Skip to main content

Liquid-Based Nanoencapsulation Techniques

  • Chapter
  • First Online:
Techniques for Nanoencapsulation of Food Ingredients

Part of the book series: SpringerBriefs in Food, Health, and Nutrition ((BRIEFSFOOD))

Abstract

Nanoencapsulation is one of the most promising new technologies, having the feasibility to entrap bioactive compounds. It has versatile advantages in terms of targeted site-specific delivery and efficient absorption through cells. This chapter focuses on the various liquid-based nanoencapsulation techniques such as coacervation, inclusion encapsulation, nanoprecipitation, emulsification-solvent evaporation, and supercritical fluid. The current state of knowledge, limitations of these techniques, and recent trends are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anand P, Nair HB, Sung B, Kunnumakkara AB, Yadav VR, Tekmal RR, Aggarwal BB (2010) Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Pharmacol 79(3):330–338.

    Article  CAS  Google Scholar 

  • Anarjan N, Mirhosseini H, Baharin BS, Tan CP (2011) Effect of processing conditions on physicochemical properties of sodium caseinate-stabilized astaxanthinnanodispersions. LWT – Food Sci Tech 44(7):1658–1665.

    Article  CAS  Google Scholar 

  • Cheong JN, Tan CP, Yaakob B, Che M, Misran M (2008) α-Tocopherol nanodispersions: Preparation, characterization and stability evaluation. Int J Food Eng 89(2):204–209.

    Article  CAS  Google Scholar 

  • Dandekar PP, Jain R, Patil S, Dhumal R, Tiwari D, Sharma S, Vanage G, Patravale V (2010) Curcumin-loaded hydrogel nanoparticles: application in anti-malarial therapy and toxicological evaluation. J Pharm Sci 99(12):4992–5010.

    Article  CAS  Google Scholar 

  • Dandekar P, Jain R, Kumar C, Subramanian S, Samuel G, Venkatesh M, Patravale V (2009) Curcumin loaded pH-sensitive nanoparticles for the treatment of colon cancer. J Biomed Nanotechnol 5(5):445–55.

    Article  Google Scholar 

  • De Kruif CG, Weinbreck F, DeVries R (2004) Complex coacervation of proteins and anionic polysaccharides. Curr Opin Colloid Interface Sci 9(5):340–349.

    Article  Google Scholar 

  • Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C (2013) Nanoencapsulation Techniques for Food Bioactive Components: A Review. Food Bioprocess Tech 6(3):628–647.

    Article  CAS  Google Scholar 

  • Galindo-Rodriguez S, Allemann E, Fessi H, Doelker E (2004) Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion and nanoprecipitation methods. Pharm Res 21(8):1428–39.

    Article  CAS  Google Scholar 

  • Gan Q, Wang T (2007) Chitosan nanoparticle as protein delivery carrier-Systematic examination of fabrication conditions for efficient loading and release. Colloid Surf B 59(1):24–34.

    Article  CAS  Google Scholar 

  • Gou M, Men K, Shi H, Xiang M, Zhang J, Song J, Long J, Wan Y, Luo F, Zhao X, Qian Z, (2011) Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale 3(4):1558–1567.

    Article  CAS  Google Scholar 

  • Gouin S (2004) Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci Tech 15(7):330–347.

    Article  CAS  Google Scholar 

  • Hadaruga NG, Hadaruga DI, Paunescu V, Tatu C, Ordodi VL, Bandur G, Lupea AX (2006) Thermal stability of the linoleic acid/α- and β-cyclodextrin complexes. Food Chem 99:500–508.

    Article  CAS  Google Scholar 

  • Jin H, Xia F, Jiang C, Zhao Y, He L (2009) Nanoencapsulation of lutein with hydroxypropylmethyl cellulose phthalate by supercritical antisolvent. Chinese J Chem Eng 17:672–677.

    Article  CAS  Google Scholar 

  • Jincheng W, Xiaoyu Z, Siahao C (2010) Preparation and properties of nanoencapsulated capsaicin by complex coacervation method. Chemical Engineering Communication 197:919–933.

    Article  Google Scholar 

  • Khalil NM, do Nascimento TC, Casa DM, Dalmolin LF, de Mattos AC, Hoss I, Romano MA, Mainardes RM (2013) Pharmacokinetics of curcumin-loaded PLGA and PLGA–PEG blend nanoparticles after oral administration in rats. Colloid Surface B 101:353–360.

    Google Scholar 

  • Khayata N, Abdelwahed W, Chehna MF, Charcosset C, Fessi H (2012) Preparation of vitamin E loaded nanocapsules by the nanoprecipitation method: From laboratory scale to large scale using a membrane contactor. Int J Pharmaceut 423:419–427.

    Article  CAS  Google Scholar 

  • Kikic I, Lora M, Bertucco A (1997) A thermodynamic analysis of three-phase equilibria in binary and ternary systems for applications in Rapid Expansion of a Supercritical Solution (RESS), Particles from Gas- Saturated Solutions (PGSS), and Supercritical Antisolvent (SAS). Ind Eng Chem Res 36:5507–5515.

    Article  CAS  Google Scholar 

  • Kumari A, Yadav SK, Pakade YB, Singh B, Yadav SC (2010) Development of biodegradable nanoparticles for delivery of quercetin. Colloid Surfaces B 80(2): 184–192.

    Article  CAS  Google Scholar 

  • Kumari A, Yadav SK, Pakade YB, Kumar V, Singh B, Chaudhary A, Yadav SC (2011) Nanoencapsulation and characterization of Albiziachinensis isolated antioxidant quercitrin on PLA nanoparticles. Colloid Surfaces B 82(1):224–232.

    Article  CAS  Google Scholar 

  • Kwon SS, Nam YS, Lee JS, Ku BS, Han SH, Lee JY, Chang IS (2002) Preparation and characterization of coenzyme Q10-loaded PMMA nanoparticles by a new emulsification process based on microfluidization. Colloid Surf A 210(1):95–104.

    Article  CAS  Google Scholar 

  • Leong WF, Lai OM, Long K, Yaakob B, Mana C, Misran M, Tan CP (2011). Preparation and characterisation of water-soluble phytosterol nanodispersions. Food Chem 129(1):77–83.

    Article  CAS  Google Scholar 

  • Lira MCB, Ferraz MS, da Silva DGVC, Cortes ME, Teixeira KI, Caetano NP, Sinisterra RD, Santos-Magalhaes NS (2009) Inclusion complex of usnic acid with β-cyclodextrin: Characterization and nanoencapsulation into liposomes. J Incl Phenom Macro 64(3–4):215–224.

    Article  CAS  Google Scholar 

  • Liu J, Xu L, Liu C, Zhang D, Wang S, Deng Z, Lou W, Xu H, Bai Q, Ma J (2012a) Preparation and characterization of cationic curcumin nanoparticles for improvement of cellular uptake. Carbohyd Polymers 90(1):16–22.

    Article  CAS  Google Scholar 

  • Mukerjee A, Vishwanatha JK (2009) Formulation, characterization and evaluation of curcumin loaded PLGA nanosphere for cancer therapy. J Anticancer Res 29(10):3867–3875.

    CAS  Google Scholar 

  • Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed-Nanotechnol 2(1):8–21.

    Article  CAS  Google Scholar 

  • Ribeiro HS, Chua BS, Ichikawab S, Nakajima M (2008) Preparation of nanodispersions containing β-carotene by solvent displacement method. Food Hydrocolloid 22(1):12–17.

    Article  CAS  Google Scholar 

  • Silva HD, Cerqueira MA, Souza BWS, Ribeiro C, Avides MC, Quintas MAC, Coimbra JSR, Cunha MGC, Vicente AA (2011) Nanoemulsions of β-carotene using a high-energy emulsification-evaporation technique. J Food Eng 102(2):130–135.

    Article  CAS  Google Scholar 

  • Sowasod N, Charinpanitkul ST, Tanthapanichakoon W (2008) Nanoencapsulation of curcumin in biodegradable chitosan via multiple emulsion/solvent evaporation. Int J Pharmaceut 347:93–101.

    Article  Google Scholar 

  • Suwannateep N, Banlunara W, Wanichwecharungruang SP, Chiablaem K, Lirdprapamongkol K, Svasti J (2011) Mucoadhesive curcumin nanospheres: Biological activity, adhesion to stomach mucosa and release of curcumin into the circulation. J Control Release 151(2):176–182.

    Article  CAS  Google Scholar 

  • Tachaprutinun A, Udomsup T, Luadthong C, Wanichwecharungruang S (2009) Preventing the thermal degradation of astaxanthin through nanoencapsulation. Int J Pharmaceutics 374(1):119–124.

    Article  CAS  Google Scholar 

  • Tice TR, Gilley RM (1985) Preparation of injectable controlled-release microcapsules by solvent-evaporation process. J Control Release 2:343–352.

    Article  CAS  Google Scholar 

  • Tolstoguzov V (2003) Some thermodynamic considerations in food formulation. Food Hydrocolloid 17(1):1–23.

    CAS  Google Scholar 

  • Tsai YM, Jan WC, Chien CF, Lee WC, Lin LC, Tsai TH (2011) Optimisednano-formulation on the bioavailability of hydrophobic polyphenol, curcumin, in freely-moving rats. Food Chem127:918–925.

    Article  CAS  Google Scholar 

  • Turgeon SL, Schmitt C, Sanchez C (2007) Protein–polysaccharide complexes and coacervates. Curr Opin Colloid Interface sci 12(4), 166–178.

    Article  CAS  Google Scholar 

  • Turk M, Lietzow R (2004) Stabilized Nanoparticles of Phytosterol by Rapid Expansion from Supercritical Solution Into Aqueous Solution. AAPS Pharm Sci Tech 5(4):1–10.

    Article  Google Scholar 

  • Wang JC, Chen SH, Xu ZC (2008a) Synthesis and properties research on the nanocapsulated capsaicin by simple coacervation method. J Disper Sci Technol 29(5):687–695.

    Article  Google Scholar 

  • Xie X, Tao Q, Zou Y, Zhang F, Guo M, Wang Y, Wang H, Zhou Q, Yu SJ (2011) PLGA nanoparticles improve the oral bioavailability of curcumin in rats: characterizations and mechanisms. J Agr Food Chem 59(17):9280–9289.

    Article  CAS  Google Scholar 

  • Xing F, Cheng G, Yi K, Ma L (2004) Nanoencapsulation of capsaicin by complex coacervation of gelatin acacia, and tannins. J Appl Polym Sci 96(6):2225–2229.

    Article  Google Scholar 

  • Yallapu MM, Gupta BK, Jaggi M, Chauhan SC (2010) Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interf Sci 351(1):19–29.

    Article  CAS  Google Scholar 

  • Zambaux M, Bonneaux F, Gref R, Maincent P, Dellacherie E, Alonso M, Labrude P, Vigneron C (1998) Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by double emulsion method. J Control Release 50(1):31–40.

    Article  CAS  Google Scholar 

  • Zimet P, Livney YD (2009) Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for ω-3 polyunsaturated fatty acids. Food Hydrocolloid 23(4):1120–1126.

    Article  CAS  Google Scholar 

  • Zuidam NJ, Shimoni E (2010) Overview of microencapsulation use in food products or processes and methods to make them. In: Zuidam NJ, Nedovic VA (eds) Encapsulation technique for active food ingredients and food processing, Springer, NewYork, 3–29.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 C. Anandharamakrishnan

About this chapter

Cite this chapter

Anandharamakrishnan, C. (2014). Liquid-Based Nanoencapsulation Techniques. In: Techniques for Nanoencapsulation of Food Ingredients. SpringerBriefs in Food, Health, and Nutrition. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9387-7_4

Download citation

Publish with us

Policies and ethics