Skip to main content

Abstract

Nitric oxide (NO) is an important signalling molecule that mediates many developmental and physiological processes in plants. It is a reactive, lipophilic and volatile-free radical that can be cytotoxic. NO can be generated: (1) enzymatically by NO synthase from l-arginine or nitrite via nitrate reductase; (2) non-enzymatically as a by-product of denitrification, nitrogen fixation and respiration. In plants, NO signalling involves cGMP, cADP ribose, Ca2+, salicylic acid and protein kinases. There is also extensive overlap and crosstalk with H2O2 or abscisic acid (ABA) signalling. ABA induced the movement of guard cells which has been involved by NO. NO plays a role in root development, germination, senescence, respiration, cell death, disease resistance and hormone responses. It also activates antioxidant defences during oxidative stress. NO has also been implicated in plant responses to abiotic stress. In these cases, when abiotic stresses alter physiological NO metabolism causing damage to biological molecules, a nitrosative stress is generated. This chapter presents the synthesis of NO and the role of NO in plants under abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad P, Sharma S (2008) Salt stress and phyto-biochemical responses of plants. Plant Soil Environ 54:89–99

    Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30:161–175

    CAS  PubMed  Google Scholar 

  • Ahmad P, Nabi G, Ashraf M (2011) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. South Afr J Bot 77:36–44

    CAS  Google Scholar 

  • Ahmad P, Ozturk M, Gucel S (2012) Oxidative damage and antioxidants induced by heavy metal stress in two cultivars of mustard (L.) plants. Fresenius Environ Bull 21:2953–2961

    CAS  Google Scholar 

  • Ahmad P, Azooz MM, Prasad MNV (2013) Salt stress in plants: signalling, omics and adaptations. Springer, New York

    Google Scholar 

  • An LZ, Liu YH, Zhang MX (2005) Effect of nitric oxide on growth of maize seedling leaves in the presence or absence of ultraviolet-B radiation. J Plant Physiol 162:317–326

    CAS  PubMed  Google Scholar 

  • Arasimowicz M, Floryszak-Wieczorek J (2007) Nitric oxide as a bioactive signalling molecule in plant stress responses. Plant Sci 172:876–887

    CAS  Google Scholar 

  • Arredondo-Peter R, Moran JF, Sarath G, Luan P, Klucas RV (1997) Molecular cloning of the cowpea leghemoglobin II gene and expression of its cDNA in Escherichia coli. Purification and characterization of the recombinant protein. Plant Physiol 114:493–500

    CAS  PubMed  Google Scholar 

  • Barroso JB, Corpas FJ, Carreras A, Rodríguez-Serrano M, Esteban FJ, Fernández-Ocańa A, Chaki M, Romero-Puertas MC, Valderrama R, Sandalio LM, del Río LA (2006) Localization of S-nitrosoglutathione and expression of S-nitrosoglutathione reductase in pea plants under cadmium stress. J Exp Bot 57:1785–1793

    CAS  PubMed  Google Scholar 

  • Bartha B, Kolbert Z, Erdei L (2005) Nitric oxide production induced by heavy metals in Brassica juncea L. Czern. and Pisum sativum L. Acta Biol Szeged 49:9–12

    Google Scholar 

  • Baudouin E (2011) The language of nitric oxide signalling. Plant Biol 13:233–242

    CAS  PubMed  Google Scholar 

  • Beligni MV, Lamattina L (1999) Nitric oxide protects against cellular damage produced by methylviologen herbicides in potato plants. Nitric Oxide 3:199–208

    CAS  PubMed  Google Scholar 

  • Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination, de-etiolation, and inhibits hypocotyl elongation, three light inducible responses in plants. Planta 210:215–221

    CAS  PubMed  Google Scholar 

  • Beligni MV, Lamattina L (2001) Nitric oxide in plants: the history is just beginning. Plant Cell Environ 24:267–278

    CAS  Google Scholar 

  • Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16:332–341

    CAS  PubMed  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent developments. Plant Sci 140:103–125

    CAS  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    CAS  PubMed  Google Scholar 

  • Carimi F, Zottini M, Costa A, Cattalani I, De Michele M, Terzi M, Lo Schiavo F (2005) NO signalling in cytokinin-induced programmed cell death. Plant Cell Environ 28:1171–1178

    CAS  Google Scholar 

  • Chaki M, Fernandez-Ocana AM, Valderrama R, Carreras A, Esteban FJ, Luque F, Gomez-Rodriguez MV, Begara-Morales JC, Corpas FJ, Barroso JB (2009a) Involvement of reactive nitrogen and oxygen species (RNS and ROS) in sunflower–mildew interaction. Plant Cell Physiol 50:265–279

    CAS  PubMed  Google Scholar 

  • Chaki M, Valderrama R, Fernandez-Ocana AM, Carreras A, Lopez-Jaramillo J, Luque F, Palma JM, Pedrajas JR, Begara-Morales JC, Sanchez-Calvo B, Gomez-Rodriguez MV, Corpas FJ, Barroso JB (2009b) Protein targets of tyrosine nitration in sunflower (Helianthus annuus L.) hypocotyls. J Exp Bot 60:4221–4234

    CAS  PubMed  Google Scholar 

  • Chaki M, Valderrama R, Fernández-Ocana AM, Carreras A, Gómez-Rodríguez MV, Pedradas JR, Begara-Morales JC, Sánchez-Calvo B, Luque F, Leterrier M, Corpas FJ, Barroso JB (2011) Mechanical wounding induces a nitrosative stress by downregulation of GSNO reductase and a rise of S-nitrosothiols in sunflower (Helianthus annuus) seedlings. J Exp Bot 62:1803–1813

    CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB, del Río LA (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6:145–150

    CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB, del Rio LA (2004) Enzymatic sources of nitric oxide in plant cells: beyond one protein-one function. New Phytol 162:246–248

    CAS  Google Scholar 

  • Corpas FJ, del Río LA, Barroso JB (2007) Need of biomarkers of nitrosative stress in plants. Trends Plant Sci 12:436–438

    CAS  PubMed  Google Scholar 

  • Corpas FJ, Chaki M, Fernández-Ocana A, Valderrama R, Palma JM, Carreras A, Begara-Morales JC, Airaki M, del Río LA, Barroso JB (2008) Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. Plant Cell Physiol 49:1711–1722

    CAS  PubMed  Google Scholar 

  • Corpas FJ, Palma JM, del Rio LA, Barroso JB (2009) Evidence supporting the existence of l-arginine-dependent nitric oxide synthase activity in plants. New Phytol 184:9–14

    CAS  PubMed  Google Scholar 

  • Crawford NM (2006) Mechanisms for nitric oxide synthesis in plants. J Exp Bot 57:471–478

    CAS  PubMed  Google Scholar 

  • Cui J-X, Zhou Y-H, Ding J-G, Xia X-J, Shi K, Chen S-C, Asami T, Chen Z, Yu J-Q (2011) Role of nitric oxide in hydrogen peroxide-dependent induction of abiotic stress tolerance by brassinosteroids in cucumber. Plant Cell Environ 34:347–358

    CAS  PubMed  Google Scholar 

  • Delledonne M (2005) NO news is good news for plants. Curr Opin Plant Biol 8:390–396

    CAS  PubMed  Google Scholar 

  • Desikan R, Griffiths R, Hancock J, Neill S (2002) A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci U S A 99:16314–16318

    CAS  PubMed  Google Scholar 

  • Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ (2004) ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J Exp Bot 55:205–212

    CAS  PubMed  Google Scholar 

  • Dordas C, Rivoal J, Hill RD (2003) Plant haemoglobins, nitric oxide and hypoxic stress. Ann Bot 91:173–178

    CAS  PubMed  Google Scholar 

  • Dordas C, Hasinoff BB, Rivoal J, Hill RD (2004) Class-1 hemoglobins, nitrate and NO levels in anoxic maize cell-suspension cultures. Planta 219:66–72

    CAS  PubMed  Google Scholar 

  • Durner J, Klessig DF (1999) Nitric oxide as a signal in plants. Curr Opin Plant Biol 2:369–374

    CAS  PubMed  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci U S A 95:10328–10333

    CAS  PubMed  Google Scholar 

  • Ederli L, Morettini R, Borgogni A, Wasternack C, Miersch O, Reale L, Ferranti F, Tosti N, Pasqualini S (2006) Interaction between nitric oxide and ethylene in the induction of alternative oxidase in ozone-treated tobacco plants. Plant Physiol 142:595–608

    CAS  PubMed  Google Scholar 

  • Ederli L, Reale L, Madeo L, Ferranti F, Gehring C, Fornaciari M, Romano B, Pasqualini S (2009) NO release by nitric oxide donors in vitro and in planta. Plant Physiol Biochem 47:42–48

    CAS  PubMed  Google Scholar 

  • Erdei L, Szegeltes Z, Barabas K, Pestenacz A (1996) Response in polyamine titer under osmotic and salt stress in sorghum and maize seedlings. J Plant Physiol 147:599–603

    CAS  Google Scholar 

  • Fan H, Guo S, Jiao Y, Zhang R, Li J (2007) Effects of exogenous nitric oxide on growth, active oxygen species metabolism, and photosynthetic characteristics in cucumber seedlings under NaCl stress. Front Agric China 1:308–314

    Google Scholar 

  • Fan H-F, Du C-X, Guo S-R (2013) Nitric oxide enhances salt tolerance in cucumber seedlings by regulating free polyamine content. Environ Exp Bot 86:52–59

    CAS  Google Scholar 

  • Filippou P, Antoniou C, Fotopoulos V (2013) The nitric oxide donor sodium nitroprusside regulates polyamine and proline metabolism in leaves of Medicago truncatula plants. Free Radic Biol Med 56:172–183

    CAS  PubMed  Google Scholar 

  • Flores HE, Galston AW (1984) Osmotic stress-induced polyamine content in cereal leaves. I. Physiological parameters of the response. Plant Physiol 75:102–109

    CAS  PubMed  Google Scholar 

  • Floryszak-Wieczorek J, Milczarek G, Arasimowicz M, Ciszewski A (2006) Do nitric oxide donors mimic an endogenous NO related response in plants? Planta 224:1363–1372

    CAS  PubMed  Google Scholar 

  • Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol 133:1420–1428

    CAS  PubMed  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Fakahashi T, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    PubMed  Google Scholar 

  • Garces H, Durzan D, Pedroso MC (2001) Mechanical stress elicits nitric oxide formation and DNA fragmentation in Arabidopsis thaliana. Ann Bot 87:567–574

    CAS  Google Scholar 

  • García-Mata CG, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126:1196–1204

    PubMed  Google Scholar 

  • Garcia-Mata C, Lamattina L (2002) Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiol 128:790–792

    CAS  PubMed  Google Scholar 

  • García-Mata C, Lamattina L (2003) Abscisic acid, nitric oxide and stomatal closure—is nitrate reductase one of the missing links? Trends Plant Sci 8:20–26

    PubMed  Google Scholar 

  • Gaupels F, Furch AC, Will T, Mur LA, Kogel KH, van Bel AJ (2008) Nitric oxide generation in Vicia faba phloem cells reveals them to be sensitive detectors as well as possible systemic transducers of stress signals. New Phytol 178:634–646

    CAS  PubMed  Google Scholar 

  • Gémes K, Poór P, Horvath E, Kolbert Z, Szopkó D, Szepesi A, Tari I (2011) Cross-talk between salicylic acid and NaCl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity. Physiol Plant 142:179–192

    PubMed  Google Scholar 

  • Gill SS, Hasanuzzaman M, Nahar K, Macovei A, Tuteja N (2013) Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiol Biochem 63:254–261

    CAS  PubMed  Google Scholar 

  • Godber BLJ, Doel JJ, Sapkota GP, Blake DR, Stevens CR, Eisenthal R, Harrison R (2000) Reduction of nitrite to nitric oxide catalyzed by xanthine oxidoreductase. J Biol Chem 275:7757–7763

    CAS  PubMed  Google Scholar 

  • Gould KS, Klinguer A, Pugin A, Wendehenne D (2003) Nitric oxide production in tobacco leaf cells: a generalized stress response? Plant Cell Environ 26:1851–1862

    CAS  Google Scholar 

  • Greenberg BM, Wilson MI, Huang X-D, Duxbury CL, Gerhaddt KE, Gensemer RW (1997) The effects of ultraviolet-B radiation on higher plants. In: Wang W, Goursuch J, Hughes JS (eds) Plants for environmental studies. CRC Press, Boca Raton, pp 1–35

    Google Scholar 

  • Guo Y, Tian Z, Yan D, Zhang J, Qin P (2009) Effects of nitric oxide on salt stress tolerance in Kosteletzkya virginica. Life Sci J 6:67–75

    CAS  Google Scholar 

  • Gupta KJ, Fernie AR, van Dongen JT (2011) On the origins of nitric oxide. Trends Plant Sci 16:160–168

    CAS  PubMed  Google Scholar 

  • Hall JL (2002) Cellular mechanism for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    CAS  PubMed  Google Scholar 

  • Hao GP, Xing Y, Zhang JH (2008) Role of nitric oxide dependence on nitric oxide synthase-like activity in the water stress signaling of maize seedling. J Integr Plant Biol 50:435–442

    CAS  PubMed  Google Scholar 

  • Harrison R (2002) Structure and function of xanthine oxidoreductase: where are we now? Free Radic Biol Med 33:774–797

    CAS  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    CAS  PubMed  Google Scholar 

  • Hayat S, Hasan SA, Mori M, Fariduddin Q, Ahmad A (2010) Nitric oxide: chemistry, biosynthesis, and physiological role. In: Hayat S, Mori M, Pichtel J, Ahmad A (eds) Nitric oxide in plant physiology. Wiley-VCH, Weinheim, pp 1–16

    Google Scholar 

  • He JM, Xu H, She XP, Song XG, Zhao WM (2005) The role and the interrelationship of hydrogen peroxide and nitric oxide in the UV-B-induced stomatal closure in broad bean. Funct Plant Biol 32:237–247

    CAS  Google Scholar 

  • Heikal L, Gary PM, Dailey LA (2009) Characterisation of the decomposition behaviour of S-nitrosoglutathione and a new class of analogues: S-nitrosophytochelatins. Nitric Oxide 20:157–165

    CAS  PubMed  Google Scholar 

  • http://www.nobelprize.org/nobel_prizes/medicine/laureates/1998/

  • Hu KD, Hu LY, Li YH, Zhang FQ, Zhang H (2007) Protective roles of nitric oxide on germination and antioxidant metabolism in wheat seeds under copper stress. Plant Growth Regul 53:173–183

    CAS  Google Scholar 

  • Huang X, Stettmaier K, Michel C, Hutzler P, Mueller MJ, Durner J (2004) Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana. Planta 218:938–946

    CAS  PubMed  Google Scholar 

  • Imanishi S, Kito-Nakamura K, Matsuoka K, Morikami A, Nakamura K (1997) A major jasmonate-inducible protein of sweet potato, ipomoelin, is an ABA-independent wound-inducible protein. Plant Cell Physiol 38:643–652

    CAS  PubMed  Google Scholar 

  • Jiang MY, Zhang JH (2002) Water stress‐induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up‐regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–2410

    CAS  PubMed  Google Scholar 

  • Khokon AR, Okuma E, Hossain MA, Munemasa S, Uraji M, Nakamura Y, Mori IC, Murata Y (2011) Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant Cell Environ 34:434–443

    CAS  PubMed  Google Scholar 

  • Klepper LA (1978) Nitric oxide (NO) evolution from herbicide-treated soybean plants. Plant Physiol 61:S65

    Google Scholar 

  • Klepper LA (1979) Nitric oxide (NO) and nitrogen dioxide (NO2) emissions from herbicide-treated soybean plants. Atmos Environ 13:537–542

    CAS  Google Scholar 

  • Kopyra M, Gwóźdź EA (2003) Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol Biochem 41:1011–1017

    CAS  Google Scholar 

  • Koshland DE Jr (1992) The molecule of the year. Science 258:1861

    PubMed  Google Scholar 

  • Kuehn GD, Rodriguez-Garay B, Bagga S, Phillips GC (1990) Novel occurrence of uncommon polyamines in higher plants. Plant Physiol 94:855–857

    CAS  PubMed  Google Scholar 

  • Laspina VN, Groppas MD, Tomaro ML, Benavides MP (2005) Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci 169:323–330

    CAS  Google Scholar 

  • Leon J, Rojo E, Sanchez-Serrano JJ (2001) Wound signalling in plants. J Exp Bot 52:1–9

    CAS  PubMed  Google Scholar 

  • Leshem YY, Haramaty E (1996) The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn. foliage. J Plant Physiol 148:258–263

    CAS  Google Scholar 

  • Leshem YY, Wills RBH, Ku VVV (1998) Evidence for the function of the free radical gas—nitric oxide (NO)—as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol Biochem 36:825–833

    CAS  Google Scholar 

  • Li H, Samouilov A, Liu X, Zweier JL (2004) Characterization of the effects of oxygen on xanthine oxidase-mediated nitric oxide formation. J Biol Chem 279:16939–16946

    CAS  PubMed  Google Scholar 

  • Li L, Wang Y, Shen W (2012) Roles of hydrogen sulfide and nitric oxide in the alleviation of cadmium-induced oxidative damage in alfalfa seedling roots. Biometals 25:617–631

    CAS  PubMed  Google Scholar 

  • Lin Y, Liu Z, Shi Q, Wang X, Wei M, Yang F (2012) Exogenous nitric oxide (NO) increased antioxidant capacity of cucumber hypocotyl and radicle under salt stress. Sci Hortic 142:118–127

    CAS  Google Scholar 

  • Liu Y, Wu R, Wan Q, Xie G, Bi Y (2007) Glucose-6-phosphate dehydrogenase plays a pivotal role in nitric oxide-involved defense against oxidative stress under salt stress in red kidney bean roots. Plant Cell Physiol 48:511–522

    CAS  PubMed  Google Scholar 

  • López-Carrión AI, Castellano R, Rosales MA, Ruiz JM, Romero L (2008) Role of nitric oxide under saline stress: implications on proline metabolism. Biol Plant 52:587–591

    Google Scholar 

  • Lu SY, Su W, Li HH, Gu ZF (2009) Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2- and NO-induced antioxidant enzyme activities. Plant Physiol Biochem 47:132–138

    CAS  PubMed  Google Scholar 

  • Mackerness SAH, John CF, Jordan B, Thomas B (2001) Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett 489:237–242

    CAS  Google Scholar 

  • Mallick N, Mohn FH, Rai L, Soeder CJ (2000) Impact of physiological stresses on nitric oxide formation by green alga, Scenedesmus obliquus. J Microbiol Biotechnol 10:300–306

    CAS  Google Scholar 

  • Modolo LV, Augusto O, Almeida IM, Magalhaes JR, Salgado I (2005) Nitrite as the major source of nitric oxide production by Arabidopsis thaliana in response to Pseudomonas syringae. FEBS Lett 579:3814–3820

    CAS  PubMed  Google Scholar 

  • Modolo LV, Augusto O, Almeida IMG, Pinto-Maglio CAF, Oliveira HC, Seligman K, Salgado I (2006) Decreased arginine and nitrite levels in nitrate reductase-deficient Arabidopsis thaliana plants impair nitric oxide synthesis and the hypersensitive response to Pseudomonas syringae. Plant Sci 171:34–40

    CAS  Google Scholar 

  • Molassiotis A, Fotopoulos V (2011) Oxidative and nitrosative signalling in plants: two branches in the same tree? Plant Signal Behav 6:210–214

    CAS  PubMed  Google Scholar 

  • Moreau M, Lindermayr C, Durner J, Klessig DF (2009) NO synthesis and signaling in plants—where do we stand? Physiol Plant 138:372–383

    PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Murgia I, de Pinto MC, Delledonne M, Soave C, De Gara L (2004) Comparative effects of various nitric oxide donors on ferritin regulation, programmed cell death, and cell redox state in plant cells. J Plant Physiol 161:777–783

    CAS  PubMed  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hancock JT (2002a) Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol 128:13–16

    CAS  PubMed  Google Scholar 

  • Neill SJ, Desikan R, Clarke A (2002b) Hydrogen peroxide and nitric oxide as signaling molecules in plants. J Exp Bot 53:1237–1242

    CAS  PubMed  Google Scholar 

  • Neill S, Desikan R, Hancock J (2003a) Nitric oxide as a mediator of ABA signalling in stomatal guard cells. Bulg J Plant Physiol Spec Issue 2003:124–132

    Google Scholar 

  • Neill S, Desikan R, Hancock JT (2003b) Nitric oxide signalling in plants. New Phytol 159:11–35

    CAS  Google Scholar 

  • Neill S, Bright J, Desikan R, Hancock J, Harrison J, Wilson I (2008) Nitric oxide evolution and perception. J Exp Bot 59:25–35

    CAS  PubMed  Google Scholar 

  • Noriega GO, Yannarelli GG, Balestrasse KB, Batlle A, Tomaro ML (2007) The effect of nitric oxide on heme oxygenase gene expression in soybean leaves. Planta 226:1155–1163

    CAS  PubMed  Google Scholar 

  • Orozco-Cardenas M, Ryan CA (2002) Nitric oxide negatively modulates wound signaling in tomato plants. Plant Physiol 130:487–493

    CAS  PubMed  Google Scholar 

  • Pareek A, Sopory SK, Bohnert HJ, Govindjee (eds) (2010) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer, Dordrecht

    Google Scholar 

  • Pedroso MC, Magalhaes JR, Durzan D (2000) Nitric oxide induces cell death in Taxus cells. Plant Sci 157:173–180

    CAS  PubMed  Google Scholar 

  • Perazzolli M, Dominici P, Romero-Puertas MC, Zago E, Zeier J, Sonoda M, Lamb C, Delledonne M (2004) Arabidopsis non-symbiotic hemoglobin AHb1 modulates nitric oxide bioactivity. Plant Cell 16:2785–2794

    CAS  PubMed  Google Scholar 

  • Prakash L, Prathapsenan G (1988) Effect of NaCl on salinity and putrescine on shoot growth, tissue ion concentration, and yield of rice (Oryza sativa). J Agron Crop Sci 160:325–334

    CAS  Google Scholar 

  • Qiao W, Fan L-M (2008) Nitric oxide signaling in plant responses to abiotic stresses. J Integr Plant Biol 50:1238–1246

    CAS  PubMed  Google Scholar 

  • Qiu Z-B, Guo J-L, Zhang M-M, Lei M-Y, Li Z-L (2013) Nitric oxide acts as a signal molecule in microwave pretreatment induced cadmium tolerance in wheat seedlings. Acta Physiol Plant 35:65–73

    CAS  Google Scholar 

  • Rao MV, Davis KR (2001) The physiology of ozone induced cell death. Planta 213:682–690

    CAS  PubMed  Google Scholar 

  • Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110

    CAS  PubMed  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gómez M, del Río LA, Sandalio LM (2006) Cadmium effect on the oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of ROS and NO accumulation in vivo. Plant Cell Environ 29:1532–1544

    PubMed  Google Scholar 

  • Romero-Puertas MC, Palma JM, Gómez M, del Río LA, Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25:677–686

    CAS  Google Scholar 

  • Romero-Puertas MC, Rodríguez-Serrano M, Corpas FJ, Gómez M, del Río LA, Sandalio LM (2004) Cadmium-induced subcellular accumulation of O2· and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134

    CAS  Google Scholar 

  • Roy M, Ghosh B (1996) Polyamines, both common and uncommon, under heat stress in rice (Oryza sativa) callus. Physiol Plant 98:196–200

    CAS  Google Scholar 

  • Sakihama Y, Nakamura S, Yamasaki H (2002) Nitric oxide production mediated by nitrate reductase in the green alga Chlamydomonas reinhardtii: an alternative NO production pathway in photosynthetic organisms. Plant Cell Physiol 43:290–297

    CAS  PubMed  Google Scholar 

  • Sánchez-Calvo B, Barroso JB, Corpas FJ (2013) Hypothesis: nitro-fatty acids play a role in plant metabolism. Plant Sci 199–200:1–6

    PubMed  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, del Río LA (2002) Cadmium induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    Google Scholar 

  • Sang JR, Jiang MY, Lin F, Xu SC, Zhang AY, Tan MP (2008) Nitric oxide reduces hydrogen peroxide accumulation involved in water stress-induced subcellular antioxidant defense in maize plants. J Integr Plant Biol 50:231–243

    CAS  PubMed  Google Scholar 

  • Santa-Cruz A, Perez-Alfocea MA, Bolarin C (1997) Changes in free polyamine levels induced by salt stress in leaves of cultivated and wild tomato species. Physiol Plant 101:341–346

    CAS  Google Scholar 

  • Schilmiller AL, Howe GA (2005) Systemic signaling in the wound response. Curr Opin Plant Biol 8:369–377

    CAS  PubMed  Google Scholar 

  • Schopfer FJ, Baker PRS, Freeman BA (2003) NO-dependent protein nitration: a cell signaling event or an oxidative inflammatory response? Trends Biochem Sci 28:646–654

    CAS  PubMed  Google Scholar 

  • Sheokand S, Kumari A, Sawhney V (2008) Effect of nitric oxide and putrescine on antioxidative responses under NaCl stress in chickpea plants. Physiol Mol Biol Plant 14:355–362

    CAS  Google Scholar 

  • Shi S, Wang G, Wang Y, Zhang L, Zhang L (2005) Protective effect of nitric oxide against oxidative stress under ultraviolet-B radiation. Nitric Oxide 13:1–9

    CAS  PubMed  Google Scholar 

  • Shi Q, Ding F, Wang X, Wei M (2007) Exogenous nitric oxide protect cucumber roots against oxidative stress induced by salt stress. Plant Physiol Biochem 45:542–550

    CAS  PubMed  Google Scholar 

  • Singh HP, Batish DR, Kaur G, Arora K, Kohli RK (2008) Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environ Exp Bot 63:158–167

    CAS  Google Scholar 

  • Smirnoff N (ed) (1995) Environment and plant metabolism: flexibility and acclimation. BIOS Scientific Publishers, Oxford

    Google Scholar 

  • Song L, Ding W, Zhao M, Sun B, Zhang L (2006) Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed. Plant Sci 171:449–458

    CAS  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51

    CAS  Google Scholar 

  • Tanou G, Molassiotis A, Diamantidis G (2009) Hydrogen peroxide- and nitric oxide-induced systemic antioxidant prime-like activity under NaCl-stress and stress-free conditions in citrus plants. J Plant Physiol 166:1904–1913

    CAS  PubMed  Google Scholar 

  • Taylor ER, Nie XZ, MacGregor AW, Hill RD (1994) A cereal haemoglobin gene is expressed in seed and root tissues under anaerobic conditions. Plant Mol Biol 24:853–862

    CAS  PubMed  Google Scholar 

  • Tewari RK, Hahn EJ, Paek KY (2008) Modulation of copper toxicity induced oxidative damage by nitric oxide supply in the adventitious roots of Panax ginseng. Plant Cell Rep 27:171–181

    CAS  PubMed  Google Scholar 

  • Tian QY, Sun DH, Zhao MG, Zhang WH (2007) Inhibition of nitric oxide synthase (NOS) underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos. New Phytol 174:322–331

    CAS  PubMed  Google Scholar 

  • Tossi V, Cassia R, Lamattina L (2009a) Apocynin-induced nitric oxide production confers antioxidant protection in maize leaves. J Plant Physiol 166:1336–1341

    CAS  PubMed  Google Scholar 

  • Tossi V, Lamattina L, Cassia R (2009b) An increase in the concentration of abscisic acid is critical for nitric oxide mediated plant adaptive responses to UV-B irradiation. New Phytol 181:871–879

    CAS  PubMed  Google Scholar 

  • Tossi V, Lombardo C, Cassia R, Lamattina L (2012) Nitric oxide and flavonoids are systemically induced by UV-B in maize leaves. Plant Sci 193–194:103–109

    PubMed  Google Scholar 

  • Trevaskis B, Watts RA, Andersson C, Llewellyn D, Hargrove MS, Olson JS, Dennis ES, Peacock WJ (1997) Two hemoglobin genes in Arabidopsis thaliana: the evolutionary origins of leghemoglobins. Proc Natl Acad Sci U S A 94:12230–12234

    CAS  PubMed  Google Scholar 

  • Tun NN, Holk A, Scherer GFE (2001) Rapid increase of NO release in plant cell cultures induced by cytokinins. FEBS Lett 509:174–176

    CAS  PubMed  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523

    CAS  Google Scholar 

  • Valderrama R, Corpas FJ, Carreras A, Gómez-Rodríguez MV, Chaki M, Pedrajas JR, Fernández-Ocańa A, del Río LA, Barroso JB (2006) The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants. Plant Cell Environ 29:1449–1459

    CAS  PubMed  Google Scholar 

  • Wang YS, Yang ZM (2005) Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant Cell Physiol 46:1915–1923

    CAS  PubMed  Google Scholar 

  • Wang PG, Cai TB, Taniguchi N (2005) Nitric oxide donors. Wiley-VCH, Weinheim

    Google Scholar 

  • Wang Y, Feng H, Qu Y, Cheng J, Zhao Z, Zhang M, Wang X, An L (2006) The relationship between reactive oxygen species and nitric oxide in ultraviolet-B-induced ethylene production in leaves of maize seedlings. Environ Exp Bot 57:51–61

    CAS  Google Scholar 

  • Wang H, Huang J, Bi Y (2010a) Induction of alternative respiratory pathway involves nitric oxide, hydrogen peroxide and ethylene under salt stress. Plant Signal Behav 5:1636–1637

    CAS  PubMed  Google Scholar 

  • Wang H, Liang X, Huang J, Zhang D, Lu H, Liu Z, Bi Y (2010b) Involvement of ethylene and hydrogen peroxide in induction of alternative respiratory pathway in salt-treated Arabidopsis calluses. Plant Cell Physiol 51:1754–1765

    CAS  PubMed  Google Scholar 

  • Wang YQ, Li L, Cui WT, Xu S, Shen WB, Wang R (2012a) Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. Plant Soil 351:107–119

    CAS  Google Scholar 

  • Wang Y-Y, Hsu P-K, Tsay Y-F (2012b) Uptake, allocation and signaling of nitrate. Trends Plant Sci 17:458–467

    CAS  PubMed  Google Scholar 

  • Willidiano L, Camara T, Boget N, Claparols I, Santos M, Torne JM (1996) Polyamine and free amino acid variations in NaCl-treated embryogenic maize callus from sensitive and resistant cultivars. J Plant Physiol 149:179–185

    Google Scholar 

  • Wojtaszek P (2000) Nitric oxide in plant: to NO or not to. Phytochemistry 54:1–4

    CAS  PubMed  Google Scholar 

  • Xing H, Tan L, An L, Zhao Z, Wang S, Zhang C (2004) Evidence for the involvement of nitric oxide and reactive oxygen species in osmotic stress tolerance of wheat seedlings: inverse correlation between leaf abscisic acid accumulation and leaf water loss. Plant Growth Regul 42:61–68

    CAS  Google Scholar 

  • Xiong J, Zhang L, Fu G, Yang Y, Zhu C, Tao L (2012) Drought-induced proline accumulation is uninvolved with increased nitric oxide, which alleviates drought stress by decreasing transpiration in rice. J Plant Res 125:155–164

    CAS  PubMed  Google Scholar 

  • Xu X, Shi G, Ding C, Xu Y, Zhao J, Yang H, Pan Q (2011) Regulation of exogenous spermidine on the reactive oxygen species level and polyamine metabolism in Alternanthera philoxeroides (Mart.) Griseb under copper stress. Plant Growth Regul 63:251–258

    CAS  Google Scholar 

  • Xu MJ, Zhu Y, Dong JF, Jin HH, Sun LN, Wang ZA, Lu ZH, Zhang M, Lu D (2012) Ozone induces flavonol production of Ginkgo biloba cells dependently on nitrate reductase-mediated nitric oxide signaling. Environ Exp Bot 75:114–119

    CAS  Google Scholar 

  • Yamasaki H (2005) The NO world for plants: achieving balance in an open system. Plant Cell Environ 28:78–84

    CAS  Google Scholar 

  • Ye Y, Li Z, Xing D (2013) Nitric oxide promotes MPK6-mediated caspase-3-like activation in cadmium-induced Arabidopsis thaliana programmed cell death. Plant Cell Environ 36:1–15

    CAS  PubMed  Google Scholar 

  • Yu CC, Hung KT, Kao CH (2005) Nitric oxide reduces Cu toxicity and Cu-induced NH4 + accumulation in rice leaves. J Plant Physiol 162:1319–1330

    CAS  PubMed  Google Scholar 

  • Yu M, Yun B-W, Spoel SH, Loake GJ (2012) A sleigh ride through the SNO: regulation of plant immune function by protein S-nitrosylation. Curr Opin Plant Biol 15:424–430

    CAS  PubMed  Google Scholar 

  • Yu-qing W, Zhu-jun Z, Yong HE (2007) Alleviation of membrane lipid peroxidation by nitric oxide in cucumber leaves under salt stress. J Zhejiang Univ (Agric Life Sci) 33:533–538

    Google Scholar 

  • Zaninotto F, La Camera S, Polverari A, Delledonne M (2006) Cross talk between reactive nitrogen and oxygen species during the hypersensitive disease resistance response. Plant Physiol 141:379–383

    CAS  PubMed  Google Scholar 

  • Zhang Z, Naughton D, Winyard PG, Benjamin N, Blake DR, Symons MC (1998) Generation of nitric oxide by a nitrite reductase activity of xanthine oxidase: a potential pathway for nitric oxide formation in the absence of nitric oxide synthase activity. Biochem Biophys Res Commun 249:767–772

    CAS  PubMed  Google Scholar 

  • Zhang M, An L, Feng H (2003) The cascade mechanisms of nitric oxide as a second message of ultraviolet B in inhibiting mesocotyl elongation. Photochem Photobiol 77:219–225

    CAS  PubMed  Google Scholar 

  • Zhang Y, Wang L, Liu Y, Zhang Q, Wei Q, Zhang W (2006) Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta 224:545–555

    CAS  PubMed  Google Scholar 

  • Zhang AY, Jiang MY, Zhang JH, Ding HD, Xu SC, Hu XL, Tan MP (2007) Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol 175:36–50

    CAS  PubMed  Google Scholar 

  • Zhang LP, Mehta SK, Liu ZP, Yang ZM (2008a) Copper-induced proline synthesis is associated with nitric oxide generation in Chlamydomonas reinhardtii. Plant Cell Physiol 49:411–419

    CAS  PubMed  Google Scholar 

  • Zhang H, Li YH, Hu LY, Wang SH, Zhang FQ, Hu KD (2008b) Effects of exogenous nitric oxide donor on antioxidant metabolism in wheat leaves under aluminum stress. Russ J Plant Physiol 55:469–474

    CAS  Google Scholar 

  • Zhang A, Zhang J, Zhang J, Ye N, Zhang H, Tan M, Jiang M (2011) Nitric oxide mediates brassinosteroid-induced ABA biosynthesis involved in oxidative stress tolerance in maize leaves. Plant Cell Physiol 52:181–192

    CAS  PubMed  Google Scholar 

  • Zhao Z, Chen G, Zhang C (2001) Interaction between reactive oxygen species and nitric oxide in drought-induced abscisic acid synthesis in root tips of wheat seedlings. Aust J Plant Physiol 28:1055–1061

    CAS  Google Scholar 

  • Zhao L, Zhang F, Guo J, Yang Y, Li B, Zhang L (2004) Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol 134:849–857

    CAS  PubMed  Google Scholar 

  • Zhao MG, Tian QY, Zhang WH (2007) Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol 144:206–217

    CAS  PubMed  Google Scholar 

  • Zhao L, He J, Wang X, Zhang L (2008) Nitric oxide protects against polyethylene glycol-induced oxidative damage in two ecotypes of reed suspension cultures. J Plant Physiol 165:182–191

    CAS  PubMed  Google Scholar 

  • Zhao MG, Chen L, Zhang LL, Zhang WH (2009) Nitric reductase dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol 151:755–767

    CAS  PubMed  Google Scholar 

  • Zottini M, Costa A, De Michele R, Ruzzene M, Carimi F, Lo Schiavo F (2007) Salicylic acid activates nitric oxide synthesis in Arabidopsis. J Exp Bot 58:1397–1405

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Bajguz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bajguz, A. (2014). Nitric Oxide: Role in Plants Under Abiotic Stress. In: Ahmad, P., Wani, M. (eds) Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8600-8_5

Download citation

Publish with us

Policies and ethics