding cells; distribution of blood flow; transport characteristics of blood, cells, and interstitial space; and rates of various chemical reactions associated with the transport processes. These processes operate at multiple levels of biological organization, from the molecular to the organ levels. Quantitative understanding of molecular transport in cells and tissues, specifically of oxygen transport, is the prerequisite for understanding the mechanisms of many diseases and for designing effective therapies. Mathematical and computational models provide a powerful set of tools for studies of these complex phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Krogh A. The number and distribution of capillaries in muscles with calculations of theoxygen pressure head necessary for supplying the tissue. J Physiol (London) 1919;52:409.

    CAS  Google Scholar 

  2. Krogh A. The Anatomy and Physiology of Capillaries, New Haven: Yale University Press, 1922;Pages.

    Google Scholar 

  3. Popel AS. Theory of oxygen transport to tissue. Crit Rev Biomed Eng 1989;17:257–321.

    PubMed  CAS  Google Scholar 

  4. Hellums JD, Nair PK, Huang NS, Ohshima N. Simulation of intraluminal gas transport processes in the microcirculation. Ann Biomed Eng 1996;24:1–24.

    Article  PubMed  CAS  Google Scholar 

  5. Ellsworth ML, Ellis CG, Popel AS, Pittman RN. Role of Microvessels in oxygen supply to tissue. News Physiol. Sci. 1994;9:119–123.

    Google Scholar 

  6. Roy TK, Popel AS. Theoretical predictions of end-capillary P02 in muscles of athletic and nonathletic animals at VO2max. Am J Physiol 1996; 271:H721–737.

    PubMed  CAS  Google Scholar 

  7. Eggleton CD, Vadapalli AR, Roy TK, Popel AS. Calculations of intracapillary oxygen tension distributions in muscle. Math Biosci 2000; 167:123–143.

    Article  PubMed  CAS  Google Scholar 

  8. Henry CB, Duling BR. Permeation of the luminal capillary glycocalyx is determined by hyaluronan. Am J Physiol 1999;277:H508–514.

    PubMed  CAS  Google Scholar 

  9. Secomb TW, Hsu R, Pries AR. A model for red blood cell motion in glycocalyx-lined capillaries. Am J Physiol 1998;274:H1016–1022.

    PubMed  CAS  Google Scholar 

  10. Wang CH, Popel AS. Effect of red blood cell shape on oxygen transport in capillaries. Math Biosci 1993;116:89–110.

    Article  PubMed  CAS  Google Scholar 

  11. Hsia CC, Johnson RL, Jr., Shah D. Red cell distribution and the recruitment of pulmonary diffusing capacity [see comments]. J Appl Physiol 1999;86:1460–1467.

    Article  PubMed  CAS  Google Scholar 

  12. Dutta A, Popel AS. A theoretical analysis of intracellular oxygen diffusion. J Theor Biol 1995;176:433–445.

    Article  PubMed  CAS  Google Scholar 

  13. Liu CY, Eskin SG, Hellums JD. The oxygen permeability of cultured endothelial cell monolayers. Adv Exp Med Biol 1994;345:723–730.

    Article  PubMed  CAS  Google Scholar 

  14. Vadapalli A, Pittman RN, Popel AS. Estimating oxygen transport resistance of the microvascular wall. Am J Physiol 2000;279:H657–H671.

    CAS  Google Scholar 

  15. Buerk DG, Goldstick TK. Arterial wall oxygen consumption rate varies spatially. Am J Physiol 1982;243: H948–958.

    PubMed  CAS  Google Scholar 

  16. Tsai AG, Friesenecker B, Mazzoni MC, Kerger H, Buerk DG, Johnson PC, Intaglietta M. Microvascular and tissue oxygen gradients in the rat mesentery. Proc Natl Acad Sci USA 1998;95:6590–6595.

    Article  PubMed  CAS  Google Scholar 

  17. Baranov VI, Belichenko VM, Shoshenko KA. [The oxygen diffusion coefficient in isolated skeletal muscle fibers]. Fiziol Zh SSSR Im I M Sechenova 1991;77:29–34.

    PubMed  CAS  Google Scholar 

  18. Groebe K. An easy-to-use model for O2 supply to red muscle. Validity of assumptions, sensitivity to errors in data [published erratum appears in Biophys J 1995 69:288]. Biophys J 1995;68:1246–1269.

    Article  Google Scholar 

  19. Papadopoulos S, Jurgens KD, Gros G. Diffusion of myoglobin in skeletal muscle cells--dependence on fibre type, contraction and temperature. Pflugers Arch 1995;430:519–525.

    Article  PubMed  CAS  Google Scholar 

  20. Conley KE, Jones C. Myoglobin content and oxygen diffusion: model analysis of horse and steer muscle. Am J Physiol 1996;271:C2027–2036.

    PubMed  CAS  Google Scholar 

  21. Conley KE, Ordway GA, Richardson RS. Deciphering the mysteries of myoglobin in striated muscle. Acta Physiol Scand 2000;168:623–34.

    Article  PubMed  CAS  Google Scholar 

  22. Honig CR, Gayeski TE, Federspiel W, Clark A, Jr., Clark P. Muscle O2 gradients from hemoglobin to cytochrome: new concepts, new complexities. Adv Exp Med Biol 1984;169:23–38.

    Article  PubMed  CAS  Google Scholar 

  23. Clark A, Jr., Clark PA, Connett RJ, Gayeski TE, Honig CR. How large is the drop in pO2 between cytosol and mitochondrion? Am J Physiol 1987;252:C583–587.

    PubMed  Google Scholar 

  24. Mathieu-Costello O. Comparative aspects of muscle capillary supply. Annu Rev Physiol 1993;55:503–525.

    Article  PubMed  CAS  Google Scholar 

  25. Pries AR, Secomb TW, Gessner T, Sperandio MB, Gross JF, Gaehtgens P. Resistance to blood flow in microvessels in vivo. Circ Res 1994;75:904–915.

    Article  PubMed  CAS  Google Scholar 

  26. Hudetz AG. Blood flow in the cerebral capillary network: a review emphasizing observations with intravital microscopy. Microcirculation 1997; 4:233–252.

    Article  PubMed  CAS  Google Scholar 

  27. Ellis CG, Ellsworth ML, Pittman RN, Burgess WL. Application of image analysis for evaluation of red blood cell dynamics in capillaries. Microvasc Res 1992;44:214–225.

    Article  PubMed  CAS  Google Scholar 

  28. Damiano ER. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries. Microvasc Res 1998;55:77–91.

    Article  PubMed  CAS  Google Scholar 

  29. Kiani MF, Pries AR, Hsu LL, Sarelius IH, Cokelet GR. Fluctuations in microvascular blood flow parameters caused by hemodynamic mechanisms. Am J Physiol 1994;266:H1822–1828.

    PubMed  CAS  Google Scholar 

  30. Page TC, Light WR, Hellums JD. Prediction of microcirculatory oxygen transport by erythrocyte/hemoglobin solution mixtures. Microvasc Res 1998;56:113–126.

    Article  PubMed  CAS  Google Scholar 

  31. Eggleton CD, Roy TK, Popel AS. Predictions of capillary oxygen transport in the presence of fluorocarbon additives. Am J Physiol 1998; 275:H2250–2257.

    PubMed  CAS  Google Scholar 

  32. Sharan M, Popel AS, Hudak ML, Koehler RC, Traystman RJ, Jones MD, Jr. An analysis of hypoxia in sheep brain using a mathematical model. Ann Biomed Eng 1998;26:48–59.

    Article  PubMed  CAS  Google Scholar 

  33. Ye GF, Jaron D, Buerk DG, Chou MC, Shi W. O2-Hb reaction kinetics and the Fahraeus effect during stagnant, hypoxic, and anemic supply deficit. Ann Biomed Eng 1998;26:6075.

    Google Scholar 

  34. Vaughn MW, Kuo L, Liao JC. Estimation of nitric oxide production and reaction rates in tissue by use of a mathematical model. Am J Physiol 1998;274:H2163–2176.

    PubMed  CAS  Google Scholar 

  35. Vaughn MW, Kuo L, Liao JC. Effective diffusion distance of nitric oxide in the microcirculation. Am J Physiol 1998;274:H1705–1714.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Popel, A.S., Goldman, D., Vadapalli, A. (2003). Modeling of Oxygen Diffusion from the Blood Vessels to Intracellular Organelles. In: Dunn, J.F., Swartz, H.M. (eds) Oxygen Transport to Tissue XXIV. Advances in Experimental Medicine and Biology, vol 530. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0075-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0075-9_46

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4912-9

  • Online ISBN: 978-1-4615-0075-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics