Skip to main content

Methods and Role of Embryo Rescue Technique in Alien Gene Transfer

  • Chapter
  • First Online:
Alien Gene Transfer in Crop Plants, Volume 1

Abstract

Embryo abortion occurs frequently in wide crosses, and thus embryo rescue is required for survival of the next generation. Rescues are performed by either directly transferring the excised embryo to an artificial medium or indirectly through flower (ovary), immature seed (fertilized ovule), or pod (silique) culture. Various techniques used for oil crops, cereals, legumes, and horticultural crops are presented. Altering medium components were the major routes for developing protocols for each species with adaptations to the base medium, sucrose concentration, or vitamin and growth regulator content. Monocot culture tended to be more direct than dicot culture, where many protocols required a multi-step approach from pod to ovule culture to embryo rescue, shoot regeneration, and root induction. Each step required a specific medium and growth conditions. Hybrid embryos as young as 2 days after pollination have been recovered. However, many species such as soybean and chickpea still need procedures for rescue of very young embryos. In other species hurdles such as poor rooting have been overcome by using grafting techniques. Embryo rescue remains a useful component in any breeding program where wide or interspecific crosses are preformed, where rapid cycling through generations is used, and where germplasm preservation is required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad F, Slinkard AE (1991) Relative growth rates in the annual Cicer species. Ann Bot 68:489–493

    Google Scholar 

  • Bang SW, Kaneko Y, Matsuzawa Y (1996) Production of intergeneric hybrids between Raphanus and Moricandia arvensis. Breed Sci 46:45–51

    Google Scholar 

  • Bang SW, Sugihara K, Jeung BH, Kaneko R, Satake E, Kaneko Y, Matsuzawa Y (2007) Production and characterization of intergeneric hybrids between Brassica oleracea and a wild relative Moricandia arvensis. Plant Breed 126:101–103

    CAS  Google Scholar 

  • Bodanese-Zanettini MH, Lauxen MS, Richter SNC, Cavalli-Molina S, Lange CE, Wang PJ, Hu CY (1996) Wide hybridization between Brazilian soybean cultivars and wild perennial relatives. Theor Appl Genet 93:703–709

    PubMed  CAS  Google Scholar 

  • Chandler JM, Beard BH (1983) Embryo culture of Helianthus hybrids. Crop Sci 23:1004–1007

    Google Scholar 

  • Chandra A, Gupta ML, Banga SS, Banga SK (2004) Production of an interspecific hybrid between Brassica fruticulosa and B. rapa. Plant Breed 123:497–498

    Google Scholar 

  • Chen JF, Staub J, Qian C, Jiang J, Luo X, Zhuang F (2003) Reproduction and cytogenetic characterization of interspecific hybrids derived from Cucumis hystrix Chakr. × Cucumis sativus L. Theor Appl Genet 106:688–695

    PubMed  CAS  Google Scholar 

  • Chu CC (1978) The N6 medium and its applications to anther culture of cereal crops. In: Proceedings of symposium on plant tissue culture. Beijing, China, Science Press, 43–50

    Google Scholar 

  • Clarke HJ, Kumari M, Khan TN, Siddique KHM (2011) Poorly formed chloroplasts are barriers to successful interspecific hybridization in chickpea following in vitro embryo rescue. Plant Cell Tiss Org Cult 106:465–473

    CAS  Google Scholar 

  • Clements JC, Prilyuk L, Quealy JA, Francis GW (2008) Interspecific crossing among the New World Lupin Species for Lupinus mutabilis Crop Improvement. In: Palta JA, Berger JB (eds) 12th international lupin conference. International Lupin Association, Fremantle, Western Australia, pp 14–18

    Google Scholar 

  • Cohen D, Ladizinsky G, Ziv M, Muehlbauer FJ (1984) Rescue of interspecific Lens hybrids by means of embryo culture. Plant Cell Tiss Org Cult 3:343–347

    CAS  Google Scholar 

  • Consonni G, Aspesi C, Barbante A, Dofini S, Giuliani C, Giulini A, Hansen S, Brettschneider R, Pilu R, Gavazzi G (2003) Analysis of four maize mutants arrested in early embryogenesis reveals an irregular pattern of cell division. Sex Plant Reprod 15:281–290

    Google Scholar 

  • Dahleen LD, Joppa LR (1992) Hybridization and tissue culture of Hordeum vulgare × Elymus canadensis. Genome 35:1045–1049

    Google Scholar 

  • Dunstan DI, Short KC (1977) Improved growth of tissue cultures of the onion Allium cepa. Physiol Plant 41:70–72

    Google Scholar 

  • Emershad RL, Ramming DW (1994) Somatic embryogenesis and plant development from immature zygotic embryos of seedless grapes (Vitis vinifera L.). Plant Cell Rep 14:6–12

    CAS  Google Scholar 

  • Espinasse A, Volin J, Dybing CD, Lay C (1991) Embryo rescue through in ovulo culture in Helianthus. Crop Sci 31:102–108

    Google Scholar 

  • Faure N, Serieys H, Berville A, Cazaux E, Kaan F (2002) Occurrence of partial hybrids in wide crosses between sunflower (Helianthus annuus) and perennial species H. mollis and H. orgyalis. Theor Appl Genet 104:652–660

    PubMed  CAS  Google Scholar 

  • Feng Q, Stalker HT, Pattee HE (1996) Plant recovery of selfs and interspecific hybrids of Arachis by in vitro culture of peg tips. Crop Sci 36:1660–1666

    Google Scholar 

  • Fratini R, Ruiz ML (2011) Wide crossing in lentil through embryo rescue. In: Thorpe TA, Young EC (eds) Plant Embryo Culture: Methods and Protocols. Methods in Molecular Biology, vol 710. Humana press, New York, NY, pp 131–139

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybeanroot cells. Exp Cell Res 50:150–158

    Google Scholar 

  • Garcia MD, Molina MC (1995) Embryo in-viability in crosses of tetraploid (2n=40) × diploid (2n=20) can be overcome by embryo rescue. Maize Genetics Coop Newsl 69:90–91

    Google Scholar 

  • Garcia MD, Molina MC (1999) Plant regeneration of maize-Tripsacum hybrids from organogenic or embryogenic long-term callus cultures. Maize Genetics Coop Newsl 73:64–65

    Google Scholar 

  • Garcia MD, Molina MC (2001) Embryo rescue and induction of somatic embryogenesis as a method to overcome seed in-viability in Zea mays ssp. mays × Zea mays ssp. parviglumis crosses. Biologia Plant 44:497–501

    Google Scholar 

  • Garcia MD, Molina MC, Caso O (1991) In vitro culture of 0.15–0.25mm immature embryos. I. Picloram effects. Maize Genetics Coop Newsl 65:76–77

    Google Scholar 

  • Geerts P, Toussaint A, Mergeai G, Baudoin JP (2011) Phaseolus immature embryo rescue technology. In: Thorpe TA, Young EC (eds) Plant Embryo Culture: Methods and Protocols. Humana press, New York, NY, pp 117–129

    Google Scholar 

  • Grosser JW, Gmitter FG Jr (1990) Protoplast fusion and citrus improvement. Plant Breed Rev 8:339–374

    Google Scholar 

  • Gurusamy V, Warkentin TD, Vandenberg A (2012) Grafting pea, faba bean, and lentil to improve pulse crop breeding. Can J Plant Sci 92:31–38

    Google Scholar 

  • Gutierrez-Marcos JF, Pra MD, Giulini A, Costa LM, Gavazzi G, Cordelier S, Sellam O, Tatout C, Paul W, Perez P, Dickinson HG, Consonni G (2007) empty pericarp4 encodes a mitochondrion-targeted pentatricopeptide repeat protein necessary for seed development and plant growth in maize. Plant Cell 19:196–210

    PubMed  CAS  Google Scholar 

  • Hossain MA, Minami M, Nemoto K (2003) Immature embryo culture and interspecific hybridization between Capsicum annuum L. and C. frutescens L. viaembryo rescue. Jap J Trop Agric 47:9–16

    CAS  Google Scholar 

  • Hu CY, Yin GC, Bodanese-Zanettini MH (1996) Haploid of soybean. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro Haploid Production in Higher Plants. Kluwer, Dordrecht, pp 377–395

    Google Scholar 

  • Hu CY, Zanettini MHB (1995) Embryo culture and embryo rescue for wide cross hybrids. In: Gamborg OL, Phillips GC (eds) Plant Cell, Tissue and Organ Culture: fundamental methods. Springer Verlag, Berlin, pp 129–141

