Skip to main content

Coronary Artery Anomalies

  • Chapter
  • First Online:
Cardiac CT and MR for Adult Congenital Heart Disease

Abstract

Isolated congenital coronary artery anomalies have been reported in approximately 1.3 % (range 0.2–5.6 %) of patients undergoing x-ray coronary angiography (Yamanaka and Hobbs, Cathet Cardiovasc Diagn 21:28–40, 1990; Click et al. J Am Coll Cardiol 13:531–537, 1989; Baltaxe and Wixson, Radiology 122:47–52, 1977; Engel et al., Cathet Cardiovasc Diagn 1:157–169, 1975) and approximately 0.3 % of patients at autopsy (Alexander and Griffith, Circulation 14:800–805, 1956). About 80 % of coronary anomalies are considered benign without significant clinical sequelae, with the remaining 20 % potentially responsible for significant symptoms such as myocardial ischemia and sudden death (Yamanaka and Hobbs, Cathet Cardiovasc Diagn 21:28–40, 1990). The ability to identify coronary artery anomalies and define their anatomic course is important to further evaluate patients in whom a coronary anomaly is suspected. Noninvasive imaging has been the preferred way to evaluate patients with a suspected coronary artery anomaly, and it is important for physicians to recognize and understand the clinical and imaging features of the most commonly encountered coronary artery anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yamanaka O, Hobbs RE. Coronary artery anomalies in 126,595 patients undergoing coronary arteriography. Cathet Cardiovasc Diagn. 1990;21:28–40.

    Article  PubMed  CAS  Google Scholar 

  2. Click RL, Holmes Jr DR, Vlietstra RE, Kosinski AS, Kronmal RA. Anomalous coronary arteries: location, degree of atherosclerosis and effect on survival – a report from the Coronary Artery Surgery Study. J Am Coll Cardiol. 1989;13:531–7.

    Article  PubMed  CAS  Google Scholar 

  3. Baltaxe HA, Wixson D. The incidence of congenital anomalies of the coronary arteries in the adult population. Radiology. 1977;122:47–52.

    PubMed  CAS  Google Scholar 

  4. Engel HJ, Torres C, Page Jr HL. Major variations in anatomical origin of the coronary arteries: angiographic observations in 4,250 patients without associated congenital heart disease. Cathet Cardiovasc Diagn. 1975;1:157–69.

    Article  PubMed  CAS  Google Scholar 

  5. Alexander RW, Griffith GC. Anomalies of the coronary arteries and their clinical significance. Circulation. 1956;14:800–5.

    Article  PubMed  CAS  Google Scholar 

  6. Liberthson RR, Dinsmore RE, Fallon JT. Aberrant coronary artery origin from the aorta. Report of 18 patients, review of literature and delineation of natural history and management. Circulation. 1979;59:748–54.

    Article  PubMed  CAS  Google Scholar 

  7. Moodie DS, Gill C, Loop FD, Sheldon WC. Anomalous left main coronary artery originating from the right sinus of Valsalva: pathophysiology, angiographic definition, and surgical approaches. J Thorac Cardiovasc Surg. 1980;80:198–205.

    PubMed  CAS  Google Scholar 

  8. Ishikawa T, Brandt PW. Anomalous origin of the left main coronary artery from the right anterior aortic sinus: angiographic definition of anomalous course. Am J Cardiol. 1985;55:770–6.

    Article  PubMed  CAS  Google Scholar 

  9. Serota H, Barth 3rd CW, Seuc CA, Vandormael M, Aguirre F, Kern MJ. Rapid identification of the course of anomalous coronary arteries in adults: the “dot and eye” method. Am J Cardiol. 1990;65:891–8.

    Article  PubMed  CAS  Google Scholar 

  10. Frommelt PC, Frommelt MA. Congenital coronary artery anomalies. Pediatr Clin North Am. 2004;51:1273–88.

    Article  PubMed  Google Scholar 

  11. Douglas PS, Fiolkoski J, Berko B, Reichek N. Echocardiographic visualization of coronary artery anatomy in the adult. J Am Coll Cardiol. 1988;11:565–71.

    Article  PubMed  CAS  Google Scholar 

  12. Vered Z, Katz M, Rath S, et al. Two-dimensional echocardiographic analysis of proximal left main coronary artery in humans. Am Heart J. 1986;112:972–6.

    Article  PubMed  CAS  Google Scholar 

  13. Zwicky P, Daniel WG, Mugge A, Lichtlen PR. Imaging of coronary arteries by color-coded transesophageal Doppler echocardiography. Am J Cardiol. 1988;62:639–40.

    Article  PubMed  CAS  Google Scholar 

  14. Mitchell MM, Sutherland GR, Gussenhoven EJ, Taams MA, Roelandt JR. Transesophageal echocardiography. J Am Soc Echocardiogr. 1988;1:362–77.

    PubMed  CAS  Google Scholar 

  15. Gaither NS, Rogan KM, Stajduhar K, et al. Anomalous origin and course of coronary arteries in adults: identification and improved imaging utilizing transesophageal echocardiography. Am Heart J. 1991;122:69–75.

    Article  PubMed  CAS  Google Scholar 

  16. Warnes CA, Williams RG, Bashore TM, et al. ACC/AHA 2008 Guidelines for the Management of Adults with Congenital Heart Disease: Executive Summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to develop guidelines for the management of adults with congenital heart disease). Circulation. 2008;118:2395–451.

    Article  PubMed  Google Scholar 

  17. McConnell MV, Ganz P, Selwyn AP, Li W, Edelman RR, Manning WJ. Identification of anomalous coronary arteries and their anatomic course by magnetic resonance coronary angiography. Circulation. 1995;92:3158–62.

    Article  PubMed  CAS  Google Scholar 

  18. Bunce NH, Lorenz CH, Keegan J, et al. Coronary artery anomalies: assessment with free-breathing three-dimensional coronary MR angiography. Radiology. 2003;227:201–8.

    Article  PubMed  Google Scholar 

  19. Duerinckx AJ, Bogaert J, Jiang H, Lewis BS. Anomalous origin of the left coronary artery: diagnosis by coronary MR angiography. AJR Am J Roentgenol. 1995;164:1095–7.

    Article  PubMed  CAS  Google Scholar 

  20. Post JC, van Rossum AC, Hofman MB, Valk J, Visser CA. Three-dimensional respiratory-gated MR angiography of coronary arteries: comparison with conventional coronary angiography. AJR Am J Roentgenol. 1996;166:1399–404.

    Article  PubMed  CAS  Google Scholar 

  21. Hendel RC, Patel MR, Kramer CM, et al. ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol. 2006;48:1475–97.

    Article  PubMed  Google Scholar 

  22. Paulin S, von Schulthess GK, Fossel E, Krayenbuehl HP. MR imaging of the aortic root and proximal coronary arteries. AJR Am J Roentgenol. 1987;148:665–70.

    Article  PubMed  CAS  Google Scholar 

  23. Cho ZH, Mun CW, Friedenberg RM. NMR angiography of coronary vessels with 2-D planar image scanning. Magn Reson Med. 1991;20:134–43.

    Article  PubMed  CAS  Google Scholar 

  24. Dumoulin CL, Souza SP, Darrow RD, Adams WJ. A method of coronary MR angiography. J Comput Assist Tomogr. 1991;15:705–10.

    Article  PubMed  CAS  Google Scholar 

  25. Kim WY, Danias PG, Stuber M, et al. Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med. 2001;345:1863–9.

    Article  PubMed  CAS  Google Scholar 

  26. Weber OM, Martin AJ, Higgins CB. Whole-heart steady-state free precession coronary artery magnetic resonance angiography. Magn Reson Med. 2003;50:1223–8.

    Article  PubMed  Google Scholar 

  27. Prakken NH, Vonken EJ, Velthuis BK, Doevendans PA, Cramer MJ. 3D MR coronary angiography: optimization of the technique and preliminary results. Int J Cardiovasc Imaging. 2006;22:477–87.

    Article  PubMed  Google Scholar 

  28. Shea SM, Deshpande VS, Chung YC, Li D. Three-dimensional true-FISP imaging of the coronary arteries: improved contrast with T2-preparation. J Magn Reson Imaging. 2002;15:597–602.

    Article  PubMed  Google Scholar 

  29. Nezafat R, Stuber M, Ouwerkerk R, Gharib AM, Desai MY, Pettigrew RI. B1-insensitive T2 preparation for improved coronary magnetic resonance angiography at 3 T. Magn Reson Med. 2006;55:858–64.

    Article  PubMed  Google Scholar 

  30. Gharib AM, Abd-Elmoniem KZ, Herzka DA, et al. Optimization of coronary whole-heart MRA free-breathing technique at 3 Tesla. Magn Reson Imaging. 2011;29:1125–30.

    Article  PubMed  Google Scholar 

  31. Li D, Paschal CB, Haacke EM, Adler LP. Coronary arteries: three-dimensional MR imaging with fat saturation and magnetization transfer contrast. Radiology. 1993;187:401–6.

    PubMed  CAS  Google Scholar 

  32. Paschal CB, Haacke EM, Adler LP. Three-dimensional MR imaging of the coronary arteries: preliminary clinical experience. J Magn Reson Imaging. 1993;3:491–500.

    Article  PubMed  CAS  Google Scholar 

  33. Hofman MB, Paschal CB, Li D, Haacke EM, van Rossum AC, Sprenger M. MRI of coronary arteries: 2D breath-hold vs 3D respiratory-gated acquisition. J Comput Assist Tomogr. 1995;19:56–62.

    Article  PubMed  CAS  Google Scholar 

  34. Xu J, Kim D, Otazo R, et al. Initial comparative evaluation of a five-minute comprehensive cardiac MR examination using highly accelerated parallel imaging. Montreal: International Society of Magnetic Resonance in Medicine; 2011.

    Google Scholar 

  35. Prakken NH, Cramer MJ, Olimulder MA, Agostoni P, Mali WP, Velthuis BK. Screening for proximal coronary artery anomalies with 3-dimensional MR coronary angiography. Int J Cardiovasc Imaging. 2010;26:701–10.

    Article  PubMed  Google Scholar 

  36. Greer ML, Mondal TK, Yoo SJ. Late presentation of anomalous origin of the left coronary artery from the pulmonary artery: the definitive role of cardiovascular magnetic resonance imaging. Cardiol Young. 2011;21:225–6.

    Article  PubMed  Google Scholar 

  37. McConnell MV, Stuber M, Manning WJ. Clinical role of coronary magnetic resonance angiography in the diagnosis of anomalous coronary arteries. J Cardiovasc Magn Reson. 2000;2:217–24.

    Article  PubMed  CAS  Google Scholar 

  38. Hundley WG, Bluemke DA, Finn JP, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. Circulation. 2010;121:2462–508.

    Article  PubMed  Google Scholar 

  39. Gowda RM, Vasavada BC, Khan IA. Coronary artery fistulas: clinical and therapeutic considerations. Int J Cardiol. 2006;107:7–10.

    Article  PubMed  Google Scholar 

  40. Datta J, White CS, Gilkeson RC, et al. Anomalous coronary arteries in adults: depiction at multi-detector row CT angiography. Radiology. 2005;235:812–8.

    Article  PubMed  Google Scholar 

  41. Taylor AJ, Cerqueira M, Hodgson JM, et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol. 2010;56:1864–94.

    Article  PubMed  Google Scholar 

  42. Shriki JE, Shinbane JS, Rashid MA, et al. Identifying, characterizing, and classifying congenital anomalies of the coronary arteries. Radiographics. 2012;32:453–68.

    Article  PubMed  Google Scholar 

  43. Earls JP. How to use a prospective gated technique for cardiac CT. J Cardiovasc Comput Tomogr. 2009;3:45–51.

    Article  PubMed  Google Scholar 

  44. Shuman WP, Branch KR, May JM, et al. Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology. 2008;248:431–7.

    Article  PubMed  Google Scholar 

  45. Scheffel H, Alkadhi H, Leschka S, et al. Low-dose CT coronary angiography in the step-and-shoot mode: diagnostic performance. Heart. 2008;94:1132–7.

    Article  PubMed  CAS  Google Scholar 

  46. Einstein AJ, Elliston CD, Arai AE, et al. Radiation dose from single-heartbeat coronary CT angiography performed with a 320-detector row volume scanner. Radiology. 2010;254:698–706.

    Article  PubMed  Google Scholar 

  47. Achenbach S, Marwan M, Ropers D, et al. Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition. Eur Heart J. 2010;31:340–6.

    Article  PubMed  Google Scholar 

  48. Gosling O, Loader R, Venables P, et al. A comparison of radiation doses between state-of-the-art multislice CT coronary angiography with iterative reconstruction, multislice CT coronary angiography with standard filtered back-projection and invasive diagnostic coronary angiography. Heart. 2010;96:922–6.

    Article  PubMed  CAS  Google Scholar 

  49. Leipsic J, Labounty TM, Heilbron B, et al. Estimated radiation dose reduction using adaptive statistical iterative reconstruction in coronary CT angiography: the ERASIR study. AJR Am J Roentgenol. 2010;195:655–60.

    Article  PubMed  Google Scholar 

  50. Leipsic J, Labounty TM, Heilbron B, et al. Adaptive statistical iterative reconstruction: assessment of image noise and image quality in coronary CT angiography. AJR Am J Roentgenol. 2010;195:649–54.

    Article  PubMed  Google Scholar 

  51. Tomanek RJ. Formation of the coronary vasculature: a brief review. Cardiovasc Res. 1996;31 Spec No:E46–51.

    PubMed  CAS  Google Scholar 

  52. Mikawa T, Fischman DA. Retroviral analysis of cardiac morphogenesis: discontinuous formation of coronary vessels. Proc Natl Acad Sci U S A. 1992;89:9504–8.

    Article  PubMed  CAS  Google Scholar 

  53. Hutchins GM, Kessler-Hanna A, Moore GW. Development of the coronary arteries in the embryonic human heart. Circulation. 1988;77:1250–7.

    Article  PubMed  CAS  Google Scholar 

  54. Bogers AJ, Gittenberger-de Groot AC, Poelmann RE, Peault BM, Huysmans HA. Development of the origin of the coronary arteries, a matter of ingrowth or outgrowth? Anat Embryol (Berl). 1989;180:437–41.

    Article  CAS  Google Scholar 

  55. Hirakow R. Development of the cardiac blood vessels in staged human embryos. Acta Anat (Basel). 1983;115:220–30.

    Article  CAS  Google Scholar 

  56. Mandarim-de-Lacerda CA. Development of the coronary arteries in staged human embryos (the Paris Embryological Collection revisited). An Acad Bras Cienc. 1990;62:79–84.

    PubMed  CAS  Google Scholar 

  57. Matonoha P, Zechmeister A. Structure of the coronary arteries during the prenatal period in man. Funct Dev Morphol. 1992;2:209–12.

    PubMed  CAS  Google Scholar 

  58. Kurosawa S, Kurosawa H, Becker AE. The coronary arterioles in newborns, infants and children. A morphometric study of normal hearts and hearts with aortic atresia and complete transposition. Int J Cardiol. 1986;10:43–56.

    Article  PubMed  CAS  Google Scholar 

  59. Reinecke P, Hort W. The growth of coronary artery branches in man under physiological conditions. Morphological studies of corrosion casts of the anterior interventricular branch of the coronary artery. Z Kardiol. 1992;81:110–5.

    PubMed  CAS  Google Scholar 

  60. Becker AE, Anderson RH. Coronary artery anomalies. In: Becker AE, Anderson RH, editors. Pathology of congenital heart disease. London: Butterworths; 1981. p. 369–78.

    Google Scholar 

  61. Kennel AJ, Titus JL. The vasculature of the human sinus node. Mayo Clin Proc. 1972;47:556–61.

    PubMed  CAS  Google Scholar 

  62. Bream PR, Souza Jr AS, Elliott LP, Soto B, Curry GC. Right superior septal perforator artery: its angiographic description and clinical significance. AJR Am J Roentgenol. 1979;133:67–73.

    Article  PubMed  CAS  Google Scholar 

  63. Angelini P, Villason S, Chan AVJ, Diez JG. Normal and anomalous coronary arteries in humans. In: Angelini P, editor. Coronary artery anomalies: a comprehensive approach. Philadelphia: Lippincott Williams & Wilkins; 1999. p. 27–150.

    Google Scholar 

  64. Angelini P, de la Cruz MV, Valencia AM, et al. Coronary arteries in transposition of the great arteries. Am J Cardiol. 1994;74:1037–41.

    Article  PubMed  CAS  Google Scholar 

  65. Yurtdas M, Gulen O. Anomalous origin of the right coronary artery from the left anterior descending artery: review of the literature. Cardiol J. 2012;19:122–9.

    Article  PubMed  Google Scholar 

  66. Rigatelli G, Docali G, Rossi P, Bandello A. Validation of a clinical-significance-based classification of coronary artery anomalies. Angiology. 2005;56:25–34.

    Article  PubMed  Google Scholar 

  67. Topaz O, DiSciascio G, Cowley MJ, et al. Absent left main coronary artery: angiographic findings in 83 patients with separate ostia of the left anterior descending and circumflex arteries at the left aortic sinus. Am Heart J. 1991;122:447–52.

    Article  PubMed  CAS  Google Scholar 

  68. Hacioglu Y, Budoff M. Is the left anterior descending artery really absent? – a decisive input from coronary CT angiography. Catheter Cardiovasc Interv. 2010;76:117–20.

    Article  PubMed  Google Scholar 

  69. Dicicco BS, McManus BM, Waller BF, Roberts WC. Separate aortic ostium of the left anterior descending and left circumflex coronary arteries from the left aortic sinus of Valsalva (absent left main coronary artery). Am Heart J. 1982;104:153–4.

    Article  PubMed  CAS  Google Scholar 

  70. Wesselhoeft H, Fawcett JS, Johnson AL. Anomalous origin of the left coronary artery from the pulmonary trunk. Its clinical spectrum, pathology, and pathophysiology, based on a review of 140 cases with seven further cases. Circulation. 1968;38:403–25.

    Article  PubMed  CAS  Google Scholar 

  71. Khanna A, Torigian DA, Ferrari VA, Bross RJ, Rosen MA. Anomalous origin of the left coronary artery from the pulmonary artery in adulthood on CT and MRI. AJR Am J Roentgenol. 2005;185:326–9.

    Article  PubMed  Google Scholar 

  72. Frapier JM, Leclercq F, Bodino M, Chaptal PA. Malignant ventricular arrhythmias revealing anomalous origin of the left coronary artery from the pulmonary artery in two adults. Eur J Cardiothorac Surg. 1999;15:539–41.

    Article  PubMed  CAS  Google Scholar 

  73. Maron BJ. Sudden death in young athletes. N Engl J Med. 2003;349:1064–75.

    Article  PubMed  CAS  Google Scholar 

  74. Basso C, Maron BJ, Corrado D, Thiene G. Clinical profile of congenital coronary artery anomalies with origin from the wrong aortic sinus leading to sudden death in young competitive athletes. J Am Coll Cardiol. 2000;35:1493–501.

    Article  PubMed  CAS  Google Scholar 

  75. Eckart RE, Scoville SL, Campbell CL, et al. Sudden death in young adults: a 25-year review of autopsies in military recruits. Ann Intern Med. 2004;141:829–34.

    Article  PubMed  Google Scholar 

  76. Roberts WC. Major anomalies of coronary arterial origin seen in adulthood. Am Heart J. 1986;111:941–63.

    Article  PubMed  CAS  Google Scholar 

  77. Kragel AH, Roberts WC. Anomalous origin of either the right or left main coronary artery from the aorta with subsequent coursing between aorta and pulmonary trunk: analysis of 32 necropsy cases. Am J Cardiol. 1988;62:771–7.

    Article  PubMed  CAS  Google Scholar 

  78. Taylor AJ, Rogan KM, Virmani R. Sudden cardiac death associated with isolated congenital coronary artery anomalies. J Am Coll Cardiol. 1992;20:640–7.

    Article  PubMed  CAS  Google Scholar 

  79. Warnes CA, Williams RG, Bashore TM, et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines on the Management of Adults With Congenital Heart Disease). Developed in Collaboration With the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008;52:e143–263.

    Article  PubMed  Google Scholar 

  80. Mainwaring RD, Reddy VM, Reinhartz O, et al. Anomalous aortic origin of a coronary artery: medium-term results after surgical repair in 50 patients. Ann Thorac Surg. 2011;92:691–7.

    Article  PubMed  Google Scholar 

  81. Desmet W, Vanhaecke J, Vrolix M, et al. Isolated single coronary artery: a review of 50,000 consecutive coronary angiographies. Eur Heart J. 1992;13:1637–40.

    PubMed  CAS  Google Scholar 

  82. Nishida N, Chiba T, Ohtani M, Yoshioka N. Two adult cases of congenital atresia of the left coronary ostium-comparison of a sudden death case with a long-term survival case. Virchows Arch. 2005;447:742–6.

    Article  PubMed  Google Scholar 

  83. Musiani A, Cernigliaro C, Sansa M, Maselli D, De Gasperis C. Left main coronary artery atresia: literature review and therapeutical considerations. Eur J Cardiothorac Surg. 1997;11:505–14.

    Article  PubMed  CAS  Google Scholar 

  84. Pursnani A, Jacobs JE, Saremi F, et al. Coronary CTA assessment of coronary anomalies. J Cardiovasc Comput Tomogr. 2012;6:48–59.

    Article  PubMed  Google Scholar 

  85. Murthy PA, Mohammed TL, Read K, Gilkeson RC, White CS. MDCT of coronary artery aneurysms. AJR Am J Roentgenol. 2005;184:S19–20.

    Article  PubMed  Google Scholar 

  86. Smith SC, Adams DF, Herman MV, Paulin S. Coronary-to-bronchial anastomoses: an in vivo demonstration by selective coronary arteriography. Radiology. 1972;104:289–90.

    PubMed  CAS  Google Scholar 

  87. Spindola-Franco H, Weisel A, Delman AJ. Pulmonary steal syndrome: an unusual case of coronary-bronchial pulmonary artery communication. Radiology. 1978;126:25–7.

    PubMed  CAS  Google Scholar 

  88. Mahani MG, Agarwal PP. Coronary artery anomalies on CT angiography. Appl Radiol. 2011;40:18–25.

    Google Scholar 

  89. Greenberg MA, Fish BG, Spindola-Franco H. Congenital anomalies of the coronary arteries. Classification and significance. Radiol Clin North Am. 1989;27:1127–46.

    PubMed  CAS  Google Scholar 

  90. Taylor AM, Thorne SA, Rubens MB, et al. Coronary artery imaging in grown up congenital heart disease: complementary role of magnetic resonance and x-ray coronary angiography. Circulation. 2000;101:1670–8.

    Article  PubMed  CAS  Google Scholar 

  91. Shrivastava S, Mohan JC, Mukhopadhyay S, Rajani M, Tandon R. Coronary artery anomalies in tetralogy of Fallot. Cardiovasc Intervent Radiol. 1987;10:215–8.

    Article  PubMed  CAS  Google Scholar 

  92. Jureidini SB, Appleton RS, Nouri S. Detection of coronary artery abnormalities in tetralogy of Fallot by two-dimensional echocardiography. J Am Coll Cardiol. 1989;14:960–7.

    Article  PubMed  CAS  Google Scholar 

  93. McManus BM, Waller BF, Jones M, Epstein SE, Roberts WC. The case for preoperative coronary angiography in patients with tetralogy of Fallot and other complex congenital heart diseases. Am Heart J. 1982;103:451–6.

    Article  PubMed  CAS  Google Scholar 

  94. Berry Jr JM, Einzig S, Krabill KA, Bass JL. Evaluation of coronary artery anatomy in patients with tetralogy of Fallot by two-dimensional echocardiography. Circulation. 1988;78:149–56.

    Article  PubMed  Google Scholar 

  95. Dabizzi RP, Caprioli G, Aiazzi L, et al. Distribution and anomalies of coronary arteries in tetralogy of fallot. Circulation. 1980;61:95–102.

    Article  PubMed  CAS  Google Scholar 

  96. Berry BE, McGoon DC. Total correction for tetralogy of Fallot with anomalous coronary artery. Surgery. 1973;74:894–8.

    PubMed  CAS  Google Scholar 

  97. Humes RA, Driscoll DJ, Danielson GK, Puga FJ. Tetralogy of Fallot with anomalous origin of left anterior descending coronary artery. Surgical options. J Thorac Cardiovasc Surg. 1987;94:784–7.

    PubMed  CAS  Google Scholar 

  98. Heuser RR, Achuff SC, Brinker JA. Inadvertent division of an anomalous left anterior descending coronary artery during complete repair of tetralogy of Fallot: 22-year follow-up. Am Heart J. 1982;103:430–2.

    Article  PubMed  CAS  Google Scholar 

  99. Landolt CC, Anderson JE, Zorn-Chelton S, Guyton RA, Hatcher Jr CR, Williams WH. Importance of coronary artery anomalies in operations for congenital heart disease. Ann Thorac Surg. 1986;41:351–5.

    Article  PubMed  CAS  Google Scholar 

  100. Shea PM, Lutz JF, Vieweg WV, Corcoran FH, Van Praagh R, Hougen TJ. Selective coronary arteriography in congenitally corrected transposition of the great arteries. Am J Cardiol. 1979;44:1201–6.

