Skip to main content

Deimination in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis

  • Chapter
  • First Online:
Protein Deimination in Human Health and Disease

Abstract

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterised by focal areas of myelin loss, accompanied by inflammatory cell infiltrates, predominantly T cells and monocytes and microglial activation. Subsequent axonal damage leads to symptoms such as visual disturbance, sensory and motor impairment, pain and fatigue. Myelin basic protein (MBP), an essential component of myelin, is known to undergo post-translational modifications including citrullination which in in vitro studies lead to a more open molecular structure and an increased susceptibility to enzyme degradation. Citrullination of MBP may also generate new immunogenic epitopes. Excess citrullination has previously been reported in the CNS in post-mortem MS brain tissue with 45 % of MBP citrullinated in MS patients compared with 18 % in control tissue. Glial fibrillary acidic protein (GFAP), an astrocytic intermediate filament protein, has also been shown to be citrullinated in MS tissue and in the animal model of MS, experimental autoimmune encephalomyelitis (EAE). This citrullination is carried out by peptidylarginine deiminase (PAD) enzymes of which PAD 2 and 4 are found in the brain. Studies on EAE have shown increased citrullinated proteins in diseased animals co-localising with GFAP and MBP, correlating with increased disease severity. Here we summarise the current literature on citrullination in MS and EAE and our own findings in relation to disease pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen IV, McKeown SR (1979) A histological, histochemical and biochemical study of the macroscopically normal white matter in multiple sclerosis. J Neurol Sci 41:81–91

    Article  PubMed  CAS  Google Scholar 

  • Antel J, Bar-Or A (2006) Roles of immunoglobulins and B cells in multiple sclerosis: from pathogenesis to treatment. J Neuroimmunol 180:3–8

    Article  PubMed  CAS  Google Scholar 

  • Avouac J, Gossec L, Dougados M (2006) Diagnostic and predictive value of anti-cyclic citrullinated protein antibodies in rheumatoid arthritis: a systematic literature review. Br Med J 65:845–851

    CAS  Google Scholar 

  • Barcellos LF, Sawcer S, Ramsay PP et al (2006) Heterogeneity at the HLA-DRB1 locus and risk for multiple sclerosis. Hum Mol Genet 15:2813–2824

    Article  PubMed  CAS  Google Scholar 

  • Beniac DR, Wood DD, Palaniyar N, Ottensmeyer FP, Moscarello MA, Harauz G (2000) Cryoelectron microscopy of protein–lipid complexes of human myelin basic protein charge isomers differing in degree of citrullination. J Struct Biol 129:80–95

    Article  PubMed  CAS  Google Scholar 

  • Berger T, Reindl M (2007) Multiple sclerosis: disease biomarkers as indicated by pathophysiology. J Neurol Sci 259:21–26

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya SK, Bhat MB, Takahara H (2006a) Modulation of peptidyl arginine deiminase 2 and implication for neurodegeneration. Curr Eye Res 12:1063–1071

    Article  CAS  Google Scholar 

  • Bhattacharya SK, Crabb JS, Bonilha VL, Gu X, Takahara H, Crabb JW (2006b) Proteomics implicates peptidyl arginine deiminase 2 and optic nerve citrullination in glaucoma pathogenesis. Invest Ophthalmol Vis Sci 47:2508–2514

    Article  PubMed  Google Scholar 

  • Bodil Roth E, Theander E, Londos E et al (2008) Pathogenesis of autoimmune diseases: antibodies against transglutaminase, peptidylarginine deiminase and protein-bound citrulline in primary Sjögren’s syndrome, multiple sclerosis and Alzheimer’s disease. Scand J Immunol 67:626–631

    Article  PubMed  CAS  Google Scholar 

  • Boggs JM (2006) Myelin basic protein: a multifunctional protein. Cell Mol Life Sci 63:1945–1961

    Article  PubMed  CAS  Google Scholar 

  • Boggs JM, Rangaraj G, Koshy KM, Ackerley C, Wood DD, Moscarello MA (1999) Highly deiminated isoform of myelin basic protein from multiple sclerosis brain causes fragmentation of lipid vesicles. J Neurosci Res 57:529–535

    Article  PubMed  CAS  Google Scholar 

  • Bourahoui A, De Seze J, Guttierez R, Onraed B, Hennache B, Ferriby D, Stojkovic T, Vermersch P (2004) CSF isoelectrofocusing in a large cohort of MS and other neurological diseases. Eur J Neurol 11(8):525–529

    Article  PubMed  CAS  Google Scholar 

  • Brunner C, Lassmann H, Waehneldt TV, Matthieu JM, Linington C (1989) Differential ultrastructural localization of myelin basic protein, myelin/oligodendroglial glycoprotein, and 2′,3′-cyclic nucleotide 3′-phosphodiesterase in the CNS of adult rats. J Neurochem 52:296–304

    Article  PubMed  CAS  Google Scholar 

  • Cannella B, Raine CS (1995) The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann Neurol 37:424–435

    Article  PubMed  CAS  Google Scholar 

  • Cao L, Sun D, Whitaker JN (1998) Citrullinated myelin basic protein induces experimental autoimmune encephalomyelitis in Lewis rats through a diverse T cell repertoire. J Neuroimmunol 88(1–2):21–29

    Article  PubMed  CAS  Google Scholar 

  • Cao L, Goodin R, Wood D, Moscarello MA, Whitaker JN (1999) Rapid release and unusual stability of immunodominant peptide 45–89 from citrullinated myelin basic protein. Biochemistry 38:6157–6163

    Article  PubMed  CAS  Google Scholar 

  • Cao L, Sun D, Cruz T, Moscarello MA, Ludwin SK, Whitaker JN (2000) Inhibition of experimental allergic encephalomyelitis in the Lewis rat by paclitaxel. J Neuroimmunol 108(1–2):103–111

    Article  PubMed  CAS  Google Scholar 

  • Carbajal KS, Schaumburg C, Strieter R, Kane J, Lane TE (2010) Migration of engrafted neural stem cells is mediated by CXCL12 signaling through CXCR4 in a viral model of multiple sclerosis. Proc Natl Acad Sci U S A 107:11068–11073

    Article  PubMed  CAS  Google Scholar 

  • Carrillo-Vico A, Leech MD, Anderton SM (2010) Contribution of myelin autoantigen citrullination to T cell autoaggression in the central nervous system. J Immunol 184(6):2839–2846

    Article  PubMed  CAS  Google Scholar 

  • Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354:610–621

    Article  PubMed  CAS  Google Scholar 

  • Chavanas S, Méchin MC, Takahara H et al (2004) Comparative analysis of the mouse and human peptidylarginine deiminase gene clusters reveals highly conserved non-coding segments and a new human gene, PADI6. Gene 330:19–27

    Article  PubMed  CAS  Google Scholar 

  • Compston A, Coles A (2002) Multiple Sclerosis. Lancet 359:1221–1231

    Article  PubMed  Google Scholar 

  • Compston A, Coles A (2008) Multiple sclerosis. Lancet 372:1502–1517

    Article  PubMed  CAS  Google Scholar 

  • Cuthbert GL, Daujat S, Snowden AW, Erdjument-Bromage H, Hagiwara T, Yamada M, Schneider R, Gregory PD, Tempst P, Bannister AJ (2004) Kouzarides T Histone deimination antagonizes arginine methylation. Cell 118(5):545–553

    Article  PubMed  CAS  Google Scholar 

  • Cuzner ML, Davison AN (1973) Changes in cerebral lysosomal enzyme activity and lipids in multiple sclerosis. J Neurol Sci 19:29–36

    Article  PubMed  CAS  Google Scholar 

  • D’Souza CA, Moscarello MA (2006) Differences in susceptibility of MBP charge isomers to digestion by stromelysin-1 (MMP-3) and release of an immunodominant epitope. Neurochem Res 31:1045–1054

    Article  PubMed  CAS  Google Scholar 

  • de Larrea CF, Cibeira MT, Elena M, Arostegui JI, Rosiñol L, Rovira M, Filella X, Yagüe J, Bladé J (2009) Abnormal serum free light chain ratio in patients with multiple myeloma in complete remission has strong association with the presence of oligoclonal bands: implications for stringent complete remission definition. Blood 114(24):4954–4956

    Article  PubMed  CAS  Google Scholar 

  • De Seze J, Dubucquoi S, Lefranc D et al (2001) IgG reactivity against citrullinated myelin basic protein in multiple sclerosis. J Neuroimmunol 117:149–155

