Skip to main content

Properties and Functions of Histone Variants

  • Chapter
  • First Online:
Fundamentals of Chromatin

Abstract

Variants exist for the three core histones H3, H2A, and H2B, and for the linker histone H1, but not for the core histone H4 (Franklin and Zweidler 1977) (Table 10.1). They can differ by only a few amino acids or by the presence of additional large domains, as illustrated for the mammalian core histone variants (Fig. 10.1). Their incorporation introduces variation to chromatin composition, making chromatin a versatile template that can adapt and provide a means to regulate various DNA-based processes such as replication, transcription, recombination, and repair. In this chapter, we focus mainly on the mammalian variants, and for an evolutionary view see Talbert et al. (2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abascal F, Corpet A, Gurard-Levin Z-A, Juan D, Ochsenbein F, Rico D, Valencia A, Almouzni G (2013) Subfunctionalization via adaptive evolution influenced by genomic context: the case of histone chaperones ASF1a and ASF1b. Mol Biol Evol. doi:10.1093/molbev/mst086

    PubMed  Google Scholar 

  • Abbott DW, Laszczak M, Lewis JD et al (2004) Structural characterization of macroH2A containing chromatin. Biochemistry 43:1352–1359. doi:10.1021/bi035859i

    PubMed  CAS  Google Scholar 

  • Abbott DW, Chadwick BP, Thambirajah AA, Ausio J (2005) Beyond the Xi: macroH2A chromatin distribution and post-translational modification in an avian system. J Biol Chem 280:16437–16445. doi:10.1074/jbc.M500170200

    PubMed  CAS  Google Scholar 

  • Adam M, Robert F, Larochelle M, Gaudreau L (2001) H2A.Z is required for global chromatin integrity and for recruitment of RNA polymerase II under specific conditions. Mol Cell Biol 21:6270–6279

    PubMed  CAS  Google Scholar 

  • Ahmad K, Henikoff S (2002) The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9:1191–1200

    PubMed  CAS  Google Scholar 

  • Alabert C, Groth A (2012) Chromatin replication and epigenome maintenance. Nat Rev Mol Cell Biol 13:153–167. doi:10.1038/nrm3288

    PubMed  CAS  Google Scholar 

  • Allis CD, Richman R, Gorovsky MA et al (1986) hv1 is an evolutionarily conserved H2A variant that is preferentially associated with active genes. J Biol Chem 261:1941–1948

    PubMed  CAS  Google Scholar 

  • Allshire RC, Karpen GH (2008) Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet 9:923–937. doi:10.1038/nrg2466

    PubMed  CAS  Google Scholar 

  • Alvarez F, Muñoz F, Schilcher P et al (2011) Sequential establishment of marks on soluble histones H3 and H4. J Biol Chem 286:17714–17721. doi:10.1074/jbc.M111.223453

    PubMed  CAS  Google Scholar 

  • Amor DJ, Choo KHA (2002) Neocentromeres: role in human disease, evolution, and centromere study. Am J Hum Genet 71:695–714. doi:10.1086/342730

    PubMed  Google Scholar 

  • Andersen JS, Lam YW, Leung AKL, Ong S-E, Lyon CE, Lamond AI, Mann M (2005) Nucleolar proteome dynamics. Nature 433:77–83. doi:10.1038/nature03207

    PubMed  CAS  Google Scholar 

  • Angelov D, Molla A, Perche P-Y et al (2003) The histone variant macroH2A interferes with transcription factor binding and SWI/SNF nucleosome remodeling. Mol Cell 11:1033–1041

    PubMed  CAS  Google Scholar 

  • Angelov D, Verdel A, An W et al (2004) SWI/SNF remodeling and p300-dependent transcription of histone variant H2ABbd nucleosomal arrays. EMBO J 23:3815–3824. doi:10.1038/sj.emboj.7600400

    PubMed  CAS  Google Scholar 

  • Angelov D, Bondarenko VA, Almagro S, Menoni H, Mongelard F, Hans F, Mietton F, Studitsky VM, Hamiche A, Dimitrov S et al (2006) Nucleolin is a histone chaperone with FACT-like activity and assists remodeling of nucleosomes. EMBO J 25:1669–1679. doi:10.1038/sj.emboj.7601046

    PubMed  CAS  Google Scholar 

  • Ask K, Jasencakova Z, Menard P et al (2012) Codanin-1, mutated in the anaemic disease CDAI, regulates Asf1 function in S-phase histone supply. EMBO J 31:2013–2023. doi:10.1038/emboj.2012.55

    PubMed  CAS  Google Scholar 

  • Ausio J (2006) Histone variants—the structure behind the function. Brief Funct Genomic Proteomic 5:228–243. doi:10.1093/bfgp/ell020

    PubMed  CAS  Google Scholar 

  • Babiarz JE, Halley JE, Rine J (2006) Telomeric heterochromatin boundaries require NuA4-dependent acetylation of histone variant H2A.Z in Saccharomyces cerevisiae. Genes Dev 20: 700–710. doi:10.1101/gad.1386306

    PubMed  CAS  Google Scholar 

  • Balaji S, Iyer LM, Aravind L (2009) HPC2 and ubinuclein define a novel family of histone chaperones conserved throughout eukaryotes. Mol Biosyst 5:269. doi:10.1039/b816424j

    PubMed  CAS  Google Scholar 

  • Banaszynski LA, Allis CD, Lewis PW (2010) Histone variants in metazoan development. Dev Cell 19:662–674. doi:10.1016/j.devcel.2010.10.014

    PubMed  CAS  Google Scholar 

  • Banumathy G, Somaiah N, Zhang R et al (2009) Human UBN1 is an ortholog of yeast Hpc2p and has an essential role in the HIRA/ASF1a chromatin-remodeling pathway in senescent cells. Mol Cell Biol 29:758–770. doi:10.1128/MCB.01047-08

    PubMed  CAS  Google Scholar 

  • Bao Y, Konesky K, Park Y-J et al (2004) Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA. EMBO J 23:3314–3324. doi:10.1038/sj.emboj.7600316

    PubMed  CAS  Google Scholar 

  • Barnhart MC, Kuich PHJL, Stellfox ME et al (2011) HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. J Cell Biol 194:229–243. doi:10.1083/jcb.201012017

    PubMed  CAS  Google Scholar 

  • Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837. doi:10.1016/j.cell.2007.05.009

    PubMed  CAS  Google Scholar 

  • Bergmann JH, Rodríguez MG, Martins NMC et al (2011) Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J 30:328–340. doi:10.1038/emboj.2010.329

    PubMed  CAS  Google Scholar 

  • Bernad R, Sanchez P, Rivera T et al (2011) Xenopus HJURP and condensin II are required for CENP-A assembly. J Cell Biol 192:569–582. doi:10.1083/jcb.201005136

    PubMed  CAS  Google Scholar 

  • Bernstein E, Muratore-Schroeder TL, Diaz RL et al (2008) A phosphorylated subpopulation of the histone variant macroH2A1 is excluded from the inactive X chromosome and enriched during mitosis. Proc Natl Acad Sci USA 105:1533–1538. doi:10.1073/pnas.0711632105

    PubMed  CAS  Google Scholar 

  • Billon P, Côté J (2012) Precise deposition of histone H2A.Z in chromatin for genome expression and maintenance. Biochim Biophys Acta 1819:290–302. doi:10.1016/j.bbagrm.2011.10.004

    PubMed  CAS  Google Scholar 

  • Black BE, Cleveland DW (2011) Epigenetic centromere propagation and the nature of CENP-a nucleosomes. Cell 144:471–479. doi:10.1016/j.cell.2011.02.002

    PubMed  CAS  Google Scholar 

  • Black BE, Foltz DR, Chakravarthy S et al (2004) Structural determinants for generating centromeric chromatin. Nature 430:578–582. doi:10.1038/nature02766

    PubMed  CAS  Google Scholar 

  • Black BE, Jansen LET, Maddox PS et al (2007) Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain. Mol Cell 25:309–322. doi:10.1016/j.molcel.2006.12.018

    PubMed  CAS  Google Scholar 

  • Bönisch C, Hake SB (2012) Histone H2A variants in nucleosomes and chromatin: more or less stable? Nucleic Acids Res. doi:10.1093/nar/gks865

    Google Scholar 

  • Bönisch C, Schneider K, Pünzeler S et al (2012) H2A.Z.2.2 is an alternatively spliced histone H2A.Z variant that causes severe nucleosome destabilization. Nucleic Acids Res 40(13): 5951–5964. doi:10.1093/nar/gks267

    PubMed  Google Scholar 

  • Bonnefoy E, Orsi GA, Couble P, Loppin B (2007) The essential role of Drosophila HIRA for de novo assembly of paternal chromatin at fertilization. PLoS Genet 3:e182. doi:10.1371/journal.pgen.0030182

    Google Scholar 

  • Boulard M, Gautier T, Mbele GO et al (2006) The NH2 tail of the novel histone variant H2BFWT exhibits properties distinct from conventional H2B with respect to the assembly of mitotic chromosomes. Mol Cell Biol 26:1518–1526. doi:10.1128/MCB.26.4.1518-1526.2006

    PubMed  CAS  Google Scholar 

  • Boussouar F, Rousseaux S, Khochbin S (2008) A new insight into male genome reprogramming by histone variants and histone code. Cell Cycle 7:3499–3502

    PubMed  CAS  Google Scholar 

  • Boyarchuk E, Montes de Oca R, Almouzni G (2011) Cell cycle dynamics of histone variants at the centromere, a model for chromosomal landmarks. Curr Opin Cell Biol. doi:10.1016/j.ceb.2011.03.006

    PubMed  Google Scholar 

  • Braunschweig U, Hogan GJ, Pagie L, van Steensel B (2009) Histone H1 binding is inhibited by histone variant H3.3. EMBO J 28(23):3635–3645. doi:10.1038/emboj.2009.301

    PubMed  CAS  Google Scholar 

  • Bruce K, Myers FA, Mantouvalou E et al (2005) The replacement histone H2A.Z in a hyperacetylated form is a feature of active genes in the chicken. Nucleic Acids Res 33:5633–5639. doi:10.1093/nar/gki874

    PubMed  CAS  Google Scholar 

  • Brykczynska U, Hisano M, Erkek S et al (2010) Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol 17:679–687. doi:10.1038/nsmb.1821

    PubMed  CAS  Google Scholar 

  • Buchanan L, Durand-Dubief M, Roguev A et al (2009) The Schizosaccharomyces pombe JmjC-protein, Msc1, prevents H2A.Z localization in centromeric and subtelomeric chromatin domains. PLoS Genet 5:e1000726

    PubMed  Google Scholar 

  • Buchwitz BJ, AHMAD K, Moore LL et al (1999) A histone-H3-like protein in C. elegans. Nature 401:547–548. doi:10.1038/44062

    PubMed  CAS  Google Scholar 

  • Buschbeck M, Uribesalgo I, Wibowo I et al (2009) The histone variant macroH2A is an epigenetic regulator of key developmental genes. Nat Struct Mol Biol 16:1074–1079. doi:10.1038/nsmb.1665

    PubMed  CAS  Google Scholar 

  • Cai Y, Jin J, Florens L, Swanson SK, Kusch T, Li B, Workman JL, Washburn MP, Conaway RC, Conaway JW (2005) The mammalian YL1 protein is a shared subunit of the TRRAP/TIP60 histone acetyltransferase and SRCAP complexes. J Biol Chem 280:13665–13670

    PubMed  CAS  Google Scholar 

  • Camahort R, Li B, Florens L et al (2007) Scm3 is essential to recruit the histone h3 variant cse4 to centromeres and to maintain a functional kinetochore. Mol Cell 26:853–865. doi:10.1016/j.molcel.2007.05.013

    PubMed  CAS  Google Scholar 

  • Campos EI, Reinberg D (2010) New chaps in the histone chaperone arena. Genes Dev 24:1334–1338. doi:10.1101/gad.1946810

    PubMed  CAS  Google Scholar 

  • Carr AM, Dorrington SM, Hindley J et al (1994) Analysis of a histone H2A variant from fission yeast: evidence for a role in chromosome stability. Mol Gen Genet 245:628–635

    PubMed  CAS  Google Scholar 

  • Celeste A, Petersen S, Romanienko PJ et al (2002) Genomic instability in mice lacking histone H2AX. Science 296:922–927. doi:10.1126/science.1069398

    PubMed  CAS  Google Scholar 

  • Chadwick BP, Willard HF (2001) A novel chromatin protein, distantly related to histone H2A, is largely excluded from the inactive X chromosome. J Cell Biol 152:375–384

    PubMed  CAS  Google Scholar 

  • Chambers AL, Ormerod G, Durley SC, Sing TL, Brown GW, Kent NA, Downs JA (2012) The INO80 chromatin remodeling complex prevents polyploidy and maintains normal chromatin structure at centromeres. Genes Dev 26:2590–2603

    PubMed  CAS  Google Scholar 

  • Chang L, Loranger SS, Mizzen C et al (1997) Histones in transit: cytosolic histone complexes and diacetylation of H4 during nucleosome assembly in human cells. Biochemistry 36:469–480. doi:10.1021/bi962069i

    PubMed  CAS  Google Scholar 

  • Chang EY, Ferreira H, Somers J et al (2008) MacroH2A allows ATP-dependent chromatin remodeling by SWI/SNF and ACF complexes but specifically reduces recruitment of SWI/SNF. Biochemistry 47:13726–13732. doi:10.1021/bi8016944

    PubMed  CAS  Google Scholar 

  • Changolkar LN, Pehrson JR (2006) macroH2A1 histone variants are depleted on active genes but concentrated on the inactive X chromosome. Mol Cell Biol 26:4410–4420. doi:10.1128/MCB.02258-05

    PubMed  CAS  Google Scholar 

  • Choi J, Heo K, An W (2009) Cooperative action of TIP48 and TIP49 in H2A.Z exchange catalyzed by acetylation of nucleosomal H2A. Nucleic Acids Res 37:5993–6007

    PubMed  CAS  Google Scholar 

  • Chow C-M, Georgiou A, Szutorisz H et al (2005) Variant histone H3.3 marks promoters of transcriptionally active genes during mammalian cell division. EMBO Rep 6:354–360. doi:10.1038/sj.embor.7400366

    PubMed  CAS  Google Scholar 

  • Churikov D, Siino J, Svetlova M, Zhang K, Gineitis A, Morton Bradbury E, Zalensky A (2004) Novel human testis-specific histone H2B encoded by the interrupted gene on the X chromosome. Genomics 84:745–756

    PubMed  CAS  Google Scholar 

  • Clarkson MJ, Wells JR, Gibson F et al (1999) Regions of variant histone His2AvD required for Drosophila development. Nature 399:694–697. doi:10.1038/21436

    PubMed  CAS  Google Scholar 

  • Cleveland DW, Mao Y, Sullivan KF (2003) Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112:407–421

    PubMed  CAS  Google Scholar 

  • Collins KA, Furuyama S, Biggins S (2004) Proteolysis contributes to the exclusive centromere localization of the yeast Cse4/CENP-A histone H3 variant. Curr Biol 14:1968–1972. doi:10.1016/j.cub.2004.10.024

    PubMed  CAS  Google Scholar 

  • Conaway RC, Conaway JW (2009) The INO80 chromatin remodeling complex in transcription, replication and repair. Trends Biochem Sci 34:71–77. doi:10.1016/j.tibs.2008.10.010

    PubMed  CAS  Google Scholar 

  • Conerly ML, Teves SS, Diolaiti D et al (2010) Changes in H2A.Z occupancy and DNA methylation during B-cell lymphomagenesis. Genome Res 20:1383–1390. doi:10.1101/gr.106542.110

    PubMed  CAS  Google Scholar 

  • Cook AJL, Gurard-Levin ZA, Vassias I, Almouzni G (2011) A specific function for the histone chaperone NASP to fine-tune a reservoir of soluble H3-H4 in the histone supply chain. Mol Cell 44:918–927. doi:10.1016/j.molcel.2011.11.021

    PubMed  CAS  Google Scholar 

  • Corpet A, Almouzni G (2009) Making copies of chromatin: the challenge of nucleosomal organization and epigenetic information. Trends Cell Biol 19:29–41. doi:10.1016/j.tcb.2008.10.002

    PubMed  CAS  Google Scholar 

  • Corpet A, De Koning L, Toedling J et al (2011) Asf1b, the necessary Asf1 isoform for proliferation, is predictive of outcome in breast cancer. EMBO J 30:480–493. doi:10.1038/emboj.2010.335

    PubMed  CAS  Google Scholar 

  • Costanzi C, Pehrson JR (1998) Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 393:599–601. doi:10.1038/31275

    PubMed  CAS  Google Scholar 

  • Couldrey C, Carlton MB, Nolan PM et al (1999) A retroviral gene trap insertion into the histone 3.3A gene causes partial neonatal lethality, stunted growth, neuromuscular deficits and male sub-fertility in transgenic mice. Hum Mol Genet 8:2489–2495

    PubMed  CAS  Google Scholar 

  • Cox SG, Kim H, Garnett AT et al (2012) An essential role of variant histone H3.3 for ectomesenchyme potential of the cranial neural crest. PLoS Genet 8:e1002938

    PubMed  CAS  Google Scholar 

  • Creyghton MP, Markoulaki S, Levine SS et al (2008) H2AZ is enriched at polycomb complex target genes in ES cells and is necessary for lineage commitment. Cell 135:649–661. doi:10.1016/j.cell.2008.09.056

    PubMed  CAS  Google Scholar 

  • Cuadrado A, Corrado N, Perdiguero E, Lafarga V, Muñoz-Canoves P, Nebreda AR (2010) Essential role of p18Hamlet/SRCAP-mediated histone H2A.Z chromatin incorporation in muscle differentiation. EMBO J 29:2014–2025. doi:10.1038/emboj.2010.85

    PubMed  CAS  Google Scholar 

  • Cui B, Liu Y, Gorovsky MA (2006) Deposition and function of histone H3 variants in Tetrahymena thermophila. Mol Cell Biol 26:7719–7730. doi:10.1128/MCB.01139-06

    PubMed  CAS  Google Scholar 

  • Daganzo SM, Erzberger JP, Lam WM et al (2003) Structure and function of the conserved core of histone deposition protein Asf1. Curr Biol 13:2148–2158

    PubMed  CAS  Google Scholar 

  • Dalal Y, Wang H, Lindsay S, Henikoff S (2007) Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells. PLoS Biol 5:e218. doi:10.1371/journal.pbio.0050218

    PubMed  Google Scholar 

  • Daury L, Chailleux C, Bonvallet J, Trouche D (2006) Histone H3.3 deposition at E2F-regulated genes is linked to transcription. EMBO Rep 7:66–71. doi:10.1038/sj.embor.7400561

    PubMed  CAS  Google Scholar 

  • De Koning L, Corpet A, Haber JE, Almouzni G (2007) Histone chaperones: an escort network regulating histone traffic. Nat Struct Mol Biol 14:997–1007. doi:10.1038/nsmb1318

    PubMed  Google Scholar 

  • Deal RB, Topp CN, McKinney EC, Meagher RB (2007) Repression of flowering in Arabidopsis requires activation of FLOWERING LOCUS C expression by the histone variant H2A.Z. Plant Cell 19:74–83

    PubMed  CAS  Google Scholar 

  • Deal RB, Henikoff JG, Henikoff S (2010) Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328:1161–1164. doi:10.1126/science.1186777

    PubMed  CAS  Google Scholar 

  • Déjardin J, Kingston RE (2009) Purification of proteins associated with specific genomic Loci. Cell 136:175–186

    PubMed  Google Scholar 

  • Delbarre E, Jacobsen BM, Reiner AH et al (2010) Chromatin environment of histone variant H3.3 revealed by quantitative imaging and genome-scale chromatin and DNA immunoprecipitation. Mol Biol Cell 21:1872–1884. doi:10.1091/mbc.E09-09-0839

    PubMed  CAS  Google Scholar 

  • Dhillon N, Kamakaka RT (2000) A histone variant, Htz1p, and a Sir1p-like protein, Esc2p, mediate silencing at HMR. Mol Cell 6:769–780

    PubMed  CAS  Google Scholar 

  • Dimitriadis EK, Weber C, Gill RK et al (2010) Tetrameric organization of vertebrate centromeric nucleosomes. Proc Natl Acad Sci USA 107:20317–20322. doi:10.1073/pnas.1009563107

    PubMed  CAS  Google Scholar 

  • Dion MF, Kaplan T, Kim M et al (2007) Dynamics of replication-independent histone turnover in budding yeast. Science 315:1405–1408. doi:10.1126/science.1134053

    PubMed  CAS  Google Scholar 

  • Doyen C-M, An W, Angelov D et al (2006) Mechanism of polymerase II transcription repression by the histone variant macroH2A. Mol Cell Biol 26:1156–1164. doi:10.1128/MCB.26.3.1156-1164.2006

    PubMed  CAS  Google Scholar 

  • Drane P, Ouararhni K, Depaux A et al (2010) The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev 24:1253–1265. doi:10.1101/gad.566910

    PubMed  CAS  Google Scholar 

  • Du Y-C, Gu S, Zhou J et al (2006) The dynamic alterations of H2AX complex during DNA repair detected by a proteomic approach reveal the critical roles of Ca(2+)/calmodulin in the ionizing radiation-induced cell cycle arrest. Mol Cell Proteomics 5:1033–1044. doi:10.1074/mcp.M500327-MCP200

    PubMed  CAS  Google Scholar 

  • Dul BE, Walworth NC (2007) The plant homeodomain fingers of fission yeast Msc1 exhibit E3 ubiquitin ligase activity. J Biol Chem 282:18397–18406

    PubMed  CAS  Google Scholar 

  • Dunleavy EM, Roche D, Tagami H et al (2009) HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell 137:485–497. doi:10.1016/j.cell.2009.02.040

    PubMed  CAS  Google Scholar 

  • Dunleavy EM, Almouzni G, Karpen GH (2011) H3.3 is deposited at centromeres in S phase as a placeholder for newly assembled CENP-A in G(1) phase. Nucleus 2:146–157. doi:10.4161/nucl.2.2.15211

    PubMed  Google Scholar 

  • Earnshaw WC, Migeon BR (1985) Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome. Chromosoma 92:290–296

    PubMed  CAS  Google Scholar 

  • Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91:313–321

    PubMed  CAS  Google Scholar 

  • Earnshaw WC, Ratrie H, Stetten G (1989) Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma 98:1–12

    PubMed  CAS  Google Scholar 

  • Elsässer SJ, Huang H, Lewis PW et al (2012) DAXX envelops an H3.3-H4 dimer for H3.3-specific recognition. Nature 491:460–465. doi:10.1038/nature11608

    Google Scholar 

  • Faast R, Thonglairoam V, Schulz TC et al (2001) Histone variant H2A.Z is required for early mammalian development. Curr Biol 11:1183–1187

    PubMed  CAS  Google Scholar 

  • Fan JY, Gordon F, Luger K et al (2002) The essential histone variant H2A.Z regulates the equilibrium between different chromatin conformational states. Nat Struct Biol 9:172–176. doi:10.1038/nsb767

    PubMed  CAS  Google Scholar 

  • Fan JY, Rangasamy D, Luger K, Tremethick DJ (2004) H2A.Z alters the nucleosome surface to promote HP1α-mediated chromatin fiber folding. Mol Cell 16:655–661. doi:10.1016/j.molcel.2004.10.023

    PubMed  CAS  Google Scholar 

  • Fernandez-Capetillo O, Mahadevaiah SK, Celeste A et al (2003) H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell 4:497–508

    PubMed  CAS  Google Scholar 

  • Foltz DR, Jansen LET, Black BE et al (2006) The human CENP-A centromeric nucleosome-associated complex. Nat Cell Biol 8:458–469. doi:10.1038/ncb1397

    PubMed  CAS  Google Scholar 

  • Foltz DR, Jansen LET, Bailey AO et al (2009) Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP. Cell 137:472–484. doi:10.1016/j.cell.2009.02.039

    PubMed  CAS  Google Scholar 

  • Formosa T (2012) The role of FACT in making and breaking nucleosomes. Biochim Biophys Acta 1819:247–255. doi:10.1016/j.bbagrm.2011.07.009

    PubMed  CAS  Google Scholar 

  • Franklin SG, Zweidler A (1977) Non-allelic variants of histones 2a, 2b and 3 in mammals. Nature 266:273–275

    PubMed  CAS  Google Scholar 

  • Fujita Y, Hayashi T, Kiyomitsu T et al (2007) Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta, and M18BP1. Dev Cell 12:17–30. doi:10.1016/j.devcel.2006.11.002

    PubMed  CAS  Google Scholar 

  • Gaillard PH, Martini EM, Kaufman PD et al (1996) Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor I. Cell 86:887–896

    PubMed  CAS  Google Scholar 

  • Gamble MJ, Kraus WL (2010) Multiple facets of the unique histone variant macroH2A: from genomics to cell biology. Cell Cycle 9:2568–2574. doi:10.4161/cc.9.13.12144

    PubMed  CAS  Google Scholar 

  • Gamble MJ, Frizzell KM, Yang C et al (2010) The histone variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target genes from silencing. Genes Dev 24:21–32. doi:10.1101/gad.1876110

    PubMed  CAS  Google Scholar 

  • Garrick D, Sharpe JA, Arkell R et al (2006) Loss of Atrx affects trophoblast development and the pattern of X-inactivation in extraembryonic tissues. PLoS Genet 2:e58. doi:10.1371/journal.pgen.0020058.st001

    PubMed  Google Scholar 

  • Gatewood JM, Cook GR, Balhorn R et al (1990) Isolation of four core histones from human sperm chromatin representing a minor subset of somatic histones. J Biol Chem 265:20662–20666

    PubMed  CAS  Google Scholar 

  • Gautier T, Abbott DW, Molla A et al (2004) Histone variant H2ABbd confers lower stability to the nucleosome. EMBO Rep 5:715–720. doi:10.1038/sj.embor.7400182

    PubMed  CAS  Google Scholar 

  • Gévry N, Chan HM, Laflamme L et al (2007) p21 transcription is regulated by differential localization of histone H2A.Z. Genes Dev 21:1869–1881. doi:10.1101/gad.1545707

    PubMed  Google Scholar 

  • Gévry N, Hardy S, Jacques P-E, Laflamme L, Svotelis A, Robert F, Gaudreau L (2009) Histone H2A.Z is essential for estrogen receptor signaling. Genes Dev 23:1522–1533. doi:10.1101/gad.1787109

    PubMed  Google Scholar 

  • Gineitis AA, Zalenskaya IA, Yau PM et al (2000) Human sperm telomere-binding complex involves histone H2B and secures telomere membrane attachment. J Cell Biol 151: 1591–1598

    PubMed  CAS  Google Scholar 

  • Goldberg AD, Banaszynski LA, Noh K-M et al (2010) Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140:678–691. doi:10.1016/j.cell.2010.01.003

    PubMed  CAS  Google Scholar 

  • Goldman JA, Garlick JD, Kingston RE (2010) Chromatin remodeling by imitation switch (ISWI) class ATP-dependent remodelers is stimulated by histone variant H2A.Z. J Biol Chem 285:4645–4651. doi:10.1074/jbc.M109.072348

    PubMed  CAS  Google Scholar 

  • Gonzalez-Romero R, Rivera-Casas C, Ausio J et al (2010) Birth-and-death long-term evolution promotes histone H2B variant diversification in the male germinal cell line. Mol Biol Evol 27:1802–1812. doi:10.1093/molbev/msq058

    PubMed  CAS  Google Scholar 

  • Goshima G, Kiyomitsu T, Yoda K, Yanagida M (2003) Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway. J Cell Biol 160:25–39. doi:10.1083/jcb.200210005

    PubMed  CAS  Google Scholar 

  • Govin J, Caron C, Rousseaux S, Khochbin S (2005) Testis-specific histone H3 expression in somatic cells. Trends Biochem Sci 30:357–359. doi:10.1016/j.tibs.2005.05.001

    PubMed  CAS  Google Scholar 

  • Govin J, Escoffier E, Rousseaux S, Kuhn L, Ferro M, Thevenon J, Catena R, Davidson I, Garin J, Khochbin S et al (2007) Pericentric heterochromatin reprogramming by new histone variants during mouse spermiogenesis. J Cell Biol 176:283–294. doi:10.1083/jcb.200604141

    PubMed  CAS  Google Scholar 

  • Green CM, Almouzni G (2003) Local action of the chromatin assembly factor CAF-1 at sites of nucleotide excision repair in vivo. EMBO J 22:5163–5174. doi:10.1093/emboj/cdg478

    PubMed  CAS  Google Scholar 

  • Groth A, Corpet A, Cook AJL et al (2007) Regulation of replication fork progression through histone supply and demand. Science 318:1928–1931. doi:10.1126/science.1148992

    PubMed  CAS  Google Scholar 

  • Günesdogan U, Jäckle H, Herzig A (2010) A genetic system to assess in vivo the functions of histones and histone modifications in higher eukaryotes. EMBO Rep 11:772–776. doi:10.1038/embor.2010.124

    PubMed  Google Scholar 

  • Guse A, Carroll CW, Moree B et al (2011) In vitro centromere and kinetochore assembly on defined chromatin templates. Nature 477:354–358. doi:10.1038/nature10379

    PubMed  CAS  Google Scholar 

  • Hajkova P, Ancelin K, Waldmann T et al (2008) Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature 452:877–881. doi:10.1038/nature06714

    PubMed  CAS  Google Scholar 

  • Hake SB, Garcia BA, Kauer M et al (2005) Serine 31 phosphorylation of histone variant H3.3 is specific to regions bordering centromeres in metaphase chromosomes. Proc Natl Acad Sci USA 102:6344–6349. doi:10.1073/pnas.0502413102

    PubMed  CAS  Google Scholar 

  • Hakmé A, Wong H-K, Dantzer F, Schreiber V (2008) The expanding field of poly(ADP-ribosyl)ation reactions. “Protein Modifications: Beyond the Usual Suspects” review series. EMBO Rep 9:1094–1100. doi:10.1038/embor.2008.191

    PubMed  Google Scholar 

  • Hammoud SS, Nix DA, Zhang H et al (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460:473–478. doi:10.1038/nature08162

    PubMed  CAS  Google Scholar 

  • Hanai K, Furuhashi H, Yamamoto T, Akasaka K, Hirose S (2008) RSF governs silent chromatin formation via histone H2Av replacement. PLoS Genet 4:e1000011

    PubMed  Google Scholar 

  • Handel M (2004) The XY body: a specialized meiotic chromatin domain. Exp Cell Res 296:57–63. doi:10.1016/j.yexcr.2004.03.008

    PubMed  CAS  Google Scholar 

  • Happel N, Doenecke D (2009) Histone H1 and its isoforms: contribution to chromatin structure and function. Gene 431:1–12. doi:10.1016/j.gene.2008.11.003

    PubMed  CAS  Google Scholar 

  • Harada A, Okada S, Konno D et al (2012) Chd2 interacts with H3.3 to determine myogenic cell fate. EMBO J 31(13):2994–3007. doi:10.1038/emboj.2012.136

    PubMed  CAS  Google Scholar 

  • Harata M, Karwan A, Wintersberger U (1994) An essential gene of Saccharomyces cerevisiae coding for an actin-related protein. Proc Natl Acad Sci U S A 91:8258–8262

    PubMed  CAS  Google Scholar 

  • Hardy S, Robert F (2010) Random deposition of histone variants: a cellular mistake or a novel regulatory mechanism? Epigenetics 5:368–372

    PubMed  CAS  Google Scholar 

  • Hardy S, Jacques P-E, Gévry N et al (2009) The euchromatic and heterochromatic landscapes are shaped by antagonizing effects of transcription on H2A.Z deposition. PLoS Genet 5:e1000687

    PubMed  Google Scholar 

  • Hemmerich P, Weidtkamp-Peters S, Hoischen C et al (2008) Dynamics of inner kinetochore assembly and maintenance in living cells. J Cell Biol 180:1101–1114. doi:10.1083/jcb.200710052

    PubMed  CAS  Google Scholar 

  • Henikoff S, Furuyama T (2012) The unconventional structure of centromeric nucleosomes. Chromosoma 121:341–352. doi:10.1007/s00412-012-0372-y

    PubMed  CAS  Google Scholar 

  • Henikoff S, Ahmad K, Platero JS, van Steensel B (2000) Heterochromatic deposition of centromeric histone H3-like proteins. Proc Natl Acad Sci USA 97:716–721

    PubMed  CAS  Google Scholar 

  • Henikoff S, Henikoff JG, Sakai A et al (2009) Genome-wide profiling of salt fractions maps physical properties of chromatin. Genome Res 19:460–469. doi:10.1101/gr.087619.108

    PubMed  CAS  Google Scholar 

  • Heo K, Kim H, Choi SH et al (2008) FACT-mediated exchange of histone variant H2AX regulated by phosphorylation of H2AX and ADP-ribosylation of Spt16. Mol Cell 30:86–97. doi:10.1016/j.molcel.2008.02.029

    PubMed  CAS  Google Scholar 

  • Heun P, Erhardt S, Blower MD et al (2006) Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev Cell 10:303–315. doi:10.1016/j.devcel.2006.01.014

    PubMed  CAS  Google Scholar 

  • Hodl M, Basler K (2009) Transcription in the absence of histone H3.3. Curr Biol 19(14):1221–1226. doi:10.1016/j.cub.2009.05.048

    PubMed  CAS  Google Scholar 

  • HOdl M, Basler K (2012) Transcription in the absence of histone H3.2 and H3K4 methylation. Curr Biol 22:2253–2257. doi:10.1016/j.cub.2012.10.008

    PubMed  CAS  Google Scholar 

  • Hou H, Wang Y, Kallgren SP et al (2010) Histone variant H2A.Z regulates centromere silencing and chromosome segregation in fission yeast. J Biol Chem 285:1909–1918. doi:10.1074/jbc.M109.058487

    PubMed  CAS  Google Scholar 

  • Howman EV, Fowler KJ, Newson AJ et al (2000) Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc Natl Acad Sci USA 97:1148–1153

    PubMed  CAS  Google Scholar 

  • Hoyer-Fender S, Costanzi C, Pehrson JR (2000) Histone macroH2A1.2 is concentrated in the XY-body by the early pachytene stage of spermatogenesis. Exp Cell Res 258:254–260. doi:10.1006/excr.2000.4951

    PubMed  CAS  Google Scholar 

  • Hu Z, Huang G, Sadanandam A et al (2010) The expression level of HJURP has an independent prognostic impact and predicts the sensitivity to radiotherapy in breast cancer. Breast Cancer Res 12:R18. doi:10.1186/bcr2487

    PubMed  Google Scholar 

  • Hu H, Liu Y, Wang M et al (2011) Structure of a CENP-A-Histone H4 heterodimer in complex with chaperone HJURP. Genes Dev 25(9):901–906. doi:10.1101/gad.2045111

    Google Scholar 

  • Hua S, Kallen CB, Dhar R et al (2008) Genomic analysis of estrogen cascade reveals histone variant H2A.Z associated with breast cancer progression. Mol Syst Biol 4:188

    PubMed  Google Scholar 

  • Ikura T, Tashiro S, Kakino A et al (2007) DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics. Mol Cell Biol 27:7028–7040. doi:10.1128/MCB.00579-07

    PubMed  CAS  Google Scholar 

  • Ioudinkova ES, Barat A, Pichugin A et al (2012) Distinct distribution of ectopically expressed histone variants H2A.Bbd and MacroH2A in open and closed chromatin domains. PLoS One 7:e47157

    PubMed  CAS  Google Scholar 

  • Ishibashi T, Dryhurst D, Rose KL et al (2009) Acetylation of vertebrate H2A.Z and Its effect on the structure of the nucleosome. Biochemistry 48:5007–5017. doi:10.1021/bi900196c

    PubMed  CAS  Google Scholar 

  • Ishibashi T, Li A, Eirin-Lopez JM, Zhao M, Missiaen K, Abbott DW, Meistrich M, Hendzel MJ, Ausio J (2010) H2A.Bbd: an X-chromosome-encoded histone involved in mammalian spermiogenesis. Nucleic Acids Res 38:1780–1789. doi:10.1093/nar/gkp1129

    PubMed  CAS  Google Scholar 

  • Ito T, Bulger M, Kobayashi R, Kadonaga JT (1996) Drosophila NAP-1 is a core histone chaperone that functions in ATP-facilitated assembly of regularly spaced nucleosomal arrays. Mol Cell Biol 16:3112–3124

    PubMed  CAS  Google Scholar 

  • Jansen LET, Black BE, Foltz DR, Cleveland DW (2007) Propagation of centromeric chromatin requires exit from mitosis. J Cell Biol 176:795–805. doi:10.1083/jcb.200701066

    PubMed  CAS  Google Scholar 

  • Jiao Y, Shi C, Edil BH et al (2011) DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331:1199–1203

    Google Scholar 

  • Jin C, Felsenfeld G (2007) Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev 21:1519–1529. doi:10.1101/gad.1547707

    PubMed  CAS  Google Scholar 

  • Jin C, Zang C, Wei G et al (2009) H3.3/H2A.Z double variant–containing nucleosomes mark “nucleosome-free regions” of active promoters and other regulatory regions. Nat Genet 41: 941–945. doi:10.1038/ng.409

    PubMed  CAS  Google Scholar 

  • Jónsson ZO, Jha S, Wohlschlegel JA, Dutta A (2004) Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex. Mol Cell 16:465–477

    PubMed  Google Scholar 

  • Jullien J, Astrand C, Szenker E et al (2012) HIRA dependent H3.3 deposition is required for transcriptional reprogramming following nuclear transfer to Xenopus oocytes. Epigenetics Chromatin 5:17. doi:10.1186/1756-8935-5-17

    PubMed  CAS  Google Scholar 

  • Kalocsay M, Hiller NJ, Jentsch S (2009) Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break. Mol Cell 33:335–343. doi:10.1016/j.molcel.2009.01.016

    PubMed  CAS  Google Scholar 

  • Kanemaki M, Kurokawa Y, Matsu-ura T, Makino Y, Masani A, Okazaki K, Morishita T, Tamura TA (1999) TIP49b, a new RuvB-like DNA helicase, is included in a complex together with another RuvB-like DNA helicase, TIP49a. J Biol Chem 274:22437–22444

    PubMed  CAS  Google Scholar 

  • Karras GI, Kustatscher G, Buhecha HR et al (2005) The macro domain is an ADP-ribose binding module. EMBO J 24:1911–1920. doi:10.1038/sj.emboj.7600664

    PubMed  CAS  Google Scholar 

  • Kato T, Sato N, Hayama S et al (2007) Activation of Holliday junction recognizing protein involved in the chromosomal stability and immortality of cancer cells. Cancer Res 67:8544–8553. doi:10.1158/0008-5472.CAN-07-1307

    PubMed  CAS  Google Scholar 

  • Khuong-Quang D-A, Buczkowicz P, Rakopoulos P et al (2012) K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 124(3):439–447. doi:10.1007/s00401-012-0998-0

    PubMed  CAS  Google Scholar 

  • Kim H-S, Vanoosthuyse V, Fillingham J, Roguev A, Watt S, Kislinger T, Treyer A, Carpenter LR, Bennett CS, Emili A et al (2009) An acetylated form of histone H2A.Z regulates chromosome architecture in Schizosaccharomyces pombe. Nat Struct Mol Biol 16:1286–1293

    PubMed  CAS  Google Scholar 

  • Kobor MS, Venkatasubrahmanyam S, Meneghini MD et al (2004) A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin. PLoS Biol 2:E131

    PubMed  Google Scholar 

  • Konev AY, Tribus M, Park SY et al (2007) CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science 317:1087–1090. doi:10.1126/science.1145339

    PubMed  CAS  Google Scholar 

  • Krogan NJ, Keogh M-C, Datta N et al (2003) A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1. Mol Cell 12:1565–1576

    PubMed  CAS  Google Scholar 

  • Krogan NJ, Baetz K, Keogh M-C et al (2004) Regulation of chromosome stability by the histone H2A variant Htz1, the Swr1 chromatin remodeling complex, and the histone acetyltransferase NuA4. Proc Natl Acad Sci USA 101:13513–13518. doi:10.1073/pnas.0405753101

    PubMed  CAS  Google Scholar 

  • Kusch T, Florens L, Macdonald WH, Swanson SK, Glaser RL, Yates JR III, Abmayr SM, Washburn MP, Workman JL (2004) Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306:2084–2087. doi:10.1126/science.1103455

    PubMed  CAS  Google Scholar 

  • Lagana A, Dorn JF, De Rop V et al (2010) A small GTPase molecular switch regulates epigenetic centromere maintenance by stabilizing newly incorporated CENP-A. Nat Cell Biol 12:1186–1193. doi:10.1038/ncb2129

    PubMed  CAS  Google Scholar 

  • Landschulz WH, Johnson PF, McKnight SL (1988) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240:1759–1764

    PubMed  CAS  Google Scholar 

  • Lefrançois P, Euskirchen GM, Auerbach RK, Rozowsky J, Gibson T, Yellman CM, Gerstein M, Snyder M (2009) Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing. BMC Genomics 10:37. doi:10.1186/1471-2164-10-37

    PubMed  Google Scholar 

  • Lewis PW, Elsaesser SJ, Noh K-M et al (2010) Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci USA 107:14075–14080. doi:10.1073/pnas.1008850107

    PubMed  CAS  Google Scholar 

  • Li A, Maffey AH, Abbott WD et al (2005) Characterization of nucleosomes consisting of the human testis/sperm-specific histone H2B variant (hTSH2B). Biochemistry 44:2529–2535. doi:10.1021/bi048061n

    PubMed  CAS  Google Scholar 

  • Li A, Yu Y, Lee S-C et al (2010) Phosphorylation of histone H2A.X by DNA-dependent protein kinase is not affected by core histone acetylation, but it alters nucleosome stability and histone H1 binding. J Biol Chem 285:17778–17788. doi:10.1074/jbc.M110.116426

    PubMed  CAS  Google Scholar 

  • Li Y, Zhu Z, Zhang S et al (2011) ShRNA-targeted centromere protein A inhibits hepatocellular carcinoma growth. PLoS One 6:e17794. doi:10.1371/journal.pone.0017794

    PubMed  CAS  Google Scholar 

  • Lindsey GG, Thompson P (1992) S(T)PXX motifs promote the interaction between the extended N-terminal tails of histone H2B with “linker” DNA. J Biol Chem 267:14622–14628

    PubMed  CAS  Google Scholar 

  • Lindsey GG, Orgeig S, Thompson P et al (1991) Extended C-terminal tail of wheat histone H2A interacts with DNA of the “linker” region. J Mol Biol 218:805–813

    PubMed  CAS  Google Scholar 

  • Liu X, Li B, Gorovsky MA (1996) Essential and nonessential histone H2A variants in Tetrahymena thermophila. Mol Cell Biol 16:4305–4311

    PubMed  CAS  Google Scholar 

  • Liu C-P, Xiong C, Wang M et al (2012) Structure of the variant histone H3.3–H4 heterodimer in complex with its chaperone DAXX. Nat Struct Mol Biol 19(12):1287–1292. doi:10.1038/nsmb.2439

    PubMed  CAS  Google Scholar 

  • Loppin B, Bonnefoy E, Anselme C et al (2005) The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus. Nature 437:1386–1390. doi:10.1038/nature04059

    PubMed  CAS  Google Scholar 

  • Loyola A, Almouzni G (2004) Histone chaperones, a supporting role in the limelight. Biochim Biophys Acta 1677:3–11. doi:10.1016/j.bbaexp.2003.09.012

    PubMed  CAS  Google Scholar 

  • Loyola A, Almouzni G (2007) Marking histone H3 variants: how, when and why? Trends Biochem Sci 32:425–433. doi:10.1016/j.tibs.2007.08.004

    PubMed  CAS  Google Scholar 

  • Loyola A, Bonaldi T, Roche D et al (2006) PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Mol Cell 24:309–316. doi:10.1016/j.molcel.2006.08.019

    PubMed  CAS  Google Scholar 

  • Loyola A, Tagami H, Bonaldi T et al (2009) The HP1alpha-CAF1-SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin. EMBO Rep 10:769–775. doi:10.1038/embor.2009.90

    PubMed  CAS  Google Scholar 

  • Luger K, Mäder AW, Richmond RK et al (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260. doi:10.1038/38444

    PubMed  CAS  Google Scholar 

  • Luger K, Dechassa ML, Tremethick DJ (2012) New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol 13:436–447. doi:10.1038/nrm3382

    PubMed  CAS  Google Scholar 

  • Luk E, Vu N-D, Patteson K, Mizuguchi G, Wu W-H, Ranjan A, Backus J, Sen S, Lewis M, Bai Y (2007) Chz1, a nuclear chaperone for histone H2AZ. Mol Cell 25:357–368. doi:10.1016/j.molcel.2006.12.015

    PubMed  CAS  Google Scholar 

  • Luk E, Ranjan A, FitzGerald PC, Mizuguchi G, Huang Y, Wei D, Wu C (2010) Stepwise histone replacement by SWR1 requires dual activation with histone H2A.Z and canonical nucleosome. Cell 143:725–736

    PubMed  CAS  Google Scholar 

  • Ma X-J, Salunga R, Tuggle JT et al (2003) Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 100:5974–5979. doi:10.1073/pnas.0931261100

    PubMed  CAS  Google Scholar 

  • MacAlpine D, Almouzni G (2013) Chromatin and DNA replication. S.D. Bell (Ed.) DNA replication, Cold Spring Harbor Laboratory Press 197–218. doi:10.1101/cshperspect.a010207

  • Mahadevaiah SK, Turner JM, Baudat F et al (2001) Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet 27:271–276. doi:10.1038/85830

    PubMed  CAS  Google Scholar 

  • Mahapatra S, Dewari PS, Bhardwaj A, Bhargava P (2011) Yeast H2A.Z, FACT complex and RSC regulate transcription of tRNA gene through differential dynamics of flanking nucleosomes. Nucleic Acids Res 39:4023–4034

    PubMed  CAS  Google Scholar 

  • Maison C, Quivy JP, Probst AV, ALMOUZNI G (2011) Heterochromatin at mouse pericentromeres: a model for de novo heterochromatin formation and duplication during replication. Cold Spring Harb Symp Quant Biol 75:155–165. doi:10.1101/sqb.2010.75.013

    Google Scholar 

  • Malay AD, Umehara T, Matsubara-Malay K et al (2008) Crystal structures of fission yeast histone chaperone Asf1 complexed with the Hip1 B-domain or the Cac2 C terminus. J Biol Chem 283: 14022–14031. doi:10.1074/jbc.M800594200

    PubMed  CAS  Google Scholar 

  • Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469:343–349. doi:10.1038/nature09784

    PubMed  CAS  Google Scholar 

  • Marques M, Laflamme L, Gervais AL, Gaudreau L (2010) Reconciling the positive and negative roles of histone H2A.Z in gene transcription. Epigenetics 5:267–272

    PubMed  CAS  Google Scholar 

  • Marzluff WF, Duronio RJ (2002) Histone mRNA expression: multiple levels of cell cycle regulation and important developmental consequences. Curr Opin Cell Biol 14:692–699

    PubMed  CAS  Google Scholar 

  • Marzluff WF, Wagner EJ, Duronio RJ (2008) Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat Rev Genet 9:843–854. doi:10.1038/nrg2438

    PubMed  CAS  Google Scholar 

  • Matangkasombut O, Buratowski RM, Swilling NW, Buratowski S (2000) Bromodomain factor 1 corresponds to a missing piece of yeast TFIID. Genes Dev 14:951–962

    PubMed  CAS  Google Scholar 

  • Mavrich TN, Jiang C, Ioshikhes IP et al (2008) Nucleosome organization in the Drosophila genome. Nature 453:358–362. doi:10.1038/nature06929

    PubMed  CAS  Google Scholar 

  • McDowell TL, Gibbons RJ, Sutherland H et al (1999) Localization of a putative transcriptional regulator (ATRX) at pericentromeric heterochromatin and the short arms of acrocentric chromosomes. Proc Natl Acad Sci USA 96:13983–13988

    PubMed  CAS  Google Scholar 

  • McKittrick E, Gafken PR, Ahmad K, Henikoff S (2004) Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc Natl Acad Sci USA 101:1525–1530. doi:10.1073/pnas.0308092100

    PubMed  CAS  Google Scholar 

  • Mello JA, Silljé HHW, Roche DMJ et al (2002) Human Asf1 and CAF-1 interact and synergize in a repair-coupled nucleosome assembly pathway. EMBO Rep 3:329–334. doi:10.1093/embo-reports/kvf068

    PubMed  CAS  Google Scholar 

  • Mendiburo MJ, Padeken J, Fülöp S et al (2011) Drosophila CENH3 is sufficient for centromere formation. Science 334:686–690. doi:10.1126/science.1206880

    PubMed  CAS  Google Scholar 

  • Meneghini MD, Wu M, Madhani HD (2003) Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 112:725–736

    PubMed  CAS  Google Scholar 

  • Michaelson JS, Bader D, Kuo F et al (1999) Loss of Daxx, a promiscuously interacting protein, results in extensive apoptosis in early mouse development. Genes Dev 13:1918–1923

    PubMed  CAS  Google Scholar 

  • Michod D, Bartesaghi S, Khelifi A et al (2012) Calcium-dependent dephosphorylation of the histone chaperone DAXX regulates H3.3 loading and transcription upon neuronal activation. Neuron 74:122–135. doi:10.1016/j.neuron.2012.02.021

    PubMed  CAS  Google Scholar 

  • Millar CB, Xu F, Zhang K, Grunstein M (2006) Acetylation of H2AZ Lys 14 is associated with genome-wide gene activity in yeast. Genes Dev 20:711–722. doi:10.1101/gad.1395506

    PubMed  CAS  Google Scholar 

  • Mito Y, Henikoff JG, Henikoff S (2005) Genome-scale profiling of histone H3.3 replacement patterns. Nat Genet 37:1090–1097. doi:10.1038/ng1637

    PubMed  CAS  Google Scholar 

  • Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, Wu C et al (2004) ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303:343–348. doi:10.1126/science.1090701

    PubMed  CAS  Google Scholar 

  • Moggs JG, Grandi P, Quivy JP et al (2000) A CAF-1-PCNA-mediated chromatin assembly pathway triggered by sensing DNA damage. Mol Cell Biol 20:1206–1218

    PubMed  CAS  Google Scholar 

  • Moree B, Meyer CB, Fuller CJ, Straight AF (2011) CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly. J Cell Biol 194:855–871. doi:10.1083/jcb.201106079

    PubMed  CAS  Google Scholar 

  • Morrison AJ, Shen X (2009) Chromatin remodelling beyond transcription: the INO80 and SWR1 complexes. Nat Rev Mol Cell Biol 10:373–384. doi:10.1038/nrm2693

    PubMed  CAS  Google Scholar 

  • Munakata T, Adachi N, Yokoyama N et al (2000) A human homologue of yeast anti-silencing factor has histone chaperone activity. Genes Cells 5:221–233

    PubMed  CAS  Google Scholar 

  • Muthurajan UM, McBryant SJ, Lu X et al (2011) The linker region of macroH2A promotes self-association of nucleosomal arrays. J Biol Chem 286:23852–23864. doi:10.1074/jbc.M111.244871

    PubMed  CAS  Google Scholar 

  • Natsume R, Eitoku M, Akai Y et al (2007) Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. Nature 446:338–341. doi:10.1038/nature05613

    PubMed  CAS  Google Scholar 

  • Nechemia-Arbely Y, Fachinetti D, Cleveland DW (2012) Replicating centromeric chromatin: Spatial and temporal control of CENP-A assembly. Experimental Cell Research 318:1353–1360

    PubMed  CAS  Google Scholar 

  • Nekrasov M, Amrichova J, Parker BJ et al (2012) Histone H2A.Z inheritance during the cell cycle and its impact on promoter organization and dynamics. Nat Struct Mol Biol 19(11):1076–1083. doi:10.1038/nsmb.2424

    PubMed  CAS  Google Scholar 

  • Ng RK, Gurdon JB (2008) Epigenetic inheritance of cell differentiation status. Cell Cycle 7:1173–1177

    PubMed  CAS  Google Scholar 

  • Ohzeki J-I, Bergmann JH, Kouprina N et al (2012) Breaking the HAC barrier: histone H3K9 acetyl/methyl balance regulates CENP-A assembly. EMBO J. doi:10.1038/emboj.2012.82

    PubMed  Google Scholar 

  • Okuhara K, Ohta K, Seo H et al (1999) A DNA unwinding factor involved in DNA replication in cell-free extracts of Xenopus eggs. Curr Biol 9:341–350

    PubMed  CAS  Google Scholar 

  • Olszak AM, van Essen D, Pereira AJ et al (2011) Heterochromatin boundaries are hotspots for de novo kinetochore formation. Nat Cell Biol 13:799–808. doi:10.1038/ncb2272

    PubMed  CAS  Google Scholar 

  • Orsi GA, Couble P, Loppin B (2009) Epigenetic and replacement roles of histone variant H3.3 in reproduction and development. Int J Dev Biol 53:231–243. doi:10.1387/ijdb.082653go

    PubMed  CAS  Google Scholar 

  • Ouararhni K, Hadj-Slimane R, Ait-Si-Ali S et al (2006) The histone variant mH2A1.1 interferes with transcription by down-regulating PARP-1 enzymatic activity. Genes Dev 20:3324–3336. doi:10.1101/gad.396106

    PubMed  CAS  Google Scholar 

  • Palmer DK, O’Day K, Wener MH et al (1987) A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J Cell Biol 104:805–815

    PubMed  CAS  Google Scholar 

  • Palmer DK, O’Day K, Margolis RL (1990) The centromere specific histone CENP-A is selectively retained in discrete foci in mammalian sperm nuclei. Chromosoma 100:32–36

    PubMed  CAS  Google Scholar 

  • Palmer DK, O’Day K, Trong HL et al (1991) Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc Natl Acad Sci USA 88: 3734–3738

    PubMed  CAS  Google Scholar 

  • Papamichos-Chronakis M, Krebs JE, Peterson CL (2006) Interplay between Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage. Genes Dev 20:2437–2449. doi:10.1101/gad.1440206

    PubMed  CAS  Google Scholar 

  • Papamichos-Chronakis M, Watanabe S, Rando OJ, Peterson CL (2011) Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity. Cell 144:200–213. doi:10.1016/j.cell.2010.12.021

    PubMed  CAS  Google Scholar 

  • Park Y-J, Dyer PN, Tremethick DJ, Luger K (2004) A new fluorescence resonance energy transfer approach demonstrates that the histone variant H2AZ stabilizes the histone octamer within the nucleosome. J Biol Chem 279:24274–24282

    PubMed  CAS  Google Scholar 

  • Park Y-J, Chodaparambil JV, Bao Y et al (2005) Nucleosome assembly protein 1 exchanges histone H2A-H2B dimers and assists nucleosome sliding. J Biol Chem 280:1817–1825. doi:10.1074/jbc.M411347200

    PubMed  CAS  Google Scholar 

  • Pasque V, Gillich A, Garrett N, Gurdon JB (2011a) Histone variant macroH2A confers resistance to nuclear reprogramming. EMBO J 30:2373–2387. doi:10.1038/emboj.2011.144

    PubMed  CAS  Google Scholar 

  • Pasque V, Halley-Stott RP, Gillich A et al (2011b) Epigenetic stability of repressed states involving the histone variant macroH2A revealed by nuclear transfer to Xenopus oocytes. Nucleus 2:533–539. doi:10.4161/nucl.2.6.17799

    PubMed  Google Scholar 

  • Pehrson JR, Fried VA (1992) MacroH2A, a core histone containing a large nonhistone region. Science 257:1398–1400

    PubMed  CAS  Google Scholar 

  • Perpelescu M, Nozaki N, Obuse C et al (2009) Active establishment of centromeric CENP-A chromatin by RSF complex. J Cell Biol 185:397–407. doi:10.1083/jcb.200903088

    PubMed  CAS  Google Scholar 

  • Placek BJ, Huang J, Kent JR et al (2009) The histone variant H3.3 regulates gene expression during lytic infection with herpes simplex virus type 1. J Virol 83:1416–1421. doi:10.1128/JVI.01276-08

    PubMed  CAS  Google Scholar 

  • Polo SE, Jackson SP (2011) Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev 25:409–433. doi:10.1101/gad.2021311

    PubMed  CAS  Google Scholar 

  • Polo SE, Theocharis SE, Klijanienko J et al (2004) Chromatin assembly factor-1, a marker of clinical value to distinguish quiescent from proliferating cells. Cancer Res 64:2371–2381. doi:10.1158/0008-5472.CAN-03-2893

    PubMed  CAS  Google Scholar 

  • Polo SE, Roche D, Almouzni G (2006) New histone incorporation marks sites of UV repair in human cells. Cell 127:481–493. doi:10.1016/j.cell.2006.08.049

    PubMed  CAS  Google Scholar 

  • Polo SE, Theocharis SE, Grandin L et al (2010) Clinical significance and prognostic value of chromatin assembly factor-1 overexpression in human solid tumours. Histopathology 57:716–724. doi:10.1111/j.1365-2559.2010.03681.x

    PubMed  Google Scholar 

  • Postnikov Y, Bustin M (2010) Regulation of chromatin structure and function By HMGN proteins. Biochim Biophys Acta 1799:62–68. doi:10.1016/j.bbagrm.2009.11.016

    PubMed  CAS  Google Scholar 

  • Probst AV, Dunleavy E, Almouzni G (2009) Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell Biol 10:192–206. doi:10.1038/nrm2640

    PubMed  CAS  Google Scholar 

  • Qiu XB, Lin YL, Thome KC, Pian P, Schlegel BP, Weremowicz S, Parvin JD, Dutta A (1998) An eukaryotic RuvB-like protein (RUVBL1) essential for growth. J Biol Chem 273: 27786–27793

    PubMed  CAS  Google Scholar 

  • Qiu X, Dul BE, Walworth NC (2010) Activity of a C-terminal PHD domain of Msc1 is essential for function. J Biol Chem. doi:10.1074/jbc.M110.157792

    Google Scholar 

  • Raisner RM, Hartley PD, Meneghini MD, Bao MZ, Liu CL, Schreiber SL, Rando OJ, Madhani HD (2005) Histone variant H2A.Z marks the 5' ends of both active and inactive genes in euchromatin. Cell 123:233–248

    PubMed  CAS  Google Scholar 

  • Rangasamy D, Greaves I, Tremethick DJ (2004) RNA interference demonstrates a novel role for H2A.Z in chromosome segregation. Nat Struct Mol Biol 11:650–655. doi:10.1038/nsmb786

    PubMed  CAS  Google Scholar 

  • Ranjitkar P, Press MO, Yi X et al (2010) An E3 ubiquitin ligase prevents ectopic localization of the centromeric histone H3 variant via the centromere targeting domain. Mol Cell 40:455–464. doi:10.1016/j.molcel.2010.09.025

    PubMed  CAS  Google Scholar 

  • Ratnakumar K, Duarte LF, LeRoy G et al (2012) ATRX-mediated chromatin association of histone variant macroH2A1 regulates -globin expression. Genes Dev 26:433–438. doi:10.1101/gad.179416.111

    PubMed  CAS  Google Scholar 

  • Ray-Gallet D, Quivy J-P, Scamps C et al (2002) HIRA is critical for a nucleosome assembly pathway independent of DNA synthesis. Mol Cell 9:1091–1100

    PubMed  CAS  Google Scholar 

  • Ray-Gallet D, Quivy J-P, Silljé HWW et al (2007) The histone chaperone Asf1 is dispensable for direct de novo histone deposition in Xenopus egg extracts. Chromosoma 116:487–496. doi:10.1007/s00412-007-0112-x

    PubMed  CAS  Google Scholar 

  • Ray-Gallet D, Woolfe A, Vassias I, Pellentz C, Lacoste N, Puri A, Schultz DC, Pchelintsev NA, Adams PD, Jansen LET et al (2011) Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity. Mol Cell 44:928–941. doi:10.1016/j.molcel.2011.12.006

    PubMed  CAS  Google Scholar 

  • Régnier V, Vagnarelli P, Fukagawa T et al (2005) CENP-A is required for accurate chromosome segregation and sustained kinetochore association of BubR1. Mol Cell Biol 25:3967–3981. doi:10.1128/MCB.25.10.3967-3981.2005

    PubMed  Google Scholar 

  • Rhodes DR, Yu J, Shanker K et al (2004) Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci USA 101:9309–9314. doi:10.1073/pnas.0401994101

    PubMed  CAS  Google Scholar 

  • Ridgway P, Almouzni G (2000) CAF-1 and the inheritance of chromatin states: at the crossroads of DNA replication and repair. J Cell Sci 113(Pt 15):2647–2658

    PubMed  CAS  Google Scholar 

  • Ridgway P, Brown KD, Rangasamy D et al (2004) Unique residues on the H2A.Z containing nucleosome surface are important for Xenopus laevis development. J Biol Chem 279:43815–43820. doi:10.1074/jbc.M408409200

    PubMed  CAS  Google Scholar 

  • Roberts C, Sutherland HF, Farmer H et al (2002) Targeted mutagenesis of the Hira gene results in gastrulation defects and patterning abnormalities of mesoendodermal derivatives prior to early embryonic lethality. Mol Cell Biol 22:2318–2328. doi:10.1128/MCB.22.7.2318-2328.2002

    PubMed  CAS  Google Scholar 

  • Rogakou EP, Pilch DR, Orr AH et al (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868

    PubMed  CAS  Google Scholar 

  • Rogers RS, Inselman A, Handel MA, Matunis MJ (2004) SUMO modified proteins localize to the XY body of pachytene spermatocytes. Chromosoma 113:233–243. doi:10.1007/s00412-004-0311-7

    PubMed  Google Scholar 

  • Rousseaux S, Caron C, Govin J et al (2005) Establishment of male-specific epigenetic information. Gene 345:139–153. doi:10.1016/j.gene.2004.12.004

    PubMed  CAS  Google Scholar 

  • Ruhl DD, Jin J, Cai Y, Swanson S, Florens L, Washburn MP, Conaway RC, Conaway JW, Chrivia JC (2006) Purification of a human SRCAP complex that remodels chromatin by incorporating the histone variant H2A.Z into nucleosomes. Biochemistry 45:5671–5677. doi:10.1021/bi060043d

    PubMed  CAS  Google Scholar 

  • Runge KW, Wellinger RJ, Zakian VA (1991) Effects of excess centromeres and excess telomeres on chromosome loss rates. Mol Cell Biol 11:2919–2928

    PubMed  CAS  Google Scholar 

  • Sakai A, Schwartz BE, Goldstein S, Ahmad K (2009) Transcriptional and developmental functions of the H3.3 histone variant in Drosophila. Curr Biol 19(21):1816–1820. doi:10.1016/j.cub.2009.09.021

    PubMed  CAS  Google Scholar 

  • Santenard A, Torres-Padilla M-E (2009) Epigenetic reprogramming in mammalian reproduction: contribution from histone variants. Epigenetics 4:80–84

    PubMed  CAS  Google Scholar 

  • Santisteban MS, Kalashnikova T, Smith MM (2000) Histone H2A.Z regulats transcription and is partially redundant with nucleosome remodeling complexes. Cell 103:411–422

    PubMed  CAS  Google Scholar 

  • Sarcinella E, Zuzarte PC, Lau PNI et al (2007) Monoubiquitylation of H2A.Z distinguishes its association with euchromatin or facultative heterochromatin. Mol Cell Biol 27:6457–6468. doi:10.1128/MCB.00241-07

    PubMed  CAS  Google Scholar 

  • Schenk R, Jenke A, Zilbauer M, Wirth S, Postberg J (2011) H3.5 is a novel hominid-specific histone H3 variant that is specifically expressed in the seminiferous tubules of human testes. Chromosoma 120(3):275–285. doi:10.1007/s00412-011-0310-4

    PubMed  CAS  Google Scholar 

  • Schneiderman JI, Orsi GA, Hughes KT et al (2012) Nucleosome-depleted chromatin gaps recruit assembly factors for the H3.3 histone variant. Proc Natl Acad Sci USA 109(48):19721–19726. doi:10.1073/pnas.1206629109

    PubMed  CAS  Google Scholar 

  • Schöpf B, Bregenhorn S, Quivy J-P et al (2012) Interplay between mismatch repair and chromatin assembly. Proc Natl Acad Sci USA 109:1895–1900. doi:10.1073/pnas.1106696109

    PubMed  Google Scholar 

  • Schwartz BE, Ahmad K (2005) Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Dev 19:804–814. doi:10.1101/gad.1259805

    PubMed  CAS  Google Scholar 

  • Schwartzentruber J, Korshunov A, Liu X-Y et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482(7384):226–231. doi:10.1038/nature10833

    PubMed  CAS  Google Scholar 

  • Shelby RD, Monier K, Sullivan KF (2000) Chromatin assembly at kinetochores is uncoupled from DNA replication. J Cell Biol 151:1113–1118

    PubMed  CAS  Google Scholar 

  • Shen X, Mizuguchi G, Hamiche A, Wu C (2000) A chromatin remodelling complex involved in transcription and DNA processing. Nature 406:541–544. doi:10.1038/35020123

    PubMed  CAS  Google Scholar 

  • Shibahara K, Stillman B (1999) Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96:575–585

    PubMed  CAS  Google Scholar 

  • Shuaib M, Ouararhni K, Dimitrov S, Hamiche A (2010) HJURP binds CENP-A via a highly conserved N-terminal domain and mediates its deposition at centromeres. Proc Natl Acad Sci USA 107:1349–1354. doi:10.1073/pnas.0913709107

    PubMed  CAS  Google Scholar 

  • Shukla MS, Syed SH, Goutte-Gattat D et al (2011) The docking domain of histone H2A is required for H1 binding and RSC-mediated nucleosome remodeling. Nucleic Acids Res 39:2559–2570. doi:10.1093/nar/gkq1174

    PubMed  CAS  Google Scholar 

  • Silva MCC, Bodor DL, Stellfox ME et al (2012) Cdk activity couples epigenetic centromere inheritance to cell cycle progression. Dev Cell 22:52–63. doi:10.1016/j.devcel.2011.10.014

    PubMed  CAS  Google Scholar 

  • Smith S, Stillman B (1989) Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58:15–25

    PubMed  CAS  Google Scholar 

  • Soboleva TA, Nekrasov M, Pahwa A, Williams R, Huttley GA, Tremethick DJ (2011) A unique H2A histone variant occupies the transcriptional start site of active genes. Nat Struct Mol Biol 19:25–30. doi:10.1038/nsmb.2161

    PubMed  Google Scholar 

  • Song T-Y, Yang J-H, Park J-Y et al (2012) The role of histone chaperones in osteoblastic differentiation of C2C12 myoblasts. Biochem Biophys Res Commun 423:726–732. doi:10.1016/j.bbrc.2012.06.026

    PubMed  CAS  Google Scholar 

  • Soria G, Polo SE, Almouzni G (2012) Prime, repair, restore: the active role of chromatin in the DNA damage response. Mol Cell 46:722–734. doi:10.1016/j.molcel.2012.06.002

    PubMed  CAS  Google Scholar 

  • Stoler S, Keith KC, Curnick KE, Fitzgerald-Hayes M (1995) A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev 9:573–586

    PubMed  CAS  Google Scholar 

  • Stoler S, Rogers K, Weitze S et al (2007) Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization. Proc Natl Acad Sci USA 104: 10571–10576. doi:10.1073/pnas.0703178104

    PubMed  CAS  Google Scholar 

  • Straube K, Blackwell JS, Pemberton LF (2010) Nap1 and Chz1 have separate Htz1 nuclear import and assembly functions. Traffic 11:185–197

    PubMed  CAS  Google Scholar 

  • Sturm D, Witt H, Hovestadt V et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437. doi:10.1016/j.ccr.2012.08.024

    PubMed  CAS  Google Scholar 

  • Sullivan BA, Willard HF (1998) Stable dicentric X chromosomes with two functional centromeres. Nat Genet 20:227–228. doi:10.1038/3024

    PubMed  CAS  Google Scholar 

  • Suto RK, Clarkson MJ, Tremethick DJ, Luger K (2000) Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nat Struct Mol Biol 7:1121–1124. doi:10.1038/81971

    CAS  Google Scholar 

  • Svotelis A, Gévry N, Grondin G, Gaudreau L (2010) H2A.Z overexpression promotes cellular proliferation of breast cancer cells. Cell Cycle 9:364–370

    PubMed  CAS  Google Scholar 

  • Swaminathan J, Baxter EM, Corces VG (2005) The role of histone H2Av variant replacement and histone H4 acetylation in the establishment of Drosophila heterochromatin. Genes Dev 19:65–76. doi:10.1101/gad.1259105

    PubMed  CAS  Google Scholar 

  • Szenker E, Ray-Gallet D, Almouzni G (2011) The double face of the histone variant H3.3. Cell Res 21:421–434. doi:10.1038/cr.2011.14

    PubMed  CAS  Google Scholar 

  • Szenker E, Lacoste N, Almouzni G (2012) A developmental requirement for HIRA-dependent H3.3 deposition revealed at gastrulation in Xenopus. Cell Rep 1:730–740. doi:10.1016/j.celrep.2012.05.006

    PubMed  CAS  Google Scholar 

  • Tachiwana H, Osakabe A, Kimura H, Kurumizaka H (2008) Nucleosome formation with the testis-specific histone H3 variant, H3t, by human nucleosome assembly proteins in vitro. Nucleic Acids Res 36:2208–2218. doi:10.1093/nar/gkn060

    PubMed  CAS  Google Scholar 

  • Tachiwana H, Kagawa W, Osakabe A et al (2010) Structural basis of instability of the nucleosome containing a testis-specific histone variant, human H3T. Proc Natl Acad Sci USA 107:10454–10459. doi:10.1073/pnas.1003064107

    PubMed  CAS  Google Scholar 

  • Tachiwana H, Kagawa W, Shiga T et al (2011a) Crystal structure of the human centromeric nucleosome containing CENP-A. Nature 476:232–235. doi:10.1038/nature10258

    PubMed  CAS  Google Scholar 

  • Tachiwana H, Osakabe A, Shiga T et al (2011b) Structures of human nucleosomes containing major histone H3 variants. Acta Crystallogr D Biol Crystallogr 67:578–583. doi:10.1107/S0907444911014818, [101107/S0907444911014818] 1–6

    PubMed  CAS  Google Scholar 

  • Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y (2004) Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116:51–61

    PubMed  CAS  Google Scholar 

  • Takahashi K, Chen ES, Yanagida M (2000) Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288:2215–2219

    PubMed  CAS  Google Scholar 

  • Talbert PB, Henikoff S (2010) Histone variants—ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol 11:264–275. doi:10.1038/nrm2861

    PubMed  CAS  Google Scholar 

  • Talbert PB, Ahmad K, Almouzni G, Ausio J, Berger F, Bhalla PL, Bonner WM, Cande WZ, Chadwick BP, Chan SWL et al (2012) A unified phylogeny-based nomenclature for histone variants. Epigenetics Chromatin 5:7. doi:10.1186/1756-8935-5-7

    PubMed  CAS  Google Scholar 

  • Tamburini BA, Carson JJ, Adkins MW, Tyler JK (2005) Functional conservation and specialization among eukaryotic anti-silencing function 1 histone chaperones. Eukaryot Cell 4:1583–1590. doi:10.1128/EC.4.9.1583-1590.2005

    PubMed  CAS  Google Scholar 

  • Tamura T, Smith M, Kanno T et al (2009) Inducible deposition of the histone variant H3.3 in interferon-stimulated genes. J Biol Chem 284:12217–12225. doi:10.1074/jbc.M805651200

    PubMed  CAS  Google Scholar 

  • Tan S, Davey CA (2011) Nucleosome structural studies. Curr Opin Struct Biol 21:128–136. doi:10.1016/j.sbi.2010.11.006

    PubMed  CAS  Google Scholar 

  • Tang Y, Poustovoitov MV, Zhao K et al (2006) Structure of a human ASF1a-HIRA complex and insights into specificity of histone chaperone complex assembly. Nat Struct Mol Biol 13:921–929. doi:10.1038/nsmb1147

    PubMed  CAS  Google Scholar 

  • Thakar A, Gupta P, Ishibashi T et al (2009) H2A.Z and H3.3 histone variants affect nucleosome structure: biochemical and biophysical studies. Biochemistry 48:10852–10857. doi:10.1021/bi901129e

    PubMed  CAS  Google Scholar 

  • Timinszky G, Till S, Hassa PO et al (2009) A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nat Struct Mol Biol 16:923–929. doi:10.1038/nsmb.1664

    PubMed  CAS  Google Scholar 

  • Tolstorukov MY, Goldman JA, Gilbert C et al (2012) Histone variant H2A.Bbd is associated with active transcription and mRNA processing in human cells. Mol Cell 47:596–607. doi:10.1016/j.molcel.2012.06.011

    PubMed  CAS  Google Scholar 

  • Tomonaga T, Matsushita K, Yamaguchi S et al (2003) Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer. Cancer Res 63:3511–3516

    PubMed  CAS  Google Scholar 

  • Torres-Padilla M-E, Bannister AJ, Hurd PJ et al (2006) Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos. Int J Dev Biol 50(5): 455–461. doi:10.1387/ijdb.052073mt

    PubMed  CAS  Google Scholar 

  • Turner JM, Burgoyne PS, Singh PB (2001) M31 and macroH2A1.2 colocalise at the pseudoautosomal region during mouse meiosis. J Cell Sci 114:3367–3375

    PubMed  CAS  Google Scholar 

  • Tyler JK, Adams CR, Chen SR et al (1999) The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature 402:555–560. doi:10.1038/990147

    PubMed  CAS  Google Scholar 

  • Valdés-Mora F, Song JZ, Statham AL et al (2012) Acetylation of H2A.Z is a key epigenetic modification associated with gene deregulation and epigenetic remodeling in cancer. Genome Res 22:307–321. doi:10.1101/gr.118919.110

    PubMed  Google Scholar 

  • van Daal A, Elgin SC (1992) A histone variant, H2AvD, is essential in Drosophila melanogaster. Mol Biol Cell 3:593–602

    PubMed  Google Scholar 

  • van der Heijden GW, Dieker JW, Derijck AAHA et al (2005) Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev 122:1008–1022. doi:10.1016/j.mod.2005.04.009

    PubMed  Google Scholar 

  • van der Heijden GW, Derijck AAHA, Pósfai E et al (2007) Chromosome-wide nucleosome replacement and H3.3 incorporation during mammalian meiotic sex chromosome inactivation. Nat Genet 39:251–258. doi:10.1038/ng1949

    PubMed  Google Scholar 

  • van Hooser AA, Ouspenski II, Gregson HC et al (2001) Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J Cell Sci 114:3529–3542

    PubMed  Google Scholar 

  • Vermaak D, Hayden HS, Henikoff S (2002) Centromere targeting element within the histone fold domain of Cid. Mol Cell Biol 22:7553–7561

    PubMed  CAS  Google Scholar 

  • Viens A, Mechold U, Brouillard F et al (2006) Analysis of human histone H2AZ deposition in vivo argues against its direct role in epigenetic templating mechanisms. Mol Cell Biol 26:5325–5335. doi:10.1128/MCB.00584-06

    PubMed  CAS  Google Scholar 

  • Warburton PE, Cooke CA, Bourassa S et al (1997) Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr Biol 7:901–904

    PubMed  CAS  Google Scholar 

  • Weber CM, Henikoff JG, Henikoff S (2010) H2A.Z nucleosomes enriched over active genes are homotypic. Nat Struct Mol Biol 17:1500–1507. doi:10.1038/nsmb.1926

    PubMed  CAS  Google Scholar 

  • Wiedemann SM, Mildner SN, Bonisch C, Israel L, Maiser A, Matheisl S, Straub T, Merkl R, Leonhardt H, Kremmer E et al (2010) Identification and characterization of two novel primate-specific histone H3 variants, H3.X and H3.Y. The Journal of Cell Biology 190:777–791

    PubMed  CAS  Google Scholar 

  • Wieland G, Orthaus S, Ohndorf S et al (2004) Functional complementation of human centromere protein A (CENP-A) by Cse4p from Saccharomyces cerevisiae. Mol Cell Biol 24:6620–6630. doi:10.1128/MCB.24.15.6620-6630.2004

    PubMed  CAS  Google Scholar 

  • Wirbelauer C, Bell O, Schübeler D (2005) Variant histone H3.3 is deposited at sites of nucleosomal displacement throughout transcribed genes while active histone modifications show a promoter-proximal bias. Genes Dev 19:1761–1766. doi:10.1101/gad.347705

    PubMed  CAS  Google Scholar 

  • Witt O, Albig W, Doenecke D (1996) Testis-specific expression of a novel human H3 histone gene. Exp Cell Res 229:301–306. doi:10.1006/excr.1996.0375

    PubMed  CAS  Google Scholar 

  • Wittmeyer J, Joss L, Formosa T (1999) Spt16 and Pob3 of Saccharomyces cerevisiae form an essential, abundant heterodimer that is nuclear, chromatin-associated, and copurifies with DNA polymerase alpha. Biochemistry 38:8961–8971. doi:10.1021/bi982851d

    PubMed  CAS  Google Scholar 

  • Wong MM, Cox LK, Chrivia JC (2007) The chromatin remodeling protein, SRCAP, is critical for deposition of the histone variant H2A.Z at promoters. J Biol Chem 282:26132–26139. doi:10.1074/jbc.M703418200

    PubMed  CAS  Google Scholar 

  • Wong LH, Ren H, Williams E et al (2008) Histone H3.3 incorporation provides a unique and functionally essential telomeric chromatin in embryonic stem cells. Genome Res 19:404–414. doi:10.1101/gr.084947.108

    Google Scholar 

  • Wu RS, Bonner WM (1981) Separation of basal histone synthesis from S-phase histone synthesis in dividing cells. Cell 27:321–330

    PubMed  CAS  Google Scholar 

  • Wu WH, Alami S, Luk E, Wu CH, Sen S, Mizuguchi G, Wei D, Wu C (2005) Swc2 is a widely conserved H2AZ-binding module essential for ATP-dependent histone exchange. Nat Struct Mol Biol 12:1064–1071. doi:10.1038/nsmb1023

    PubMed  CAS  Google Scholar 

  • Wu G, Broniscer A, McEachron TA et al (2012a) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44:251–253. doi:10.1038/ng.1102

    PubMed  CAS  Google Scholar 

  • Wu Q, Qian Y-M, Zhao X-L et al (2012b) Expression and prognostic significance of centromere protein A in human lung adenocarcinoma. Lung Cancer 77:407–414. doi:10.1016/j.lungcan.2012.04.007

    PubMed  Google Scholar 

  • Xu C, Xu Y, Gursoy-Yuzugullu O, Price BD (2012a) The histone variant macroH2A1.1 is recruited to DSBs through a mechanism involving PARP1. FEBS Lett 586(21):3920–3925. doi:10.1016/j.febslet.2012.09.030

    PubMed  CAS  Google Scholar 

  • Xu Y, Ayrapetov MK, Xu C, Gursoy-Yuzugullu O, Hu Y, Price BD (2012b) Histone H2A.Z controls a critical chromatin remodeling step required for DNA double-strand break repair. Mol Cell 48(5):723–733. doi:10.1016/j.molcel.2012.09.026

    PubMed  CAS  Google Scholar 

  • Xue Y, Gibbons R, Yan Z et al (2003) The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies. Proc Natl Acad Sci USA 100:10635–10640. doi:10.1073/pnas.1937626100

    PubMed  CAS  Google Scholar 

  • Yang J-H, Choi J-H, Jang H et al (2011a) Histone chaperones cooperate to mediate Mef2-targeted transcriptional regulation during skeletal myogenesis. Biochem Biophys Res Commun 407: 541–547. doi:10.1016/j.bbrc.2011.03.055

    PubMed  CAS  Google Scholar 

  • Yang J-H, Song Y, Seol J-H et al (2011b) Myogenic transcriptional activation of MyoD mediated by replication-independent histone deposition. Proc Natl Acad Sci USA 108:85–90. doi:10.1073/pnas.1009830108

    PubMed  Google Scholar 

  • Yang X, Noushmehr H, Han H, Andreu-Vieyra C, Liang G, Jones PA (2012) Gene reactivation by 5-Aza-2'-deoxycytidine-induced demethylation requires SRCAP-mediated H2A.Z insertion to establish nucleosome depleted regions. PLoS Genet 8:e1002604

    PubMed  CAS  Google Scholar 

  • Yuan J, Adamski R, Chen J (2010) Focus on histone variant H2AX: to be or not to be. FEBS Lett 584:3717–3724. doi:10.1016/j.febslet.2010.05.021

    PubMed  CAS  Google Scholar 

  • Zalensky AO (2002) Human Testis/Sperm-specific Histone H2B (hTSH2B). Molecular cloning and characterization Journal of Biological Chemistry 277:43474–43480

    CAS  Google Scholar 

  • Zeitlin SG, Baker NM, Chapados BR, Soutoglou E, Wang JYJ, Berns MW, Cleveland DW (2009) Double-strand DNA breaks recruit the centromeric histone CENP-A. Proc Natl Acad Sci USA 106:15762–15767. doi:10.1073/pnas.0908233106

    PubMed  CAS  Google Scholar 

  • Zhang H, Roberts DN, Cairns BR (2005a) Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell 123:219–231. doi:10.1016/j.cell.2005.08.036

    PubMed  CAS  Google Scholar 

  • Zhang L, Schroeder S, Fong N, Bentley DL (2005b) Altered nucleosome occupancy and histone H3K4 methylation in response to ‘transcriptional stress’. EMBO J 24:2379–2390. doi:10.1038/sj.emboj.7600711

    PubMed  CAS  Google Scholar 

  • Zhou J, Fan JY, Rangasamy D, Tremethick DJ (2007) The nucleosome surface regulates chromatin compaction and couples it with transcriptional repression. Nat Struct Mol Biol 14:1070–1076. doi:10.1038/nsmb1323

    PubMed  CAS  Google Scholar 

  • Zhou Z, Feng H, Hansen DF, Kato H, Luk E, Freedberg DI, Kay LE, Wu C, Bai Y (2008) NMR structure of chaperone Chz1 complexed with histones H2A.Z-H2B. Nature Structural &Amp. Molecular Biology 15:868–869

    CAS  Google Scholar 

  • Zhou BO, Wang S-S, Xu L-X et al (2010) SWR1 complex poises heterochromatin boundaries for antisilencing activity propagation. Mol Cell Biol 30:2391–2400. doi:10.1128/MCB.01106-09

    PubMed  CAS  Google Scholar 

  • Zilberman D, Coleman-Derr D, Ballinger T, Henikoff S (2008) Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 456:125–129

    PubMed  CAS  Google Scholar 

  • Zlatanova J, Seebart C, Tomschik M (2007) Nap1: taking a closer look at a juggler protein of extraordinary skills. FASEB J 21:1294–1310. doi:10.1096/fj.06-7199rev

    PubMed  CAS  Google Scholar 

  • Zofall M, Fischer T, Zhang K, Zhou M, Cui B, Veenstra TD, Grewal SIS (2009) Histone H2A.Z cooperates with RNAi and heterochromatin factors to suppress antisense RNAs. Nature 461: 419–422. doi:10.1038/nature08321

    PubMed  CAS  Google Scholar 

  • Zucchi I, Mento E, Kuznetsov VA et al (2004) Gene expression profiles of epithelial cells microscopically isolated from a breast-invasive ductal carcinoma and a nodal metastasis. Proc Natl Acad Sci USA 101:18147–18152. doi:10.1073/pnas.0408260101

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geneviève Almouzni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Szenker, E., Boyarchuk, E., Almouzni, G. (2014). Properties and Functions of Histone Variants. In: Workman, J., Abmayr, S. (eds) Fundamentals of Chromatin. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8624-4_10

Download citation

Publish with us

Policies and ethics