    Article  PubMed  CAS  Google Scholar 

  101. Van Praagh R. Terminology of congenital heart disease. Glossary and commentary. Circulation. 1977;56:139–43.

    Article  PubMed  Google Scholar 

  102. McKay R, Anderson RH, Smith A. The coronary arteries in hearts with discordant atrioventricular connections. J Thorac Cardiovasc Surg. 1996;111:988–97.

    Article  PubMed  CAS  Google Scholar 

  103. Tuzcu EM, Moodie DS, Chambers JL, Keyser P, Hobbs RE. Congenital heart diseases associated with coronary artery anomalies. Cleve Clin J Med. 1990;57:147–52.

    Article  PubMed  CAS  Google Scholar 

  104. Ismat FA, Baldwin HS, Karl TR, Weinberg PM. Coronary anatomy in congenitally corrected transposition of the great arteries. Int J Cardiol. 2002;86:207–16.

    Article  PubMed  Google Scholar 

  105. Rowlatt UF. Coronary artery distribution in complete transposition. JAMA. 1962;179:269–78.

    Article  PubMed  CAS  Google Scholar 

  106. Pasquini L, Sanders SP, Parness IA, et al. Coronary echocardiography in 406 patients with d-loop transposition of the great arteries. J Am Coll Cardiol. 1994;24:763–8.

    Article  PubMed  CAS  Google Scholar 

  107. Suzuki T. Modification of the arterial switch operation for transposition of the great arteries with complex coronary artery patterns. Gen Thorac Cardiovasc Surg. 2009;57:281–92.

    Article  PubMed  Google Scholar 

  108. Planche C, Bruniaux J, Lacour-Gayet F, et al. Switch operation for transposition of the great arteries in neonates. A study of 120 patients. J Thorac Cardiovasc Surg. 1988;96:354–63.

    PubMed  CAS  Google Scholar 

  109. Qamar ZA, Goldberg CS, Devaney EJ, Bove EL, Ohye RG. Current risk factors and outcomes for the arterial switch operation. Ann Thorac Surg. 2007;84:871–8; discussion 878–9.

    Article  PubMed  Google Scholar 

  110. Quaegebeur JM, Rohmer J, Ottenkamp J, et al. The arterial switch operation. An eight-year experience. J Thorac Cardiovasc Surg. 1986;92:361–84.

    PubMed  CAS  Google Scholar 

  111. Dibardino DJ, Allison AE, Vaughn WK, McKenzie ED, Fraser Jr CD. Current expectations for newborns undergoing the arterial switch operation. Ann Surg. 2004;239:588–96; discussion 596–8.

    Article  PubMed  Google Scholar 

  112. Fedak PW, Verma S, David TE, Leask RL, Weisel RD, Butany J. Clinical and pathophysiological implications of a bicuspid aortic valve. Circulation. 2002;106:900–4.

    Article  PubMed  Google Scholar 

  113. Tajouri TH, Kumar G, Edwards WD, Phillips S, Klarich KW. Coronary artery anomalies in patients with bicuspid aortic valve disease. In: 16th world congress on Heart Disease Annual Scientific Sessions 2011, Vancouver, 2011.

    Google Scholar 

  114. Barriales-Villa R, Penas-Lado M, Moris C. Bicuspid aortic valve and coronary anomalies. Circulation. 2003;107:e105; author reply e105.

    Article  PubMed  Google Scholar 

  115. Topaz O, DeMarchena EJ, Perin E, Sommer LS, Mallon SM, Chahine RA. Anomalous coronary arteries: angiographic findings in 80 patients. Int J Cardiol. 1992;34:129–38.

    Article  PubMed  CAS  Google Scholar 

  116. Morimoto K, Taniguchi I, Miyasaka S, Marumoto A. Bicuspid aortic valve stenosis with single coronary artery. Ann Thorac Cardiovasc Surg. 2005;11:267–9.

    PubMed  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge Martha Helmers for her hard work with the preparation of the images and figures for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monvadi B. Srichai MD, FAHA, FACC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Srichai, M.B., Mason, D. (2014). Coronary Artery Anomalies. In: Saremi, F. (eds) Cardiac CT and MR for Adult Congenital Heart Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8875-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8875-0_27

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8874-3

  • Online ISBN: 978-1-4614-8875-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics