Skip to main content

Computational Approaches for Human Disease Gene Prediction and Ranking

  • Chapter
  • First Online:
Systems Analysis of Human Multigene Disorders

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 799))

Abstract

While candidate gene association studies continue to be the most practical and frequently employed approach in disease gene investigation for complex disorders, selecting suitable genes to test is a challenge. There are several computational approaches available for selecting and prioritizing disease candidate genes. A majority of these tools are based on guilt-by-association principle where novel disease candidate genes are identified and prioritized based on either functional or topological similarity to known disease genes. In this chapter we review the prioritization criteria and the algorithms along with some use cases that demonstrate how these tools can be used for identifying and ranking human disease candidate genes.

Cheng Zhu and Chao Wu contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adie EA, Adams RR, Evans KL, Porteous DJ, Pickard BS (2005) Speeding disease gene discovery by sequence based candidate prioritization. BMC Bioinformatics 6:55

    Article  PubMed  Google Scholar 

  2. Adie EA, Adams RR, Evans KL, Porteous DJ, Pickard BS (2006) SUSPECTS: enabling fast and effective prioritization of positional candidates. Bioinformatics 22(6):773–774

    Article  PubMed  CAS  Google Scholar 

  3. Aerts S, Lambrechts D, Maity S, Van Loo P, Coessens B, De Smet F, Tranchevent LC, De Moor B, Marynen P, Hassan B, Carmeliet P, Moreau Y (2006) Gene prioritization through genomic data fusion. Nat Biotechnol 24(5):537–544

    Article  PubMed  CAS  Google Scholar 

  4. Becker KG, Barnes KC, Bright TJ, Wang SA (2004) The genetic association database. Nat Genet 36(5):431–432. doi:10.1038/ng0504-431, ng0504-431 [pii]

    Article  PubMed  CAS  Google Scholar 

  5. Benitez BA, Alvarado D, Cai Y, Mayo K, Chakraverty S, Norton J, Morris JC, Sands MS, Goate A, Cruchaga C (2011) Exome-sequencing confirms DNAJC5 mutations as cause of adult neuronal ceroid-lipofuscinosis. PLoS One 6(11):e26741. doi:10.1371/journal.pone.0026741, PONE-D-11-16499 [pii]

    Article  PubMed  CAS  Google Scholar 

  6. Beurskens LW, Tibboel D, Lindemans J, Duvekot JJ, Cohen-Overbeek TE, Veenma DC, de Klein A, Greer JJ, Steegers-Theunissen RP (2010) Retinol status of newborn infants is associated with congenital diaphragmatic hernia. Pediatrics 126(4):712–720. doi:10.1542/peds.2010-0521, peds.2010-0521 [pii]

    Article  PubMed  Google Scholar 

  7. Bornigen D, Tranchevent LC, Bonachela-Capdevila F, Devriendt K, De Moor B, De Causmaecker P, Moreau Y (2012) An unbiased evaluation of gene prioritization tools. Bioinformatics 28(23):3081–3088. doi:10.1093/bioinformatics/bts581, bts581 [pii]

    Article  PubMed  Google Scholar 

  8. Chen J, Aronow BJ, Jegga AG (2009) Disease candidate gene identification and prioritization using protein interaction networks. BMC Bioinformatics 10:73. doi:1471-2105-10-73, [pii] 10.1186/1471-2105-10-73

    Article  PubMed  Google Scholar 

  9. Chen J, Bardes EE, Aronow BJ, Jegga AG (2009) ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37(Web Server issue):W305–W311. doi:gkp427, [pii] 10.1093/nar/gkp427

    Article  PubMed  CAS  Google Scholar 

  10. Chen J, Xu H, Aronow BJ, Jegga AG (2007) Improved human disease candidate gene prioritization using mouse phenotype. BMC Bioinformatics 8(1):392

    Article  PubMed  Google Scholar 

  11. Chen JY, Shen C, Sivachenko AY (2006) Mining Alzheimer disease relevant proteins from integrated protein interactome data. Pac Symp Biocomput 367–378

    Google Scholar 

  12. Chen X, Yan GY, Liao XP (2010) A novel candidate disease genes prioritization method based on module partition and rank fusion. OMICS 14(4):337–356. doi:10.1089/omi.2009.0143

    Article  PubMed  Google Scholar 

  13. Davis AP, Murphy CG, Saraceni-Richards CA, Rosenstein MC, Wiegers TC, Mattingly CJ (2009) Comparative Toxicogenomics Database: a knowledgebase and discovery tool for chemical-gene-disease networks. Nucleic Acids Res 37(Database issue):D786–D792. doi:gkn580, [pii] 10.1093/nar/gkn580

    Article  PubMed  CAS  Google Scholar 

  14. Erlich Y, Edvardson S, Hodges E, Zenvirt S, Thekkat P, Shaag A, Dor T, Hannon GJ, Elpeleg O (2011) Exome sequencing and disease-network analysis of a single family implicate a mutation in KIF1A in hereditary spastic paraparesis. Genome Res 21(5):658–664. doi:gr.117143.110, [pii] 10.1101/gr.117143.110

    Article  PubMed  CAS  Google Scholar 

  15. Franke L, Bakel H, Fokkens L, de Jong ED, Egmont-Petersen M, Wijmenga C (2006) Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am J Hum Genet 78(6):1011–1025

    Article  PubMed  CAS  Google Scholar 

  16. Freudenberg J, Propping P (2002) A similarity-based method for genome-wide prediction of disease-relevant human genes. Bioinformatics 18(Suppl 2):S110–S115

    Article  PubMed  Google Scholar 

  17. George RA, Liu JY, Feng LL, Bryson-Richardson RJ, Fatkin D, Wouters MA (2006) Analysis of protein sequence and interaction data for candidate disease gene prediction. Nucleic Acids Res 34(19):e130

    Article  PubMed  Google Scholar 

  18. Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL, Ooi CE, Godwin B, Vitols E, Vijayadamodar G, Pochart P, Machineni H, Welsh M, Kong Y, Zerhusen B, Malcolm R, Varrone Z, Collis A, Minto M, Burgess S, McDaniel L, Stimpson E, Spriggs F, Williams J, Neurath K, Ioime N, Agee M, Voss E, Furtak K, Renzulli R, Aanensen N, Carrolla S, Bickelhaupt E, Lazovatsky Y, DaSilva A, Zhong J, Stanyon CA, Finley RL Jr, White KP, Braverman M, Jarvie T, Gold S, Leach M, Knight J, Shimkets RA, McKenna MP, Chant J, Rothberg JM (2003) A protein interaction map of Drosophila melanogaster. Science (New York, NY) 302(5651):1727–1736. doi:10.1126/science.1090289, 1090289 [pii]

    Article  CAS  Google Scholar 

  19. Goehler H, Lalowski M, Stelzl U, Waelter S, Stroedicke M, Worm U, Droege A, Lindenberg KS, Knoblich M, Haenig C, Herbst M, Suopanki J, Scherzinger E, Abraham C, Bauer B, Hasenbank R, Fritzsche A, Ludewig AH, Bussow K, Coleman SH, Gutekunst CA, Landwehrmeyer BG, Lehrach H, Wanker EE (2004) A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington's disease. Mol Cell 15(6):853–865. doi:10.1016/j.molcel.2004.09.016, S1097276504005453 [pii]

    Article  PubMed  CAS  Google Scholar 

  20. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL (2007) The human disease network. Proc Natl Acad Sci U S A 104(21):8685–8690. doi:0701361104, [pii] 10.1073/pnas.0701361104

    Article  PubMed  CAS  Google Scholar 

  21. Hamosh A, Scott A, Amberger J, Bocchini C, McKusick V (2005) Online Mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 33:D514–D517

    Article  PubMed  CAS  Google Scholar 

  22. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106(23):9362–9367. doi:0903103106, [pii]10.1073/pnas.0903103106

    Article  PubMed  CAS  Google Scholar 

  23. Hristovski D, Peterlin B, Mitchell JA, Humphrey SM (2005) Using literature-based discovery to identify disease candidate genes. Int J Med Inform 74(2–4):289–298

    Article  PubMed  Google Scholar 

  24. Hsu C, Huang Y, Hsu C, Yang U (2011) Prioritizing disease candidate genes by a gene interconnectedness-based approach. BMC Genomics 12(3):S25

    Article  PubMed  CAS  Google Scholar 

  25. Huynen MA, Snel B, van Noort V (2004) Comparative genomics for reliable protein-function prediction from genomic data. Trends Genet 20(8):340–344

    Article  PubMed  CAS  Google Scholar 

  26. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A 98(8):4569–4574. doi:10.1073/pnas.061034498, 061034498 [pii]

    Article  PubMed  CAS  Google Scholar 

  27. Jimenez-Sanchez G, Childs B, Valle D (2001) Human disease genes. Nature 409(6822): 853–855

    Article  PubMed  CAS  Google Scholar 

  28. Junker BH, Koschutzki D, Schreiber F (2006) Exploration of biological network centralities with CentiBiN. BMC Bioinformatics 7:219

    Article  PubMed  Google Scholar 

  29. Kaimal V, Sardana D, Bardes EE, Gudivada RC, Chen J, Jegga AG (2011) Integrative systems biology approaches to identify and prioritize disease and drug candidate genes. Methods Mol Biol 700:241–259. doi:10.1007/978-1-61737-954-3_16

    PubMed  CAS  Google Scholar 

  30. Kann MG (2007) Protein interactions and disease: computational approaches to uncover the etiology of diseases. Brief Bioinform 8(5):333–346

    Article  PubMed  CAS  Google Scholar 

  31. Kim YK, Wassef L, Hamberger L, Piantedosi R, Palczewski K, Blaner WS, Quadro L (2008) Retinyl ester formation by lecithin: retinol acyltransferase is a key regulator of retinoid homeostasis in mouse embryogenesis. J Biol Chem 283(9):5611–5621. doi:M708885200, [pii] 10.1074/jbc.M708885200

    Article  PubMed  CAS  Google Scholar 

  32. King MC, Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science (New York, NY) 188(4184):107–116

    Article  CAS  Google Scholar 

  33. Kleinberg J (1999) Authoritative sources in a hyperlinked environment. J ACM 46(5):604–632

    Article  Google Scholar 

  34. Kohler S, Bauer S, Horn D, Robinson PN (2008) Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet 82(4):949–958. doi:S0002-9297(08)00172-9, [pii] 10.1016/j.ajhg.2008.02.013

    Article  PubMed  Google Scholar 

  35. Korstanje R, Paigen B (2002) From QTL to gene: the harvest begins. Nat Genet 31(3):235–236

    Article  PubMed  CAS  Google Scholar 

  36. Lage K, Karlberg EO, Storling ZM, Olason PI, Pedersen AG, Rigina O, Hinsby AM, Tumer Z, Pociot F, Tommerup N et al (2007) A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat Biotechnol 25(3):309–316

    Article  PubMed  CAS  Google Scholar 

  37. Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, Vidalain PO, Han JD, Chesneau A, Hao T, Goldberg DS, Li N, Martinez M, Rual JF, Lamesch P, Xu L, Tewari M, Wong SL, Zhang LV, Berriz GF, Jacotot L, Vaglio P, Reboul J, Hirozane-Kishikawa T, Li Q, Gabel HW, Elewa A, Baumgartner B, Rose DJ, Yu H, Bosak S, Sequerra R, Fraser A, Mango SE, Saxton WM, Strome S, Van Den Heuvel S, Piano F, Vandenhaute J, Sardet C, Gerstein M, Doucette-Stamm L, Gunsalus KC, Harper JW, Cusick ME, Roth FP, Hill DE, Vidal M (2004) A map of the interactome network of the metazoan C. elegans. Science (New York, NY) 303(5657):540–543. doi:10.1126/science.1091403, 1091403 [pii]

    Article  CAS  Google Scholar 

  38. Linghu B, Snitkin ES, Hu Z, Xia Y, Delisi C (2009) Genome-wide prioritization of disease genes and identification of disease-disease associations from an integrated human functional linkage network. Genome Biol 10(9):R91. doi:10.1186/gb-2009-10-9-r91, gb-2009-10-9-r91 [pii]

    Article  PubMed  Google Scholar 

  39. Lopez-Bigas N, Ouzounis CA (2004) Genome-wide identification of genes likely to be involved in human genetic disease. Nucleic Acids Res 32(10):3108–3114

    Article  PubMed  CAS  Google Scholar 

  40. Mackay TF (2001) Quantitative trait loci in Drosophila. Nat Rev 2(1):11–20

    CAS  Google Scholar 

  41. Masseroli M, Galati O, Pinciroli F (2005) GFINDer: genetic disease and phenotype location statistical analysis and mining of dynamically annotated gene lists. Nucleic Acids Res 33(Web Server issue):W717–W723

    Article  PubMed  CAS  Google Scholar 

  42. Masseroli M, Martucci D, Pinciroli F (2004) GFINDer: Genome Function INtegrated Discoverer through dynamic annotation, statistical analysis, and mining. Nucleic Acids Res 32(Web Server issue):W293–W300

    Article  PubMed  CAS  Google Scholar 

  43. Moreau Y, Tranchevent LC (2012) Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nat Rev 13(8):523–536. doi:10.1038/nrg3253, nrg3253 [pii]

    Article  CAS  Google Scholar 

  44. Navlakha S, Kingsford C (2010) The power of protein interaction networks for associating genes with diseases. Bioinformatics 26(8):1057–1063. doi:10.1093/bioinformatics/btq076, btq076 [pii]

    Article  PubMed  CAS  Google Scholar 

  45. Ortutay C, Vihinen M (2009) Identification of candidate disease genes by integrating gene ontologies and protein-interaction networks: case study of primary immunodeficiencies. Nucleic Acids Res 37(2):622–628. doi:gkn982, [pii]10.1093/nar/gkn982

    Article  PubMed  CAS  Google Scholar 

  46. Oti M, Ballouz S, Wouters MA (2011) Web tools for the prioritization of candidate disease genes. Methods Mol Biol 760:189–206. doi:10.1007/978-1-61779-176-5_12

    PubMed  CAS  Google Scholar 

  47. Oti M, Snel B, Huynen MA, Brunner HG (2006) Predicting disease genes using protein-protein interactions. J Med Genet 43(8):691–698

    Article  PubMed  CAS  Google Scholar 

  48. Perez-Iratxeta C, Bork P, Andrade MA (2002) Association of genes to genetically inherited diseases using data mining. Nat Genet 31(3):316–319

    PubMed  CAS  Google Scholar 

  49. Perez-Iratxeta C, Wjst M, Bork P, Andrade MA (2005) G2D: a tool for mining genes associated with disease. BMC Genet 6:45

    Article  PubMed  Google Scholar 

  50. Piro RM, Di Cunto F (2012) Computational approaches to disease-gene prediction: rationale, classification and successes. FEBS J 279(5):678–696. doi:10.1111/j.1742-4658.2012.08471.x

    Article  PubMed  CAS  Google Scholar 

  51. Popescu M, Keller JM, Mitchell JA (2006) Fuzzy measures on the gene ontology for gene product similarity. IEEE/ACM Trans Comput Biol Bioinform 3(3):263–274

    Article  PubMed  CAS  Google Scholar 

  52. Rossi S, Masotti D, Nardini C, Bonora E, Romeo G, Macii E, Benini L, Volinia S (2006) TOM: a web-based integrated approach for identification of candidate disease genes. Nucleic Acids Res 34(Web Server issue):W285–W292

    Article  PubMed  CAS  Google Scholar 

  53. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature 437(7062):1173–1178. doi:nature04209, 10.1038/nature04209

    Article  PubMed  CAS  Google Scholar 

  54. Sam L, Liu Y, Li J, Friedman C, Lussier YA (2007) Discovery of protein interaction networks shared by diseases. Pac Symp Biocomput 76–87

    Google Scholar 

  55. Smith NG, Eyre-Walker A (2003) Human disease genes: patterns and predictions. Gene 318:169–175

    Article  PubMed  CAS  Google Scholar 

  56. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksoz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122(6):957–968. doi:S0092-8674(05)00866-4, 10.1016/j.cell.2005.08.029

    Article  PubMed  CAS  Google Scholar 

  57. Sun PG, Gao L, Han S (2010) Prediction of human disease-related gene clusters by clustering analysis. Int J Biol Sci 7(1):61–73

    Google Scholar 

  58. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, von Mering C (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39(Database issue):D561–D568. doi:10.1093/nar/gkq973, gkq973 [pii]

    Article  PubMed  CAS  Google Scholar 

  59. Thornblad TA, Elliott KS, Jowett J, Visscher PM (2007) Prioritization of positional candidate genes using multiple web-based software tools. Twin Res Hum Genet 10(6):861–870

    Article  PubMed  Google Scholar 

  60. Tiffin N (2011) Conceptual thinking for in silico prioritization of candidate disease genes. Methods Mol Biol 760:175–187. doi:10.1007/978-1-61779-176-5_11

    PubMed  Google Scholar 

  61. Tiffin N, Adie E, Turner F, Brunner HG, van Driel MA, Oti M, Lopez-Bigas N, Ouzounis C, Perez-Iratxeta C, Andrade-Navarro MA, Adeyemo A, Patti ME, Semple CA, Hide W (2006) Computational disease gene identification: a concert of methods prioritizes type 2 diabetes and obesity candidate genes. Nucleic Acids Res 34(10):3067–3081

    Article  PubMed  CAS  Google Scholar 

  62. Tiffin N, Kelso JF, Powell AR, Pan H, Bajic VB, Hide WA (2005) Integration of text- and data-mining using ontologies successfully selects disease gene candidates. Nucleic Acids Res 33(5):1544–1552

    Article  PubMed  CAS  Google Scholar 

  63. Tranchevent LC, Barriot R, Yu S, Van Vooren S, Van Loo P, Coessens B, De Moor B, Aerts S, Moreau Y (2008) ENDEAVOUR update: a web resource for gene prioritization in multiple species. Nucleic Acids Res 36(Web Server issue):W377–W384

    Article  PubMed  CAS  Google Scholar 

  64. Tranchevent LC, Capdevila FB, Nitsch D, De Moor B, De Causmaecker P, Moreau Y (2011) A guide to web tools to prioritize candidate genes. Brief Bioinform 12(1):22–32. doi:10.1093/bib/bbq007, bbq007 [pii]

    Article  PubMed  CAS  Google Scholar 

  65. Turner FS, Clutterbuck DR, Semple CA (2003) POCUS: mining genomic sequence annotation to predict disease genes. Genome Biol 4(11):R75

    Article  PubMed  Google Scholar 

  66. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403(6770):623–627. doi:10.1038/35001009

    Article  PubMed  CAS  Google Scholar 

  67. van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JA (2006) A text-mining analysis of the human phenome. Eur J Hum Genet 14(5):535–542

    Article  PubMed  Google Scholar 

  68. van Driel MA, Cuelenaere K, Kemmeren PP, Leunissen JA, Brunner HG (2003) A new web-based data mining tool for the identification of candidate genes for human genetic disorders. Eur J Hum Genet 11(1):57–63

    Article  PubMed  Google Scholar 

  69. van Driel MA, Cuelenaere K, Kemmeren PP, Leunissen JA, Brunner HG, Vriend G (2005) GeneSeeker: extraction and integration of human disease-related information from web-based genetic databases. Nucleic Acids Res 33(Web Server issue):W758–W761

    Article  PubMed  Google Scholar 

  70. Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R (2010) Associating genes and protein complexes with disease via network propagation. PLoS Comput Biol 6(1):e1000641. doi:10.1371/journal.pcbi.1000641

    Article  PubMed  Google Scholar 

  71. Wat MJ, Veenma D, Hogue J, Holder AM, Yu Z, Wat JJ, Hanchard N, Shchelochkov OA, Fernandes CJ, Johnson A, Lally KP, Slavotinek A, Danhaive O, Schaible T, Cheung SW, Rauen KA, Tonk VS, Tibboel D, de Klein A, Scott DA (2011) Genomic alterations that contribute to the development of isolated and non-isolated congenital diaphragmatic hernia. J Med Genet 48(5):299–307. doi:10.1136/jmg.2011.089680, 48/5/299 [pii]

    Article  PubMed  Google Scholar 

  72. White S, Smyth P (2003) Algorithms for estimating relative importance in networks. Paper presented at the KDD '03: proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining

    Google Scholar 

  73. Wu X, Jiang R, Zhang MQ, Li S (2008) Network-based global inference of human disease genes. Mol Syst Biol 4:189. doi:msb200827, [pii] 10.1038/msb.2008.27

    Article  PubMed  Google Scholar 

  74. Xu J, Li Y (2006) Discovering disease-genes by topological features in human protein-protein interaction network. Bioinformatics 22(22):2800–2805. doi:btl467, [pii] 10.1093/bioinformatics/btl467

    Article  PubMed  CAS  Google Scholar 

  75. Zhu C, Kushwaha A, Berman K, Jegga AG (2012) A vertex similarity-based framework to discover and rank orphan disease-related genes. BMC Syst Biol 6(Suppl 3):S8. doi:10.1186/1752-0509-6-S3-S8, 1752-0509-6-S3-S8 [pii]

    Article  PubMed  Google Scholar 

  76. Zhu M, Zhao S (2007) Candidate gene identification approach: progress and challenges. Int J Biol Sci 3(7):420–427

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil G. Jegga D.V.M., M.S. .

Editor information

Editors and Affiliations

4.1 Electronic Supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhu, C., Wu, C., Aronow, B.J., Jegga, A.G. (2014). Computational Approaches for Human Disease Gene Prediction and Ranking. In: Maltsev, N., Rzhetsky, A., Gilliam, T. (eds) Systems Analysis of Human Multigene Disorders. Advances in Experimental Medicine and Biology, vol 799. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8778-4_4

Download citation

Publish with us

Policies and ethics