Skip to main content

Cellular Mechanisms in Nanomaterial Internalization, Intracellular Trafficking, and Toxicity

  • Chapter
  • First Online:
Nanotoxicology

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

Nanomaterials are expected to have a significant impact on medicine, although they still need to overcome several challenges before they are widely used. Understanding the molecular interaction of nanomaterials in the context of the cellular environment is crucial for the success of nanomaterials. Therefore, mechanisms responsible for nanomaterial internalization have attracted great attention in the scientific community. These mechanisms greatly impact intracellular trafficking and cellular processing of nanomaterials. Here we discuss the major endocytic pathways by which nanomaterials can be internalized by cells, such as clathrin-mediated endocytosis, caveolae-mediated endocytosis, macropinocytosis, and clathrin- and caveolae-independent endocytosis. In addition, intracellular routing, metabolism of nanomaterials, and undesirable effects of nanotoxicology are discussed. Finally, the role of in vitro studies to evaluate the potential toxic effects of nanomaterials was critically analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal A, Lariya N, Saraogi G et al (2009) Nanoparticles as novel carrier for brain delivery: a review. Curr Pharm Des 15:917–925

    PubMed  CAS  Google Scholar 

  • Aguilar RC, Wendland B (2005) Endocytosis of membrane receptors: two pathways are better than one. Proc Natl Acad Sci U S A 102:2679–2680. doi:10.1073/pnas.0500213102

    PubMed  CAS  Google Scholar 

  • Ai J, Biazar E, Jafarpour M et al (2011) Nanotoxicology and nanoparticle safety in biomedical designs. Int J Nanomed 6:1117–1127. doi:10.2147/IJN.S16603

    CAS  Google Scholar 

  • Al-Hajaj NA, Moquin A, Neibert KD et al (2011) Short ligands affect modes of QD uptake and elimination in human cells. ACS Nano 5:4909–4918. doi:10.1021/nn201009w

    PubMed  CAS  Google Scholar 

  • Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12:2313–2333. doi:10.1007/s11051-010-9911-8

    PubMed  CAS  Google Scholar 

  • Asati A, Santra S, Kaittanis C et al (2010) Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano 4:5321–5331. doi:10.1021/nn100816s

    PubMed  CAS  Google Scholar 

  • AshaRani PV, Low Kah Mun G et al (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290. doi:10.1021/nn800596w

    Google Scholar 

  • Asharani PVP, Hande MPM, Valiyaveettil SS (2009) Anti-proliferative activity of silver nanoparticles. CORD Conf Proc 10:65–65. doi:10.1186/1471-2121-10-65

    Google Scholar 

  • Bae YM, Park YI, Nam SH et al (2012) Endocytosis, intracellular transport, and exocytosis of lanthanide-doped upconverting nanoparticles in single living cells. Biomaterials 33:9080–9086. doi:10.1016/j.biomaterials.2012.08.039

    PubMed  CAS  Google Scholar 

  • Bareford LM, Swaan PW (2007) Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev 59:748–758. doi:10.1016/j.addr.2007.06.008

    PubMed  CAS  Google Scholar 

  • Bareford LM, Phelps MA, Foraker AB et al (2008) Intracellular processing of riboflavin in human breast cancer cells. Mol Pharm 5:839–848. doi:10.1021/mp800046m

    PubMed  CAS  Google Scholar 

  • Barrias ES, Reignault LC, De Souza W et al (2012) Trypanosoma cruzi uses macropinocytosis as an additional entry pathway into mammalian host cell. Microbes Infect 14:1340–1351. doi:10.1016/j.micinf.2012.08.003

    PubMed  CAS  Google Scholar 

  • Bartczak D, Nitti S, Millar TM et al (2012) Exocytosis of peptide functionalized gold nanoparticles in endothelial cells. RSC Adv 4:4470–4472. doi:10.1039/C2NR31064C

    CAS  Google Scholar 

  • Bastiani M, Parton RG (2010) Caveolae at a glance. J Cell Sci 123:3831–3836. doi:10.1242/jcs.070102

    PubMed  CAS  Google Scholar 

  • Benfer M, Kissel T (2012) Cellular uptake mechanism and knockdown activity of siRNA-loaded biodegradable DEAPA-PVA-g-PLGA nanoparticles. Eur J Pharm Biopharm 80:247–256. doi:10.1016/j.ejpb.2011.10.021

    PubMed  CAS  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71. doi:10.1116/1.2815690

    PubMed  Google Scholar 

  • Cabral H, Nishiyama N, Kataoka K (2011) Supramolecular nanodevices: from design validation to theranostic nanomedicine. Acc Chem Res 44:999–1008. doi:10.1021/ar200094a

    PubMed  CAS  Google Scholar 

  • Canton II, Battaglia GG (2012) Endocytosis at the nanoscale. Chem Soc Rev 41:2718–2739. doi:10.1039/c2cs15309b

    PubMed  CAS  Google Scholar 

  • Caracciolo G, Pozzi D, Capriotti AL et al (2011) Factors determining the superior performance of lipid/DNA/protamine nanoparticles over lipoplexes. J Med Chem 54:4160–4171. doi:10.1021/jm200237p

    PubMed  CAS  Google Scholar 

  • Chang M-Y, Shiau A-L, Chen Y-H et al (2008) Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice. Cancer Sci 99:1479–1484

    PubMed  CAS  Google Scholar 

  • Chang J, Jallouli Y, Kroubi M et al (2009) Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood-brain barrier. Int J Pharm 379:285–292. doi:10.1016/j.ijpharm.2009.04.035

    PubMed  CAS  Google Scholar 

  • Chen X, Kube DM, Cooper MJ et al (2008) Cell surface nucleolin serves as receptor for DNA nanoparticles composed of pegylated polylysine and DNA. Mol Ther 16:333–342

    PubMed  CAS  Google Scholar 

  • Chen X, Shank S, Davis PB et al (2011) Nucleolin-mediated cellular trafficking of DNA nanoparticle is lipid raft and microtubule dependent and can be modulated by glucocorticoid. Mol Ther 19:93–102

    PubMed  CAS  Google Scholar 

  • Chen ZZ, Yin J-JJ, Zhou Y-TY et al (2012) Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6:4001–4012

    PubMed  CAS  Google Scholar 

  • Chou LYT, Ming K, Chan WCW (2010) Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev 40:233–238

    PubMed  Google Scholar 

  • Chwalibog A, Sawosz E, Hotowy A et al (2010) Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int J Nanomed 5:1085–1094

    Google Scholar 

  • Colon J, Hsieh N, Ferguson A et al (2010) Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2. Nanomedicine 6:698–705

    PubMed  CAS  Google Scholar 

  • Comfort KKK, Maurer EIE, Braydich-Stolle LKL et al (2011) Interference of silver, gold, and iron oxide nanoparticles on epidermal growth factor signal transduction in epithelial cells. ACS Nano 5:10000–10008

    PubMed  CAS  Google Scholar 

  • Dam DHM, Lee JH, Sisco PN et al (2012) Direct observation of nanoparticle—cancer cell nucleus interactions. ACS Nano 6:3318–3326

    PubMed  CAS  Google Scholar 

  • del Pozo-Rodríguez A, Delgado D, Solinís MA et al (2008) Solid lipid nanoparticles for retinal gene therapy: transfection and intracellular trafficking in RPE cells. Int J Pharm 360:177–183

    PubMed  Google Scholar 

  • del Pozo-Rodríguez A, Pujals S, Delgado D et al (2009) A proline-rich peptide improves cell transfection of solid lipid nanoparticle-based non-viral vectors. J Control Release 133:52–59

    PubMed  Google Scholar 

  • Dharmawardhane SS, Schürmann AA, Sells MAM et al (2000) Regulation of macropinocytosis by p21-activated kinase-1. Mol Biol Cell 11:3341–3352

    PubMed  CAS  Google Scholar 

  • Doherty GJ, Mcmahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902

    PubMed  CAS  Google Scholar 

  • Dombu CY, Kroubi M, Zibouche R et al (2010) Characterization of endocytosis and exocytosis of cationic nanoparticles in airway epithelium cells. Nanotechnology 21:355102

    PubMed  Google Scholar 

  • Donaldson K, Stone V, Tran CL et al (2004) Nanotoxicology. Occup Environ Med 61:727–728

    PubMed  CAS  Google Scholar 

  • Edeling MA, Smith C, Owen D (2006) Life of a clathrin coat: insights from clathrin and AP structures. Nat Rev Mol Cell Biol 7:32–44

    PubMed  CAS  Google Scholar 

  • Ekkapongpisit M, Giovia A, Follo C et al (2012) Biocompatibility, endocytosis, and intracellular trafficking of mesoporous silica and polystyrene nanoparticles in ovarian cancer cells: effects of size and surface charge groups. Int J Nanomed 7:4147–4158

    CAS  Google Scholar 

  • El-Ansary A, Al-Daihan S (2009) On the toxicity of therapeutically used nanoparticles: an overview. J Toxicol 2009:754810

    PubMed  CAS  Google Scholar 

  • Faklaris O, Joshi V, Irinopoulou T et al (2009) Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells. ACS Nano 3:3955–3962

    PubMed  CAS  Google Scholar 

  • Falcone S, Cocucci E, Podini P et al (2006) Macropinocytosis: regulated coordination of endocytic and exocytic membrane traffic events. J Cell Sci 119:4758–4769

    PubMed  CAS  Google Scholar 

  • Fichter KM, Ingle NP, McLendon PM, Reineke TM (2013) Polymeric nucleic acid vehicles exploit active interorganelle trafficking mechanisms. ACS Nano 7:347–364

    PubMed  CAS  Google Scholar 

  • Gao H, Shi W, Freund LB (2005) Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci U S A 102:9469–9474

    PubMed  CAS  Google Scholar 

  • Georgieva JV, Kalicharan D, Couraud P-O et al (2011) Surface characteristics of nanoparticles determine their intracellular fate in and processing by human blood-brain barrier endothelial cells in vitro. Mol Ther 19:318–325

    PubMed  CAS  Google Scholar 

  • González-Gaitán M, Stenmark H (2003) Endocytosis and signaling: a relationship under development. Cell 115:513–521

    PubMed  Google Scholar 

  • Gratton SEA, Ropp PA, Pohlhaus PD et al (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A 105:11613–11618

    PubMed  CAS  Google Scholar 

  • Greulich C, Diendorf J, Simon T et al (2011) Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomater 7:347–354

    PubMed  CAS  Google Scholar 

  • Hansen CG, Nichols BJ (2009) Molecular mechanisms of clathrin-independent endocytosis. J Cell Sci 122:1713–1721

    PubMed  CAS  Google Scholar 

  • Harush-Frenkel OO, Rozentur EE, Benita SS et al (2008) Surface charge of nanoparticles determines their endocytic and transcytotic pathway in polarized MDCK cells. Biomacromolecules 9:435–443

    PubMed  CAS  Google Scholar 

  • Hayer A, Stoeber M, Ritz D et al (2010) Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation. J Cell Biol 191:615–629

    PubMed  CAS  Google Scholar 

  • Heuser JEJ, Anderson RGR (1989) Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. J Cell Biol 108:389–400

    PubMed  CAS  Google Scholar 

  • Hill MM, Bastiani M, Luetterforst R et al (2008) PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 132:113–124

    PubMed  CAS  Google Scholar 

  • Hillaireau H, Couvreur P (2009) Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci 66:2873–2896

    PubMed  CAS  Google Scholar 

  • Hillegass JM, Shukla A, Lathrop SA et al (2010) Assessing nanotoxicity in cells in vitro. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:219–231

    PubMed  CAS  Google Scholar 

  • Hinrichsen L, Meyerholz A, Groos S et al (2006) Bending a membrane: how clathrin affects budding. Proc Natl Acad Sci U S A 103:8715–8720

    PubMed  CAS  Google Scholar 

  • Hoet PH, Brüske-Hohlfeld I, Salata OV (2004) Nanoparticles—known and unknown health risks. J Nanobiotechnol 2:12. doi:10.1186/1477-3155-2-12

    Google Scholar 

  • Huotari J, Helenius A (2011) Endosome maturation. EMBO J 30:3481–3500

    PubMed  CAS  Google Scholar 

  • Hussain SMS, Hess KLK, Gearhart JMJ et al (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983

    PubMed  CAS  Google Scholar 

  • Hussain SM, Braydich Stolle LK, Schrand AM et al (2009) Toxicity evaluation for safe use of nanomaterials: recent achievements and technical challenges. Adv Mater 21:1549–1559

    CAS  Google Scholar 

  • Iversen T, Frerker N, Sandvig K (2012) Uptake of ricin B-quantum dot nanoparticles by a macropinocytosis-like mechanism. J Nanobiotechnol 10:33. doi:10.1371/journal.pone.0005935

    CAS  Google Scholar 

  • Jeyaraj M, Rajesh M, Arun R et al (2013) An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells. J Control Release 102:708–717

    CAS  Google Scholar 

  • Jian F, Zhang Y, Wang J et al (2012) Toxicity of biodegradable nanoscale preparations. Curr Drug Metab 13:440–446

    PubMed  CAS  Google Scholar 

  • Jiang X, Röcker C, Hafner M et al (2010) Endo- and exocytosis of zwitterionic quantum dot nanoparticles by live HeLa cells. ACS Nano 4:6787–6797

    PubMed  CAS  Google Scholar 

  • Jin H, Heller DA, Sharma R, Strano MS (2009) Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano 3:149–158

    PubMed  CAS  Google Scholar 

  • Johnston HJ, Semmler-Behnke M, Brown DM et al (2010) Evaluating the uptake and intracellular fate of polystyrene nanoparticles by primary and hepatocyte cell lines in vitro. Toxicol Appl Pharmacol 242:66–78

    PubMed  CAS  Google Scholar 

  • Jones AT (2007) Macropinocytosis: searching for an endocytic identity and role in the uptake of cell penetrating peptides. J Cell Mol Med 11:670–684

    PubMed  CAS  Google Scholar 

  • Jovic M, Sharma M, Rahajeng J et al (2010) The early endosome: a busy sorting station for proteins at the crossroads. Histol Histopathol 25:99–112

    PubMed  CAS  Google Scholar 

  • Kaplan IM, Wadia JS, Dowdy SF (2005) Cationic TAT peptide transduction domain enters cells by macropinocytosis. J Control Release 102:247–253

    PubMed  CAS  Google Scholar 

  • Karakoti AS, Singh S, Kumar A et al (2009) PEGylated nanoceria as radical scavenger with tunable redox chemistry. J Am Chem Soc 131:14144–14145

    PubMed  CAS  Google Scholar 

  • Kasper J, Hermanns MI, Bantz C et al (2013) Interactions of silica nanoparticles with lung epithelial cells and the association to flotillins. Arch Toxicol 87(6):1053–1065. doi:10.1007/s00204-012-0876-5

    PubMed  CAS  Google Scholar 

  • Kerr MC, Teasdale RD (2009) Defining macropinocytosis. Traffic 10:364–371

    PubMed  CAS  Google Scholar 

  • Khalil I, Kogure K, Akita H, Harashima H (2006) Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev 58:32–45

    PubMed  CAS  Google Scholar 

  • Kim SS, Choi I-HI (2012) Phagocytosis and endocytosis of silver nanoparticles induce interleukin-8 production in human macrophages. Yonsei Med J 53:654–657

    PubMed  CAS  Google Scholar 

  • Kim Y-J, Yang SI, Ryu J-C (2010) Cytotoxicity and genotoxicity of nano-silver in mammalian cell lines. Mol Cell Toxicol 6:119–125

    CAS  Google Scholar 

  • Kim AJ, Boylan NJ, Suk JS et al (2012) Non-degradative intracellular trafficking of highly compacted polymeric DNA nanoparticles. J Control Release 158:102–107

    PubMed  CAS  Google Scholar 

  • Kroemer G, Mariño G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293

    PubMed  CAS  Google Scholar 

  • Lai DYD (2012) Toward toxicity testing of nanomaterials in the 21st century: a paradigm for moving forward. Wiley Interdiscip Rev RNA 4:1–15. doi:10.1002/wnan.162

    CAS  Google Scholar 

  • Lai SKS, Hida KK, Man STS et al (2007) Privileged delivery of polymer nanoparticles to the perinuclear region of live cells via a non-clathrin, non-degradative pathway. Biomaterials 28:2876–2884

    PubMed  CAS  Google Scholar 

  • Lai ZW, Yan Y, Caruso F, Nice EC (2012) Emerging techniques in proteomics for probing nano-bio interactions. ACS Nano 6:10438–10448

    PubMed  CAS  Google Scholar 

  • Lajoie P, Nabi IR (2007) Regulation of raft-dependent endocytosis. J Cell Mol Med 11:644–653

    PubMed  CAS  Google Scholar 

  • Li JJJ, Hartono DD, Ong C-NC et al (2010) Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials 31:5996–6003

    PubMed  CAS  Google Scholar 

  • Lim JPJ, Gleeson PAP (2011) Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol 89:836–843

    PubMed  CAS  Google Scholar 

  • Liu P, Guan R, Ye X et al (2011) Toxicity of nano- and micro-sized silver particles in human hepatocyte cell line L02. J Phys Conf Ser 304:012036

    Google Scholar 

  • Love SA, Liu Z, Haynes CL (2012a) Examining changes in cellular communication in neuroendocrine cells after noble metal nanoparticle exposure. Analyst 137:3004–3010

    PubMed  CAS  Google Scholar 

  • Love SA, Maurer-Jones MA, Thompson JW et al (2012b) Assessing nanoparticle toxicity. Annu Rev Anal Chem 5:181–205

    CAS  Google Scholar 

  • Lunov O, Syrovets T, Loos C et al (2011) Amino-functionalized polystyrene nanoparticles activate the NLRP3 inflammasome in human macrophages. ACS Nano 5:9648–9657

    PubMed  CAS  Google Scholar 

  • Ma XX, Wu YY, Jin SS et al (2011) Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano 5:8629–8639

    PubMed  CAS  Google Scholar 

  • Madshus IHI, Tønnessen TIT, Olsnes SS et al (1987) Effect of potassium depletion of Hep 2 cells on intracellular pH and on chloride uptake by anion antiport. J Cell Physiol 131:6–13

    PubMed  CAS  Google Scholar 

  • Markovic Z, Todorovic-Markovic B, Kleut D et al (2007) The mechanism of cell-damaging reactive oxygen generation by colloidal fullerenes. Biomaterials 28:5437–5448

    PubMed  CAS  Google Scholar 

  • Marquis BJ, Love SA, Braun KL et al (2009) Analytical methods to assess nanoparticle toxicity. RSC Adv 134:425–439

    CAS  Google Scholar 

  • Marsh M, McMahon HT (1999) The structural era of endocytosis. Science 285:215–220

    PubMed  CAS  Google Scholar 

  • Martins SS, Costa-Lima SS, Carneiro TT et al (2012) Solid lipid nanoparticles as intracellular drug transporters: an investigation of the uptake mechanism and pathway. Int J Pharm 430:216–227

    PubMed  CAS  Google Scholar 

  • Maurer-Jones MA, Lin Y-S, Haynes CL (2010) Functional assessment of metal oxide nanoparticle toxicity in immune cells. ACS Nano 4:3363–3373

    PubMed  CAS  Google Scholar 

  • Maynard AD, Warheit DB, Philbert MA (2011) The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicol Sci 120(Suppl 1):S109–S129

    PubMed  CAS  Google Scholar 

  • McNeil SE (2005) Nanotechnology for the biologist. J Leukoc Biol 78:585–594

    PubMed  CAS  Google Scholar 

  • Meng H, Yang S, Li Z et al (2011) Aspect ratio determines the quantity of mesoporous silica nanoparticle uptake by a small GTPase-dependent macropinocytosis mechanism. ACS Nano 5:4434–4447

    PubMed  CAS  Google Scholar 

  • Mercer J, Helenius A (2009) Virus entry by macropinocytosis. Nat Cell Biol 11:510–520

    PubMed  CAS  Google Scholar 

  • Ming X, Alam MR, Fisher M et al (2010) Intracellular delivery of an antisense oligonucleotide via endocytosis of a G protein-coupled receptor. Nucleic Acids Res 38:6567–6576

    PubMed  CAS  Google Scholar 

  • Mudhakir D, Harashima H (2009) Learning from the viral journey: how to enter cells and how to overcome intracellular barriers to reach the nucleus. AAPS J 11:65–77

    PubMed  Google Scholar 

  • Mukherjee SG, O’Claonadh N, Casey A et al (2012) Comparative in vitro cytotoxicity study of silver nanoparticle on two mammalian cell lines. Toxicol In Vitro 26:238–251

    PubMed  CAS  Google Scholar 

  • Murakami M, Cabral H, Matsumoto Y et al (2011) Improving drug potency and efficacy by nanocarrier-mediated subcellular targeting. Sci Transl Med 3:64ra2

    PubMed  CAS  Google Scholar 

  • Nel A, Xia T, Mädler L et al (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    PubMed  CAS  Google Scholar 

  • Ng C-T, Li JJ, Bay B-H et al (2010) Current studies into the genotoxic effects of nanomaterials. J Nucleic Acids 2010:1–12

    Google Scholar 

  • Nichols B (2003) Caveosomes and endocytosis of lipid rafts. J Cell Sci 116:4707–4714

    PubMed  CAS  Google Scholar 

  • Nishimura SS, Takahashi SS, Kamikatahira HH et al (2008) Combinatorial targeting of the macropinocytotic pathway in leukemia and lymphoma cells. J Biol Chem 283:11752–11762

    PubMed  CAS  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    PubMed  Google Scholar 

  • Oh J-M, Choi S-J, Kim S-T et al (2006) Cellular uptake mechanism of an inorganic nanovehicle and its drug conjugates: enhanced efficacy due to clathrin-mediated endocytosis. Bioconjug Chem 17:1411–1417

    PubMed  CAS  Google Scholar 

  • Orth JDJ, McNiven MAM (2006) Get off my back! Rapid receptor internalization through circular dorsal ruffles. Cancer Res 66:11094–11096

    PubMed  CAS  Google Scholar 

  • Ory S, Gasman S (2011) Rho GTPases and exocytosis: what are the molecular links? Semin Cell Dev Biol 22:27–32

    PubMed  CAS  Google Scholar 

  • Panyam J, Labhasetwar V (2003) Dynamics of endocytosis and exocytosis of poly(D,L-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharm Res 20:212–220

    Google Scholar 

  • Pardridge WM (2007) Blood-brain barrier delivery. Drug Discov Today 12:54–61. doi:10.1016/j.drudis.2006.10.013

    PubMed  CAS  Google Scholar 

  • Park E-JE, Yi JJ, Chung K-HK et al (2008) Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 180:222–229

    PubMed  CAS  Google Scholar 

  • Parton RG, Howes MT (2010) Revisiting caveolin trafficking: the end of the caveosome. J Cell Biol 191:439–441

    PubMed  CAS  Google Scholar 

  • Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8:185–194

    PubMed  CAS  Google Scholar 

  • Pelkmans L, Helenius A (2002) Endocytosis via caveolae. Traffic 3:311–320

    PubMed  CAS  Google Scholar 

  • Pelkmans L, Kartenbeck J, Helenius A (2001) Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3:473–483

    PubMed  CAS  Google Scholar 

  • Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9:615–627

    PubMed  CAS  Google Scholar 

  • Pierscionek BK, Li Y, Yasseen AA et al (2009) Nanoceria have no genotoxic effect on human lens epithelial cells. Nanotechnology 21:035102

    Google Scholar 

  • Prokop A, Davidson JM (2008) Nanovehicular intracellular delivery systems. J Pharm Sci 97:3518–3590. doi:10.1002/jps.21270

    PubMed  CAS  Google Scholar 

  • Rajendran L, Knölker H-J, Simons K (2010) Subcellular targeting strategies for drug design and delivery. Nat Rev Drug Discov 9:29–42. doi:10.1038/nrd2897

    PubMed  CAS  Google Scholar 

  • Rehman ZU, Hoekstra D, Zuhorn IS (2011) Protein kinase A inhibition modulates the intracellular routing of gene delivery vehicles in HeLa cells, leading to productive transfection. J Control Release 156:76–84

    CAS  Google Scholar 

  • Rehman ZU, Sjollema KA, Kuipers J et al (2012) Nonviral gene delivery vectors use syndecan-dependent transport mechanisms in filopodia to reach the cell surface. ACS Nano 6:7521–7532

    CAS  Google Scholar 

  • Rejman J, Bragonzi A, Conese M (2005) Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Mol Ther 12:468–474

    PubMed  CAS  Google Scholar 

  • Rodal SK, Skretting G, Garred Ø et al (1999) Extraction of cholesterol with methyl-β-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell 10:961–974

    PubMed  CAS  Google Scholar 

  • Sahay G, Alakhova DY, Kabanov AV (2010a) Endocytosis of nanomedicines. J Control Release 145:182–195

    PubMed  CAS  Google Scholar 

  • Sahay G, Kim JO, Kabanov AV et al (2010b) The exploitation of differential endocytic pathways in normal and tumor cells in the selective targeting of nanoparticulate chemotherapeutic agents. Biomaterials 31:923–933

    PubMed  CAS  Google Scholar 

  • Sandin P, Fitzpatrick LW, Simpson JC et al (2012) High-speed imaging of rab family small gtpases reveals rare events in nanoparticle trafficking in living cells. ACS Nano 6:1513–1521

    PubMed  CAS  Google Scholar 

  • Sanpui P, Chattopadhyay A, Ghosh SS (2011) Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Appl Mater Interfaces 3:218–228

    PubMed  CAS  Google Scholar 

  • Saovapakhiran A, D’Emanuele A, Attwood D et al (2009) Surface modification of PAMAM dendrimers modulates the mechanism of cellular internalization. Bioconjug Chem 20:693–701

    PubMed  CAS  Google Scholar 

  • Scita G, Di Fiore PP (2010) The endocytic matrix. Nature 463:464–473

    PubMed  CAS  Google Scholar 

  • Serag MF, Kaji N, Venturelli E et al (2011) Functional platform for controlled subcellular distribution of carbon nanotubes. ACS Nano 5:9264–9270

    PubMed  CAS  Google Scholar 

  • Soenen SJ, Rivera-Gil P, Montenegro J-M et al (2011) Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6:446–465

    CAS  Google Scholar 

  • Soenen SJS, Manshian BB, Montenegro JMJ et al (2012) Cytotoxic effects of gold nanoparticles: a multiparametric study. ACS Nano 6:5767–5783

    PubMed  CAS  Google Scholar 

  • Stern ST, Adiseshaiah PP, Crist RM (2012) Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol 9:20. doi:10.1186/1743-8977-9-20

    PubMed  CAS  Google Scholar 

  • Subtil AA, Gaidarov II, Kobylarz KK et al (1999) Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc Natl Acad Sci U S A 96:6775–6780

    PubMed  CAS  Google Scholar 

  • Sun L, Li Y, Liu X et al (2011) Cytotoxicity and mitochondrial damage caused by silica nanoparticles. Toxicol In Vitro 25:1619–1629

    PubMed  CAS  Google Scholar 

  • Swanson JA, Watts C (1995) Macropinocytosis. Trends Cell Biol 5:424–428

    PubMed  CAS  Google Scholar 

  • Tiwari SB, Amiji MM (2006) A review of nanocarrier-based CNS delivery systems. Curr Drug Deliv 3:219–232

    PubMed  CAS  Google Scholar 

  • Torchilin VP (2006) Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng 8:343–375

    PubMed  CAS  Google Scholar 

  • Torgersen ML, Skretting G, van Deurs B et al (2001) Internalization of cholera toxin by different endocytic mechanisms. J Cell Sci 114:3737–3747

    PubMed  CAS  Google Scholar 

  • Totsuka Y, Higuchi T, Imai T et al (2009) Genotoxicity of nano/microparticles in in vitro micronuclei, in vivo comet and mutation assay systems. Part Fibre Toxicol 6:23. doi:10.1186/1743-8977-6-23

    PubMed  Google Scholar 

  • Tuma PL, Hubbard AL (2003) Transcytosis: crossing cellular barriers. Physiol Rev 83:871–932

    PubMed  CAS  Google Scholar 

  • Ungewickell EJ, Hinrichsen L (2007) Endocytosis: clathrin-mediated membrane budding. Curr Opin Cell Biol 19:417–425

    PubMed  CAS  Google Scholar 

  • Varkouhi AK, Scholte M, Storm G et al (2011) Endosomal escape pathways for delivery of biologicals. J Control Release 151:220–228

    PubMed  CAS  Google Scholar 

  • Vercauteren D, Vandenbroucke RE, Jones AT et al (2010) The use of inhibitors to study endocytic pathways of gene carriers: optimization and pitfalls. Mol Ther 18:561–569

    PubMed  CAS  Google Scholar 

  • Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6:12–21

    PubMed  CAS  Google Scholar 

  • Vollrath A, Schallon A, Pietsch C et al (2012) A toolbox of differently sized and labeled PMMA nanoparticles for cellular uptake investigations. RSC Adv 9:99

    Google Scholar 

  • Walker NJ, Bucher JR (2009) A 21st century paradigm for evaluating the health hazards of nanoscale materials? Toxicol Sci 110:251–254

    PubMed  CAS  Google Scholar 

  • Wang LH, Rothberg KG, Anderson RG (1993) Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol 123:1107–1117

    PubMed  CAS  Google Scholar 

  • Wang Z, Tiruppathi C, Minshall RD et al (2009) Size and dynamics of caveolae studied using nanoparticles in living endothelial cells. ACS Nano 3:4110–4116

    PubMed  CAS  Google Scholar 

  • Wang Y, Wang J, Deng X et al (2010) Direct imaging of titania nanotubes located in mouse neural stem cell nuclei. Nano Res 2:543–552

    Google Scholar 

  • Wang F, Wang Y-C, Dou S et al (2011a) Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano 5:3679–3692

    PubMed  CAS  Google Scholar 

  • Wang L, Liu Y, Li W et al (2011b) Selective targeting of gold nanorods at the mitochondria of cancer cells: implications for cancer therapy. Nano Lett 11:772–780

    PubMed  CAS  Google Scholar 

  • Won Y-Y, Sharma R, Konieczny SF (2009) Missing pieces in understanding the intracellular trafficking of polycation/DNA complexes. J Control Release 139:88–93. doi:10.1016/j.jconrel.2009.06.031

    PubMed  CAS  Google Scholar 

  • Wu L-C, Chu L-W, Lo L-W et al (2013) Programmable cellular retention of nanoparticles by replacing the synergistic anion of transferrin. ACS Nano 7:365–375. doi:10.1021/nn3043397

    PubMed  CAS  Google Scholar 

  • Yan Y, Such GK, Johnston APR et al (2012) Engineering particles for therapeutic delivery: prospects and challenges. ACS Nano 6:3663–3669. doi:10.1021/nn3016162

    PubMed  CAS  Google Scholar 

  • Zabirnyk O, Yezhelyev M, Seleverstov O (2007) Nanoparticles as a novel class of autophagy activators. Autophagy 3:278–281

    PubMed  CAS  Google Scholar 

  • Zaki NM, Tirelli N (2010) Gateways for the intracellular access of nanocarriers: a review of receptor-mediated endocytosis mechanisms and of strategies in receptor targeting. Expert Opin Drug Deliv 7:895–913. doi:10.1517/17425247.2010.501792

    PubMed  CAS  Google Scholar 

  • Zhao F, Zhao Y, Liu Y et al (2011) Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 7:1322–1337. doi:10.1002/smll.201100001

    PubMed  CAS  Google Scholar 

  • Zuhorn IS, Kalicharan R, Hoekstra D (2002) Lipoplex-mediated transfection of mammalian cells occurs through the cholesterol-dependent clathrin-mediated pathway of endocytosis. J Biol Chem 277:18021–18028. doi:10.1074/jbc.M111257200

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Support from FAPESP, CNPq, and Brazilian Network on Nanotoxicology (MCTI/CNPq) and NanoBioss (MCTI) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Bispo de Jesus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

de Jesus, M.B., Kapila, Y.L. (2014). Cellular Mechanisms in Nanomaterial Internalization, Intracellular Trafficking, and Toxicity. In: Durán, N., Guterres, S., Alves, O. (eds) Nanotoxicology. Nanomedicine and Nanotoxicology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8993-1_9

Download citation

Publish with us

Policies and ethics