    Google Scholar 

  • Inomata N (1993) Embryo rescue techniques for wide hybridization. In: Labana KS, Banga SS, Banga SK (eds) Breeding oilseed Brassicas. SpringerVerlag, Berlin, pp 94–107

    Google Scholar 

  • Kasten W, Paradies T, Kunert R, Straka P (1991) Progress in realization of interspecific hybrids in the genus Lupinus by means of embryo rescue technique. Biol Zentralblatt 110:301–309

    Google Scholar 

  • Kaushal DR, Malaviya DR, Roy AK, Kumar B, Tiwari A (2005) Trifolium alexandrinum × T. resupinatum—interspecific hybrids developed through embryo rescue. Plant Cell Tiss Org Cult 83:137–144

    Google Scholar 

  • Krauter R, Steinmetz A, Friedt W (1991) Efficient interspecific hybridization in the genus Helianthus via “embryo rescue” and characterization of the hybrids. Theor Appl Genet 82:521–525

    Google Scholar 

  • Kuhlman LC, Burson BL, Stelly DM, Klein PE, Klein RR, Price HJ, Rooney WL (2010) Early-generation germplasm introgression from Sorghum macrospermum into sorghum (S. bicolor). Genome 53:419–429

    PubMed  CAS  Google Scholar 

  • Kukharchyk N, Kastrickaya M (2006) Embryo rescue techniques in Prunus L. Breeding. J Fruit Ornam Plant Res 14(Suppl 1):129–135

    Google Scholar 

  • Kumar AS, Gamborg OL, Nabors MW (1988) Plant regeneration from cell suspension cultures of Vigna aconitifolia. Plant Cell Rep 7:138–141

    CAS  Google Scholar 

  • Kumari M, Clarke HJ, Colas des Francs-Small C, Small I, Khan TN, Siddique KHM (2011) Albinism does not correlate with biparental inheritance of plastid DNA in interspecific hybrids in Cicer species. Plant Sci 180:628–633

    PubMed  CAS  Google Scholar 

  • Kynast RG, Riera-Lizarazu O (2011) Development and use of oat-maize chromosome and radiation hybrids. In: Birchler JS (ed) Plant Chromosome Engineering: Methods and Protocols, Methods in Molecular Biology, vol 701. Humana Press, New York, NY, pp 259–284

    Google Scholar 

  • Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127

    CAS  Google Scholar 

  • Liu W, Chen XS, Liu GJ, Liang Q, He TM, Feng JR (2007) Interspecific hybridization of Prunus persica with P. armeniaca and P. salicina using embryo rescue. Plant Cell Tiss Org Cult 88:289–299

    Google Scholar 

  • Mallikarjuna N (1998) Ovule culture to rescue aborting embryos from pigeonpea (Cajanus cajan (L.) Millspaugh) wide crosses. Indian J Exp Biol 36:225–228

    CAS  Google Scholar 

  • Mallikarjuna N, Moss JP (1995) Production of hybrids between Cajanus platycarpus and Cajanus cajan. Euphytica 83:43–46

    Google Scholar 

  • Mallikarjuna N, Muehlbauer FJ (2011) Chickpea hybridization using in vitro techniques. In: Thorpe TA, Young EC (eds) Plant Embryo Culture: Methods and Protocols, Methods in Molecular Biology, vol 710. Humana press, New York, NY, pp 93–105

    Google Scholar 

  • Mariam AL, Zakri AH, Mahani MC, Normah MN (1996) Interspecific hybridization of cultivated rice, Oryza sativa L. with the wild rice, O. minuta Presl. Theor Appl Genet 93:664–671

    PubMed  CAS  Google Scholar 

  • McCown BH, Lloyd G (1981) Woody plant medium, a mineral nutrient formula for micro culture of woody plant species. Hortscience 16:453

    Google Scholar 

  • McCown BH, Lloyd G (1981) Woody plant medium, a mineral nutrient formula for micro culture of woody plant species. Hortscience 16:453

    Google Scholar 

  • McCoy TJ, Smith LY (1986) Interspecific hybridization of perennial Medicago species using ovule-embryo culture. Theor Appl Genet 71:772–783

    Google Scholar 

  • Mergeai G, Schmit V, Lecomte B, Baudoin JP (1997) Mise au point d’une technique de culture in vitro d’embryons immatures de Phaseolus. Biotechnol Agron Soc Environ 1:49–58

    Google Scholar 

  • Momotaz A, Kato M, Kakihara F (1998) Production of intergeneric hybrids between Brassica and Sinapis species by means of embryo rescue technique. Euphytica 103:123–130

    Google Scholar 

  • Multani DS, Jena KK, Brar DS, de los Reyes BG, Angeles ER, Khush GS (1994) Development of monosomic alien addition lines and introgression of genes from Oryza australiensis Domin. to cultivated rice O. sativa L. Theor Appl Genet 88:102–109

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Murashige T, Tucker OPH (1969) Growth requirements of citrus tissue culture. Proceedings of the First International Citrus Symposium, vol. 3. p 1155–1161

    Google Scholar 

  • Nakajima T, Doyama Y, Matsumoto H (1969) In vitro culture of excised ovules of white clover Trifolium repens L. Jpn J Breed 19:373–378

    Google Scholar 

  • Neal CA, Topolesky LD (1983) Effects of the basal medium on growth of immature embryos in vitro. J Am Soc Hort Sci 108:434–438

    CAS  Google Scholar 

  • Nishi S, Kawata J, Toda M (1959) In the breeding of interspecific hybrids between two genomes “c” and “a” of Brassica through the application of embryo culture techniques. Jpn J Breed 5:215–222

    Google Scholar 

  • Nitsch C, Nitsch JP (1967) The induction of flowering stem segments of Plumbago indica L. 1. the production of vegetative buds. Planta 72:355–370

    CAS  Google Scholar 

  • Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87

    PubMed  CAS  Google Scholar 

  • Ohnishi T, Yoshino M, Yamakawa H, Kinoshita T (2011) The biotron breeding system: a rapid and reliable procedure for genetic studies and breeding in rice. Plant Cell Physiol 52:1249–1257

    PubMed  CAS  Google Scholar 

  • Palmer JL, Lawn RJ, Adkins SW (2002) An embryo-rescue protocol for Vigna interspecific hybrids. Aust J Bot 50:331–338

    Google Scholar 

  • Pattee HE, Mohapatra SC (1987) Anatomical changes during ontogeny of the peanut (Arachis hypogea L.) fruit: mature megagametophyte through heart-shaped embryo. Bot Gaz 148: 156–164

    Google Scholar 

  • Pattee HE, Stalker HE (1991) Comparative embryo sac morphology at anthesis of cultivated and wild species of Arachis. Ann Bot 68:511–517

    Google Scholar 

  • Phillips GC, Collins GB (1979) In vitro tissue culture of selected legumes and plant regeneration from callus cultures of red clover. Crop Sci 19:59–64

    Google Scholar 

  • Phillips GC, Collins GB (1984) Red clover and other forage legumes. In: Sharp WR, Evans DA, Ammirato PV, Yamada Y (eds) Handbook of Plant Cell Culture, vol 2. Macmillan, New York, NY, pp 169–210

    Google Scholar 

  • Phillips GC, Collins GB, Taylor NL (1982) Interspecific hybridization of red clover (Trifolium pretense L.) with T. sarosiense Hazsl. using in vitro embryo rescue. Theor Appl Genet 62:17–24

    Google Scholar 

  • Phillips GC, Grosser JW, Berger S, Taylor NL, Collins GB (1992) Interspecific hybridization between red clover and Trifolium alpestre using in vitro embryo rescue. Crop Sci 32: 1113–1115

    Google Scholar 

  • Pico B, Herraiz J, Ruiz JJ, Nuez F (2002) Widening the genetic basis of virus resistance in tomato. Sci Hort 94:73–89

    CAS  Google Scholar 

  • Pratap A, Sethi GS, Chaudhary HK (2005) Relative efficiency of different Gramineae genera for haploid induction in triticale and triticale × wheat hybrids through the chromosome elimination technique. Plant Breed 124:147-153

    Google Scholar 

  • Price HJ, Hodnett GL, Burson BL, Dillon SL, Rooney WL (2005) A Sorghum bicolor × S. macrospermum hybrid recovered by embryo rescue and culture. Aus J Bot 53:579–582

    Google Scholar 

  • Rahman MH (2004) Optimum age of siliques for rescue of hybrid embryos from crosses between Brassica oleracea, B. rapa and B. carinata. Can J Plant Sci 84:965–969

    Google Scholar 

  • Ramon M, Hanneman RE Jr (2002) Introgression of resistance to late blight (Phytophthora infestans) from Solanum pinnatisectum into S. tuberosum using embryo rescue and double pollination. Euphytica 127:421–435

    CAS  Google Scholar 

  • Rines HW, Phillips RL, Kynast RG, Okagaki RJ, Galatowitsch MW, Huettl PA, Stec AO, Jacobs MS, Suresh J, Porter HL, Walch MD, Cabral CB (2009) Addition of individual chromosomes of maize inbreds B73 and Mo17 to oat cultivars Starter and Sun II: maize chromosome retention, transmission, and plant phenotype. Theor Appl Genet 119:1255–1264

    PubMed  Google Scholar 

  • Ripley VL, Beversdorf WD (2003) Development of self-incompatible Brassica napus: (I) introgression of S-alleles from Brassica oleracea through interspecific hybridization. Plant Breed 122:1–5

    CAS  Google Scholar 

  • Rodrangboon P, Pongtongkam P, Suputtitada S, Adachi T (2002) Abnormal embryo development and efficient embryo rescue in interspecific hybrids, Oryza sativa × O. minuta and O. sativa × O. officinalis. Breed Sci 52:123–129

    Google Scholar 

  • Roy AK, Malaviya DR, Kaushal P (2011) Generation of interspecific hybrids of Trifolium using embryo rescue techniques. In: Thorpe TA, Young EC (eds) Plant Embryo Culture: Methods and Protocols, Methods in Molecular Biology, vol 710. Humana Press, New York, NY, pp 141–151

    Google Scholar 

  • Roy AK, Malaviya DR, Kaushal P, Kumar B, Tiwari A (2004) Interspecific hybridization of Trifolium alexandrinum with T. constantinopolitanum using embryo rescue. Plant Cell Rep 22:705–710

    PubMed  CAS  Google Scholar 

  • Sauca F, Lazar DA (2011) Scientific results regarding the gene(s) introgression of drought-resistance to Helianthus annuus species, using embryo rescue. Rom Biotechnol Lett 16:3–8

    Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    CAS  Google Scholar 

  • Sidhu PK, Howes NK, Aung T, Zwer PK, Davies PA (2006) Factors affecting oat haploid production following oat × maize hybridization. Plant Breed 125:243–247

    Google Scholar 

  • Skalova D, Dziechciarkova M, Lebeda A, Kristkova E, Navratilova B (2008a) Interspecific hybridization of Cucumis anguria and C. zeyheri via embryorescue. Biologia Plant 52:775–778

    Google Scholar 

  • Skalova D, Navratilova B, Lebeda A (2008b) Embryo rescue of cucumber (Cucumis sativus), muskmelon (C. melo) and some wild Cucumis species (C. anguria, C. zeyheri, and C.metuliferus). J Appl Bot Food Qual 82:83–89

    Google Scholar 

  • Srivastava A, Mukhopadhyay A, Arumugam N, Gupta V, Verma JK, Pental D, Pradhan AK (2004) Re-synthesis of Brassica juncea through interspecific crosses between B. rapa and B. nigra. Plant Breed 123:204–206

    CAS  Google Scholar 

  • Sukno S, Ruso J, Jan CC, Melero-Vara JM, Fernandez-Martinez JM (1999) Interspecific hybridization between sunflower and wild perennial Helianthus species via embryo rescue. Euphytica 106:69–78

    Google Scholar 

  • Taira T, Larter EN (1978) Factors influencing development of wheat-rye hybrid embryos in vitro. Crop Sci 18:348–350

    CAS  Google Scholar 

  • Tan ML, Song JK, Deng XX (2007) Production of two mandarin trifoliate orange hybrid populations via embryo rescue with verification by SSR analysis. Euphytica 157:155–160

    CAS  Google Scholar 

  • Tian L, Wang YJ (2008) Seedless grape breeding for disease resistance by using embryo rescue. Vitis 47:15–19

    CAS  Google Scholar 

  • Tian L, Wang YJ, Niu L, Tang DM (2008) Breeding of disease-resistant seedless grapes using Chinese wild Vitis spp. I. In vitro embryo rescue and plant development. Sci Hort 117:136–141

    Google Scholar 

  • Tonguç M, Griffiths PD (2004a) Development of black rot resistant interspecific hybrids between Brassica oleracea L. cultivars and Brassica accession a19182, using embryo rescue. Euphytica 136:313–318

    Google Scholar 

  • Tonguç M, Griffiths PD (2004b) Transfer of powdery mildew resistance from Brassica carinata to Brassica oleracea through embryo rescue. Plant Breed 123:587–589

    Google Scholar 

  • Umehara M, Sueyoshi T, Shimomura K, Nakahara T (2006) Production of interspecific hybrids between Allium fistulosum L. and A. macrostemon Bunge through ovary culture. Plant Cell Tiss Org Cult 87:297–304

    CAS  Google Scholar 

  • Wen J, Tu JX, Li ZY, Fu TD, Ma CZ, Shen JX (2008) Improving ovary and embryo culture techniques for efficient re-synthesis of Brassica napus from reciprocal crosses between yellow-seeded diploids B. rapa and B. oleracea. Euphytica 162:81–89

    Google Scholar 

  • White PR (1963) The cultivation of animal and plant cells. Ronald Press, New York, NY, pp 1–228

    Google Scholar 

  • Williams WM, Verry IM, Ansari HA, Hussain SW, Ullah I, Williamson ML, Ellison NW (2011) Eco-geographically divergent diploids, Caucasian clover (Trifolium ambiguum) and western clover (T. occidentale), retain most requirements for hybridization. Ann Bot 108:1269–1277

    PubMed  Google Scholar 

  • Xu J, Kasha KJ (1992) Transfer of a dominant gene for powdery mildew resistance and DNA from Hordeum bulbosum into cultivated barley (H. vulgare). Theor Appl Genet 84:771–777

    CAS  Google Scholar 

  • Yanagino T, Sugawara E, Watanabe M, Takahata Y (2003) Production and characterization of an interspecific hybrid between leek and garlic. Theor Appl Genet 107:1–5

    PubMed  CAS  Google Scholar 

  • Yang HH, Chen XS, Feng BC, Liu HF, Zheng Z (2004) Creating new germplasm by distant hybridization in stone fruits II. Embryo rescue and hybrid identification between plum and apricot. Sci Agri Sinica 37:1203–1207

    Google Scholar 

  • Yeung EC, Sussex IM (1979) Embryogeny of Phaseolus coccineus: the suspensor and the growth of the embryo-proper in vitro. Z Pflanzenphysiol 91:423–433

    CAS  Google Scholar 

  • Yoon JB, Yang DC, Do JW, Park HG (2006) Overcoming two post-fertilization genetic barriers in interspecific hybridization between Capsicum annuum and C. baccatum for introgression of anthracnose resistance. Breed Sci 56:31–38

    CAS  Google Scholar 

  • Yoon JB, Yang DC, Lee WP, Ahn SY, Park HG (2004) Genetic resources resistant to anthracnose in the genus Capsicum. J Kor Soc Hort Sci 45:318–323

    Google Scholar 

  • Yuan HY, Lulsdorf M, Tullu A, Vandenberg A (2011) In vivo grafting of wild Lens species to Vicia faba rootstocks. Plant Genet Res 9:543–548

    Google Scholar 

  • Zhang GQ, Tang GX, Song WJ, Zhou WJ (2004) Resynthesizing Brassica napus from interspecific hybridization between Brassica rapa and B. oleracea through ovary culture. Euphytica 140:181–187

    CAS  Google Scholar 

  • Zhang GQ, Zhou WJ, Gu HH, Song WJ, Momoh EJJ (2003) Plant regeneration from hybridization of Brassica juncea and B. napus through embryo culture. J Agron Crop Sci 189:347–350

    Google Scholar 

  • Zhu PF, Wei YT (2009) Compatibility, production of interspecific F1 and BC1 between improved CMS Brassica campestris ssp. pekinensis and B. oleracea var. acephala. J Plant Breed Crop Sci 1:265–269

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika M. Lulsdorf Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lulsdorf, M.M., Ferrie, A., Slater, S.M.H., Yuan, H.Y. (2014). Methods and Role of Embryo Rescue Technique in Alien Gene Transfer. In: Pratap, A., Kumar, J. (eds) Alien Gene Transfer in Crop Plants, Volume 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8585-8_4

Download citation

Publish with us

Policies and ethics