Skip to main content

Integrated Approach to Optimizing CNS Penetration in Drug Discovery: From the Old to the New Paradigm and Assessment of Drug–Transporter Interactions

  • Chapter
  • First Online:
Drug Delivery to the Brain

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 10))

Abstract

Assessing CNS penetration in drug discovery and development is important for both CNS projects and non-CNS projects that aim to improve desired or to avoid unwanted central effects of their drug candidates. After a brief reasoning on the flawed old concept of maximising total brain levels, the chapter describes the key principles of the new paradigm of examining CNS penetration and distribution by integrating those parameters and processes that are crucial in controlling unbound brain concentrations as surrogate for the pharmacologically active drug concentration in brain. As a consequence, Kp,uu,brain is about to replace the total brain/plasma ratio Kp,brain as measure of the extent of brain penetration. The chapter outlines strategies, methods and approaches both for the optimisation of CNS penetration as well as for avoiding it, including exemplary lead optimisation screening trees of CNS and non-CNS projects. A comprehensive framework is given linking the pharmacokinetics of a compound in the body’s periphery to its central (unbound) exposure and subsequent PKPD relation in animal models of efficacy, including considerations for the translation of the PKPD relationships from rodents to larger animals and human. The chapter furthermore summarises current knowledge of drug–transporter interactions at the level of the BBB, and outlines the potential of the new concept for refueling the fading interest in CNS drug discovery and development as a result of too many clinical trial failures and an insufficient understanding of the reasons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aänismaa P, Gatlik-Landwojtowicz E, Seelig A (2008) P-glycoprotein senses its substrates and the lateral membrane packing density: consequences for the catalytic cycle. Biochemistry 47(38):10197–10207

    PubMed  Google Scholar 

  • Abbott NJ (2004) Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int 45(4):545–552

    CAS  PubMed  Google Scholar 

  • Abbott A (2011) Novartis to shut brain research facility. Drug giant redirects psychiatric efforts to genetics. Nature 480:161–162

    CAS  PubMed  Google Scholar 

  • Agarwal S, Hartz AM, Elmquist WF, Bauer B (2011) Breast cancer resistance protein and P-glycoprotein in brain cancer: two gatekeepers team up. Curr Pharm Des 17(26):2793–2802

    CAS  PubMed Central  PubMed  Google Scholar 

  • Avdeef A (2012) Absorption and drug development: Solubility, permeability, and charge state. John Wiley & Sons, New Jersey, p 744

    Google Scholar 

  • Ballard P, Brassil P, Bui KH, Dolgos H, Petersson C, Tunek A, Webborn PJ (2012) The right compound in the right assay at the right time: an integrated discovery DMPK strategy. Drug Metab Rev 44(3):224–252

    CAS  PubMed  Google Scholar 

  • Begley DJ (1996) The blood–brain barrier: principles for targeting peptides and drugs to the central nervous system. J Pharm Pharmacol 48(2):136–146

    CAS  PubMed  Google Scholar 

  • Borsook D, Upadhyay J, Klimas M, Schwarz AJ, Coimbra A, Baumgartner R, George E, Potter WZ, Large T, Bleakman D, Evelhoch J, Iyengar S, Becerra L, Hargreaves RJ (2012) Decision-making using fMRI in clinical drug development: revisiting NK-1 receptor antagonists for pain. Drug Discov Today 17(17–18):964–973

    CAS  PubMed  Google Scholar 

  • Broccatelli F, Carosati E, Cruciani G, Oprea TI (2010) Transporter-mediated efflux influences CNS side effects: ABCB1, from antitarget to target. Mol Inform 29(1–2):16–26

    CAS  PubMed Central  PubMed  Google Scholar 

  • Broccatelli F, Larregieu CA, Cruciani G, Oprea TI, Benet LZ (2012) Improving the prediction of the brain disposition for orally administered drugs using BDDCS. Adv Drug Deliv Rev 64(1):95–109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cartwright ME, Cohen S, Fleishaker JC, Madani S, McLeod JF, Musser B, Williams SA (2010) Proof of concept: a PhRMA position paper with recommendations for best practice. Clin Pharmacol Ther 87(3):278–285

    CAS  PubMed  Google Scholar 

  • Chishty M, Reichel A, Siva J, Abbott NJ, Begley DJ (2001) Affinity for the P-glycoprotein efflux pump at the blood–brain barrier may explain the lack of CNS side-effects of modern antihistamines. J Drug Target 9(3):223–238

    CAS  PubMed  Google Scholar 

  • Cecchelli R, Berezowski V, Lundquist S, Culot M, Renftel M, Dehouck MP, Fenart L (2007) Modelling of the blood–brain barrier in drug discovery and development. Nat Rev Drug Discov 6(8):650–661

    CAS  PubMed  Google Scholar 

  • Cole S, Bagal S, El-Kattan A, Fenner K, Hay T, Kempshall S, Lunn G, Varma M, Stupple P, Speed W (2012) Full efficacy with no CNS side-effects: unachievable panacea or reality? DMPK considerations in design of drugs with limited brain penetration. Xenobiotica 42(1):11–27

    CAS  PubMed  Google Scholar 

  • de Lange EC, Danhof M, de Boer AG, Breimer DD (1997) Methodological considerations of intracerebral microdialysis in pharmacokinetic studies on drug transport across the blood–brain barrier. Brain Res Brain Res Rev 25(1):27–49

    PubMed  Google Scholar 

  • de Lange EC, Danhof M (2002) Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood and brain. Clin Pharmacokinet 41(10):691–703

    PubMed  Google Scholar 

  • Darvesh AS, Carroll RT, Geldenhuys WJ, Gudelsky GA, Klein J, Meshul CK, Van der Schyf CJ (2011) In vivo brain microdialysis: advances in neuropsychopharmacology and drug discovery. Expert Opin Drug Discov 6(2):109–127

    CAS  PubMed Central  PubMed  Google Scholar 

  • Di L, Kerns EH, Carter GT (2008) Strategies to assess blood–brain barrier penetration. Exp Opin Drug Disc 3(6):677–687

    CAS  Google Scholar 

  • Di L, Umland JP, Chang G, Huang Y, Lin Z, Scott DO, Troutman MD, Liston TE (2011) Species independence in brain tissue binding using brain homogenates. Drug Metab Dispos 39(7):1270–1277

    CAS  PubMed  Google Scholar 

  • Doran A, Obach RS, Smith BJ, Hosea NA, Becker S, Callegari E, Chen C, Chen X, Choo E, Cianfrogna J, Cox LM, Gibbs JP, Gibbs MA, Hatch H, Hop CE, Kasman IN, Laperle J, Liu J, Liu X, Logman M, Maclin D, Nedza FM, Nelson F, Olson E, Rahematpura S, Raunig D, Rogers S, Schmidt K, Spracklin DK, Szewc M, Troutman M, Tseng E, Tu M, Van Deusen JW, Venkatakrishnan K, Walens G, Wang EQ, Wong D, Yasgar AS, Zhang C (2005) The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: evaluation using the MDR1A/1B knockout mouse model. Drug Metab Dispos 33(1):165–174

    CAS  PubMed  Google Scholar 

  • Doran AC, Osgood SM, Mancuso JY, Shaffer CL (2012) An evaluation of using rat-derived single-dose neuropharmacokinetic parameters to project accurately large animal unbound brain drug concentrations. Drug Metab Dispos 40(11):2162–2173

    CAS  PubMed  Google Scholar 

  • Easter A, Bell ME, Damewood JR Jr, Redfern WS, Valentin JP, Winter MJ, Fonck C, Bialecki RA (2009) Approaches to seizure risk assessment in preclinical drug discovery. Drug Discov Today 14(17–18):876–884

    CAS  PubMed  Google Scholar 

  • EMA Guideline on the Investigation of Drug Interactions, Final, (2012). http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf

  • Enna SJ, Williams M (2009) Challenges in the search for drugs to treat central nervous system disorders. J Pharmacol Exp Ther 329(2):404–411

    CAS  PubMed  Google Scholar 

  • Endres CJ, Hsiao P, Chung FS, Unadkat JD (2006) The role of transporters in drug interactions. Eur J Pharm Sci 27(5):501–517

    CAS  PubMed  Google Scholar 

  • Eyal S, Hsiao P, Unadkat JD (2009) Drug interactions at the blood–brain barrier: fact or fantasy? Pharmacol Ther 123(1):80–104

    CAS  PubMed Central  PubMed  Google Scholar 

  • FDA Guidance for Industry: Drug Interaction Studies—Study Design, Data Analysis, Implications for Dosing, and Labeling Recommendations, Draft Guidance, (2012). http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm292362.pdf

  • Fridén M, Gupta A, Antonsson M, Bredberg U, Hammarlund-Udenaes M (2007) In vitro methods for estimating unbound drug concentrations in the brain interstitial and intracellular fluids. Drug Metab Dispos 35(9):1711–1719

    PubMed  Google Scholar 

  • Fridén M, Ducrozet F, Middleton B, Antonsson M, Bredberg U, Hammarlund-Udenaes M (2009a) Development of a high-throughput brain slice method for studying drug distribution in the central nervous system. Drug Metab Dispos 37(6):1226–1233

    PubMed  Google Scholar 

  • Fridén M, Winiwarter S, Jerndal G, Bengtsson O, Wan H, Bredberg U, Hammarlund-Udenaes M, Antonsson M (2009b) Structure-brain exposure relationships in rat and human using a novel data set of unbound drug concentrations in brain interstitial and cerebrospinal fluids. J Med Chem 52(20):6233–6243

    PubMed  Google Scholar 

  • Fridén M, Bergström F, Wan H, Rehngren M, Ahlin G, Hammarlund-Udenaes M, Bredberg U (2011) Measurement of unbound drug exposure in brain: modeling of pH partitioning explains diverging results between the brain slice and brain homogenate methods. Drug Metab Dispos 39(3):353–362

    PubMed  Google Scholar 

  • Gabrielsson J, Hjorth S (2012) Quantitative Pharmacology. An introduction to integrative pharmacokinetic-pharmacodynamic analysis. Apotekearsocieteten, Stockholm, p 263

    Google Scholar 

  • Ghose AK, Herbertz T, Hudkins RL, Dorsey BD, Mallamo JP (2012) Knowledge-based, central nervous system (CNS) lead selection and lead optimization for CNS drug discovery. ACS Chem Neurosci 3(1):50–68

    CAS  PubMed  Google Scholar 

  • Giacomini KM, Huang S-M, Tweedie DJ, Benet LZ, Brouwer KLR, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan PW, Ware JA, Wright SH, Yee SW, Zamek-Gliszczynski MJ, Zhang L, for The International Transporter Consortium, (2010) Membrane transporters in drug development. Nat Rev Drug Disc 9(3):215–236

    CAS  Google Scholar 

  • Griebel G, Holsboer F (2012) Neuropeptide receptor ligands as drugs for psychiatric diseases: the end of the beginning? Nat Rev Drug Discov 11(6):462–478

    CAS  PubMed  Google Scholar 

  • Grimwood S, Hartig PR (2009) Target site occupancy: emerging generalizations from clinical and preclinical studies. Pharmacol Ther 122(3):281–301

    CAS  PubMed  Google Scholar 

  • Grover A, Benet LZ (2009) Effects of drug transporters on volume of distribution. AAPS J 11(2):250–261

    CAS  PubMed  Google Scholar 

  • Gründer G, Hiemke C, Paulzen M, Veselinovic T, Vernaleken I (2011) Therapeutic plasma concentrations of antidepressants and antipsychotics: lessons from PET imaging. Pharmacopsychiatry 44(6):236–248

    PubMed  Google Scholar 

  • Gunn RN, Summerfield SG, Salinas CA, Read KD, Guo Q, Searle GE, Parker CA, Jeffrey P, Laruelle M (2012) Combining PET biodistribution and equilibrium dialysis assays to assess the free brain concentration and BBB transport of CNS drugs. J Cereb Blood Flow Metab 32(5):874–883

    CAS  PubMed  Google Scholar 

  • Hammarlund-Udenaes M, Fridén M, Syvänen S, Gupta A (2008) On the rate and extent of drug delivery to the brain. Pharm Res 25(8):1737–1750

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hammarlund-Udenaes M (2009) Active-site concentrations of chemicals - are they a better predictor of effect than plasma/organ/tissue concentrations? Basic Clin Pharmacol Toxicol 106(3):215–220

    PubMed  Google Scholar 

  • Hammarlund-Udenaes M, Bredberg U, Fridén M (2009) Methodologies to assess brain drug delivery in lead optimization. Curr Top Med Chem 9(2):148–162

    CAS  PubMed  Google Scholar 

  • Hann MM (2011) Molecular obesity, potency and other addictions in drug discovery. Med Chem Commun 2:349–355

    CAS  Google Scholar 

  • Hsiao P, Unadkat JD (2012) P-glycoprotein-based loperamide-cyclosporine drug interaction at the rat blood–brain barrier: prediction from in vitro studies and extrapolation to humans. Mol Pharm 9(3):629–633

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jeffrey P, Summerfield SG (2007) Challenges for blood–brain barrier (BBB) screening. Xenobiotica 37(10–11):1135–1151

    CAS  PubMed  Google Scholar 

  • Jones HM, Dickins M, Youdim K, Gosset JR, Attkins NJ, Hay TL, Gurrell IK, Logan YR, Bungay PJ, Jones BC, Gardner IB (2012) Application of PBPK modelling in drug discovery and development at Pfizer. Xenobiotica 42(1):94–106

    CAS  PubMed  Google Scholar 

  • Kalvass JC, Olson ER, Cassidy MP, Selley DE, Pollack GM (2007) Pharmacokinetics and pharmacodynamics of seven opioids in P-glycoprotein-competent mice: assessment of unbound brain EC50, u and correlation of in vitro, preclinical, and clinical data. J Pharmacol Exp Ther 323(1):346–355

    CAS  PubMed  Google Scholar 

  • Kalvass JC, Polli JW, Bourdet DL, Feng B, Huang SM, Liu X, Smith QR, Zhang LK, Zamek-Gliszczynski MJ (2013) Why clinical modulation of efflux transport at the human blood-brain barrier is unlikely: the ITC evidence-based position. Clin Pharmacol Ther 94(1):80–94

    CAS  PubMed  Google Scholar 

  • Karstaedt PJ, Pincus JH (1993) Aspartame use in Parkinson's disease. Neurology 43(3 Pt 1):611–613

    CAS  PubMed  Google Scholar 

  • Kerns E, Di L (2008) Drug-like properties: Concepts, structure design and methods: From ADME to toxicity optimization. Academic Press, Amsterdam, p 552

    Google Scholar 

  • Kielbasa W, Kalvass JC, Stratford R (2009) Microdialysis evaluation of atomoxetine brain penetration and central nervous system pharmacokinetics in rats. Drug Metab Dispos 37(1):137–142

    CAS  PubMed  Google Scholar 

  • Kielbasa W, Stratford RE Jr (2012) Exploratory translational modeling approach in drug development to predict human brain pharmacokinetics and pharmacologically relevant clinical doses. Drug Metab Dispos 40(5):877–883

    CAS  PubMed  Google Scholar 

  • Kodaira H, Kusuhara H, Fujita T, Ushiki J, Fuse E, Sugiyama Y (2011) Quantitative evaluation of the impact of active efflux by p-glycoprotein and breast cancer resistance protein at the blood–brain barrier on the predictability of the unbound concentrations of drugs in the brain using cerebrospinal fluid concentration as a surrogate. J Pharmacol Exp Ther 339(3):935–944

    CAS  PubMed  Google Scholar 

  • Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3(8):711–715

    CAS  PubMed  Google Scholar 

  • Kusuhara H, Sugiyama Y (2009) In vitro-in vivo extrapolation of transporter-mediated clearance in the liver and kidney. Drug Metab Pharmacokinet 24(1):37–52

    CAS  PubMed  Google Scholar 

  • Levin VA (1980) Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem 23(6):682–684

    CAS  PubMed  Google Scholar 

  • Lin JH (2008) CSF as a surrogate for assessing CNS exposure: an industrial perspective. Curr Drug Metab 9(1):46–59

    CAS  PubMed  Google Scholar 

  • Liu X, Chen C (2005) Strategies to optimize brain penetration in drug discovery. Curr Opin Drug Discov Devel 8(4):505–512

    CAS  PubMed  Google Scholar 

  • Liu X, Smith BJ, Chen C, Callegari E, Becker SL, Chen X, Cianfrogna J, Doran AC, Doran SD, Gibbs JP, Hosea N, Liu J, Nelson FR, Szewc MA, Van Deusen J (2005) Use of a physiologically based pharmacokinetic model to study the time to reach brain equilibrium: an experimental analysis of the role of blood–brain barrier permeability, plasma protein binding, and brain tissue binding. J Pharmacol Exp Ther 313(3):1254–1262

    CAS  PubMed  Google Scholar 

  • Liu X, Van Natta K, Yeo H, Vilenski O, Weller PE, Worboys PD, Monshouwer M (2009) Unbound drug concentration in brain homogenate and cerebral spinal fluid at steady state as a surrogate for unbound concentration in brain interstitial fluid. Drug Metab Dispos 37(4):787–793

    CAS  PubMed  Google Scholar 

  • Liu X, Chen C, Hop CE (2011) Do we need to optimize plasma and tissue binding in drug discovery? Curr Topics Med Chem 11(4):450–466

    CAS  Google Scholar 

  • Liu X, Ding X, Deshmukh G, Liederer BM, Hop CE (2012) Use of the cassette-dosing approach to assess brain penetration in drug discovery. Drug Metab Dispos 40(5):963–969

    CAS  PubMed  Google Scholar 

  • Löscher W, Potschka H (2005) Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci 6(8):591–602

    PubMed  Google Scholar 

  • Mangas-Sanjuan V, González-Alvarez M, Gonzalez-Alvarez I, Bermejo M (2010) Drug penetration across the blood–brain barrier: an overview. Ther Deliv 1(4):535–562

    CAS  PubMed  Google Scholar 

  • Martin I (2004) Prediction of blood–brain barrier penetration: are we missing the point? Drug Discov Today 9(4):161–162

    PubMed  Google Scholar 

  • Morgan P, Van Der Graaf PH, Arrowsmith J, Feltner DE, Drummond KS, Wegner CD, Street SD (2012) Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving Phase II survival. Drug Discov Today 17(9–10):419–424

    CAS  PubMed  Google Scholar 

  • Naik P, Cucullo L (2012) In vitro blood–brain barrier models: current and perspective technologies. J Pharm Sci 101(4):1337–1354

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nervi P, Li-Blatter X, Aänismaa P, Seelig A (2010) P-glycoprotein substrate transport assessed by comparing cellular and vesicular ATPase activity. Biochim Biophys Acta 1798(3):515–525

    CAS  PubMed  Google Scholar 

  • Obradovic T, Dobson GG, Shingaki T, Kungu T, Hidalgo IJ (2007) Assessment of the first and second generation antihistamines brain penetration and role of P-glycoprotein. Pharm Res 24(2):318–327

    CAS  PubMed  Google Scholar 

  • Ohtsuki S, Uchida Y, Kubo Y, Terasaki T (2011) Quantitative targeted absolute proteomics-based ADME research as a new path to drug discovery and development: methodology, advantages, strategy, and prospects. J Pharm Sci 100(9):3547–3559

    CAS  PubMed  Google Scholar 

  • Palmer AM (2011a) The role of the blood brain barrier in neurodegenerative disorders and their treatment. J Alzheimers Dis 24(4):643–656

    CAS  PubMed  Google Scholar 

  • Palmer AM (2011b) Neuroprotective therapeutics for Alzheimer's disease: progress and prospects. Trends Pharmacol Sci 32(3):141–147

    CAS  PubMed  Google Scholar 

  • Palmer AM, Alavijeh MS (2012) Translational CNS medicines research. Drug Discov Today 17(19–20):1068–1078

    CAS  PubMed  Google Scholar 

  • Pang KS, Rodrigues AD, Peter RM (2010) Enzyme- and transporter-based drug-drug interactions: Progress and future challenges. Springer, New York

    Google Scholar 

  • Pardridge WM (1986) The safety of aspartame. JAMA 256(19):2678

    CAS  PubMed  Google Scholar 

  • Pardridge WM (2007) Drug targeting to the brain. Pharm Res 24(9):1733–1744

    CAS  PubMed  Google Scholar 

  • Peters SA (2012) Physiologically-based pharmacokinetic modeling and simulations. John Wiley & Sons, New Jersey, pp 430

    Google Scholar 

  • Ploeger BA, van der Graaf PH, Danhof M (2009) Incorporating receptor theory in mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modeling. Drug Metab Pharmacokinet 24(1):3–15

    CAS  PubMed  Google Scholar 

  • Plowright AT, Johnstone C, Kihlberg J, Pettersson J, Robb G, Thompson RA (2012) Hypothesis driven drug design: improving quality and effectiveness of the design-make-test-analyse cycle. Drug Discov Today 17(1–2):56–62

    CAS  PubMed  Google Scholar 

  • Read KD, Braggio S (2010) Assessing brain free fraction in early drug discovery. Expert Opin Drug Metab Toxicol 6(3):337–344

    CAS  PubMed  Google Scholar 

  • Reichel A, Begley DJ, Abbott NJ (2000) Carrier-mediated delivery of metabotrophic glutamate receptor ligands to the central nervous system: structural tolerance and potential of the l-system amino acid transporter at the blood–brain barrier. J Cereb Blood Flow Metab 20(1):168–174

    CAS  PubMed  Google Scholar 

  • Reichel A, Begley DJ, Abbott NJ (2003) An overview of in vitro techniques for blood–brain barrier studies. Methods Mol Med 89:307–324

    CAS  PubMed  Google Scholar 

  • Reichel A (2006) The role of blood–brain barrier studies in the pharmaceutical industry. Curr Drug Metab 7(2):183–203

    CAS  PubMed  Google Scholar 

  • Reichel A (2009) Addressing central nervous system (CNS) penetration in drug discovery: basics and implications of the evolving new concept. Chem Biodivers 6(11):2030–2049

    CAS  PubMed  Google Scholar 

  • Rowland M, Peck C, Tucker G (2011) Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol 51:45–73

    CAS  PubMed  Google Scholar 

  • Sadeque AJ, Wandel C, He H, Shah S, Wood AJ (2000) Increased drug delivery to the brain by P-glycoprotein inhibition. Clin Pharmacol Ther 68(3):231–237

    CAS  PubMed  Google Scholar 

  • Sane R, Agarwal S, Elmquist WF (2012) Brain distribution and bioavailability of elacridar after different routes of administration in the mouse. Drug Metab Dispos 40(8):1612–1619

    CAS  PubMed  Google Scholar 

  • Salphati L, Pang J, Plise EG, Lee LB, Olivero AG, Prior WW, Sampath D, Wong S, Zhang X (2012) Preclinical assessment of the absorption and disposition of the phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor GDC-0980 and prediction of its pharmacokinetics and efficacy in human. Drug Metab Dispos 40(9):1785–1796

    CAS  PubMed  Google Scholar 

  • Sasongko L, Link JM, Muzi M, Mankoff DA, Yang X, Collier AC, Shoner SC, Unadkat JD (2005) Imaging P-glycoprotein transport activity at the human blood–brain barrier with positron emission tomography. Clin Pharmacol Ther 77(6):503–514

    CAS  PubMed  Google Scholar 

  • Shaffer CL (2010) Defining neuropharmacokinetic parameters in CNS drug discovery to determine cross-species pharmacologic exposure-response relationships. Ann Rep Med Chem 45:55–70

    CAS  Google Scholar 

  • Shen DD, Artru AA, Adkison KK (2004) Principles and applicability of CSF sampling for the assessment of CNS drug delivery and pharmacodynamics. Adv Drug Deliv Rev 56(12):1825–1857

    CAS  PubMed  Google Scholar 

  • Skarke C, Jarrar M, Schmidt H, Kauert G, Langer M, Geisslinger G, Lötsch J (2003) Effects of ABCB1 (multidrug resistance transporter) gene mutations on disposition and central nervous effects of loperamide in healthy volunteers. Pharmacogenetics 13(11):651–660

    CAS  PubMed  Google Scholar 

  • Smith DA, Di L, Kerns EH (2010) The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov 9(12):929–939

    CAS  PubMed  Google Scholar 

  • Sugimoto H, Hirabayashi H, Kimura Y, Furuta A, Amano N, Moriwaki T (2011) Quantitative investigation of the impact of P-glycoprotein inhibition on drug transport across blood–brain barrier in rats. Drug Metab Dispos 39(1):8–14

    CAS  PubMed  Google Scholar 

  • Summerfield SG, Lucas AJ, Porter RA, Jeffrey P, Gunn RN, Read KR, Stevens AJ, Metcalf AC, Osuna MC, Kilford PJ, Passchier J, Ruffo AD (2008) Toward an improved prediction of human in vivo brain penetration. Xenobiotica 38(12):1518–1535

    CAS  PubMed  Google Scholar 

  • Suzuki G, Kawagoe-Takaki H, Inoue T, Kimura T, Hikichi H, Murai T, Satow A, Hata M, Maehara S, Ito S, Kawamoto H, Ozaki S, Ohta H (2009) Correlation of receptor occupancy of metabotropic glutamate receptor subtype 1 (mGluR1) in mouse brain with in vivo activity of allosteric mGluR1 antagonists. J Pharmacol Sci 110(3):315–325

    CAS  PubMed  Google Scholar 

  • Thompson TN (2011) The clinical significance of drug transporters in drug disposition and drug interactions. In: Bonate PL, Howard DR (eds) Pharmacokinetics in drug development. AAPS Books, Springer, New York

    Google Scholar 

  • Tóth A, Veszelka S, Nakagawa S, Niwa M, Deli MA (2011) Patented in vitro blood–brain barrier models in CNS drug discovery. Recent Pat CNS Drug Discov 6(2):107–118

    PubMed  Google Scholar 

  • Tufts CSDD Impact Reports (2012) Pace of CNS drug development and FDA approvals lags other drug classes, March/April 2012, Vol. 14, No. 2

    Google Scholar 

  • Trainor GL (2007) The Importance of protein binding in drug discovery. Expert Opin Drug Discov 2(1):51–64

    CAS  PubMed  Google Scholar 

  • van de Waterbeemd H, Smith DA, Jones BC (2001) Lipophilicity in PK design: methyl, ethyl, futile. J Comput Aided Mol Des 15(3):273–286

    PubMed  Google Scholar 

  • van Giersbergen PL, Bodin F, Dingemanse J (2002) Cyclosporin increases the exposure to tezosentan, an intravenous dual endothelin receptor antagonist. Eur J Clin Pharmacol 58(4):243–245

    PubMed  Google Scholar 

  • Wager TT, Chandrasekaran RY, Hou X, Troutman MD, Verhoest PR, Villalobos A, Will Y (2010a) Defining desirable central nervous system drug space through the alignment of molecular properties, in vitro ADME, and safety attributes. ACS Chem Neurosci 1(6):420–434

    CAS  PubMed  Google Scholar 

  • Wager TT, Hou X, Verhoest PR, Villalobos A (2010b) Moving beyond rules: The development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem Neurosci 1(6):435–449

    CAS  PubMed  Google Scholar 

  • Wager TT, Pettersen BA, Schmidt AW, Spracklin DK, Mente S, Butler TW, Howard H, Lettiere DJ, Rubitski DM, Wong DF, Nedza FM, Nelson FR, Rollema H, Raggon JW, Aubrecht J, Freeman JK, Marcek JM, Cianfrogna J, Cook KW, James LC, Chatman LA, Iredale PA, Banker MJ, Homiski ML, Munzner JB, Chandrasekaran RY (2011) Discovery of two clinical histamine H(3) receptor antagonists: trans-N-ethyl-3-fluoro-3-[3-fluoro-4-(pyrrolidinylmethyl)phenyl]cyclobutanecarboxamide (PF-03654746) and trans-3-fluoro-3-[3-fluoro-4-(pyrrolidin-1-ylmethyl)phenyl]-N-(2-methylpropyl)-cyclobutanecarboxamide (PF-03654764). J Med Chem 54(21):7602–7620

    CAS  PubMed  Google Scholar 

  • Wager TT, Liras JL, Mente S, Trapa P (2012) Strategies to minimize CNS toxicity: in vitro high-throughput assays and computational modeling. Expert Opin Drug Metab Toxicol 8(5):531–542

    CAS  PubMed  Google Scholar 

  • Wan H, Rehngren M, Giordanetto F, Bergström F, Tunek A (2007) High-throughput screening of drug-brain tissue binding and in silico prediction for assessment of central nervous system drug delivery. J Med Chem 50(19):4606–4615

    CAS  PubMed  Google Scholar 

  • Wang J, Skolnik S (2010) Mitigating permeability-mediated risks in drug discovery. Expert Opin Drug Metab Toxicol 6(2):171–187

    CAS  PubMed  Google Scholar 

  • Westerhout J, Danhof M, De Lange EC (2011) Preclinical prediction of human brain target site concentrations: considerations in extrapolating to the clinical setting. J Pharm Sci 100(9):3577–3593

    CAS  PubMed  Google Scholar 

  • Wong DF, Tauscher J, Gründer G (2009) The role of imaging in proof of concept for CNS drug discovery and development. Neuropsychopharmacology 34(1):187–203

    CAS  PubMed  Google Scholar 

  • Yanai K, Rogala B, Chugh K, Paraskakis E, Pampura AN, Boev R (2012) Safety considerations in the management of allergic diseases: focus on antihistamines. Curr Med Res Opin 28(4):623–642

    CAS  PubMed  Google Scholar 

  • Yoshida K, Maeda K, Sugiyama Y (2012) Transporter-mediated drug-drug interactions involving OATP substrates: Predictions based on in vitro inhibition studies. Clin Pharmacol Ther 91(6):1053–1064

    CAS  PubMed  Google Scholar 

  • Zhang D, Surapaneni S (2012) ADME-enabling technologies in drug design and development. John Wiley & Sons, New Jersey, p 622

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Reichel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Reichel, A. (2014). Integrated Approach to Optimizing CNS Penetration in Drug Discovery: From the Old to the New Paradigm and Assessment of Drug–Transporter Interactions. In: Hammarlund-Udenaes, M., de Lange, E., Thorne, R. (eds) Drug Delivery to the Brain. AAPS Advances in the Pharmaceutical Sciences Series, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9105-7_12

Download citation

Publish with us

Policies and ethics