    Article  PubMed  Google Scholar 

  • Disanto G, Magalhaes S, Handel A et al (2011) HLA-DRB1 confers increased risk of pediatric-onset MS in children with acquired demyelination. Neurol 76:781–786

    Article  CAS  Google Scholar 

  • Einstein E, Csejtey J, Dalal K, Adams C, Bayliss O, Hallpike J (1972) Proteolytic activity and basic protein loss in and around multiple sclerosis plaques: combined biochemical and histochemical observations. J Neurochem 19:653–662

    Article  PubMed  CAS  Google Scholar 

  • Ellmerich S, Mycko M, Takacs K, Waldner H, Wahid FN, Boyton RJ, King RH, Smith PA, Amor S, Herlihy AH, Hewitt RE, Jutton M, Price DA, Hafler DA, Kuchroo VK, Altmann DM (2005) High incidence of spontaneous disease in an HLA-DR15 and TCR transgenic multiple sclerosis model. J Immunol 174(4):1938–1946

    PubMed  CAS  Google Scholar 

  • Finch PR, Wood DD, Moscarello MA (1971) The presence of citrulline in a myelin protein fraction. FEBS Lett 15:145–148

    Article  PubMed  CAS  Google Scholar 

  • Fryden A, Link H, Norrby E (1978) Cerebrospinal fluid and serum immunoglobulins and antibody titers in mumps meningitis and aseptic meningitis of other etiology. Infect Immun 21(3):852–861

    PubMed  CAS  Google Scholar 

  • Genain CP, Cannella B, Hauser SL, Raine CS (1999) Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat Med 5:170–175

    Article  PubMed  CAS  Google Scholar 

  • Gold R, Linington C, Lassmann H (2006) Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 129:1953–1971

    Article  PubMed  Google Scholar 

  • Grant JE, Hu J, Liu T, Jain MR, Elkabes S, Li H (2007) Post-translational modifications in the rat lumbar spinal cord in experimental autoimmune encephalomyelitis. J Proteome Res 6(7):2786–2791

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara T, Nakashima K, Hirano H, Senshu T, Yamada M (2002) Deimination of arginine residues in nucleophosmin/B23 and histones in HL-60 granulocytes. Biochem Biophys Res Commun 290(3):979–983

    Article  PubMed  CAS  Google Scholar 

  • Harauz G, Musse AA (2007) A tale of two citrullines–structural and functional aspects of myelin basic protein deimination in health and disease. Neurochem Res 32:137–158

    Article  PubMed  CAS  Google Scholar 

  • Hill JA, Southwood S, Sette A, Jevnikar AM, Bell DA, Cairns E (2003) Cutting edge: the conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1* 0401 MHC class II molecule. J Immunol 171:538–541

    PubMed  CAS  Google Scholar 

  • Hovenga S, de Wolf JT, Guikema JE, Klip H, Smit JW, Smit Sibinga CT, Bos NA, Vellenga E (2000) Autologous stem cell transplantation in multiple myeloma after VAD and EDAP courses: a high incidence of oligoclonal serum Igs post transplantation. Bone Marrow Transplant 25(7):723–728

    Article  PubMed  CAS  Google Scholar 

  • Huang DR, Han Y, Rani MRS et al (2000) Chemokines and chemokine receptors in inflammation of the nervous system: manifold roles and exquisite regulation. Immunol Rev 177:52–67

    Article  PubMed  CAS  Google Scholar 

  • Hui A, Min WX, Tang J, Cruz TF (1998) Inhibition of activator protein 1 activity by paclitaxel suppresses interleukin-1-induced collagenase and stromelysin expression by bovine chondrocytes. Arthritis Rheum 41(5):869–876

    Article  PubMed  CAS  Google Scholar 

  • James EA, Moustakas AK, Bui J et al (2010) HLA–DR1001 presents “altered‐self” peptides derived from joint‐associated proteins by accepting citrulline in three of its binding pockets. Arthritis Rheum 62:2909–2918

    Article  PubMed  CAS  Google Scholar 

  • Jersild C, Hansen GS, Svejgaard A, Fog T, Thomsen M, Dupont B (1973) Histocompatibility determinants in multiple sclerosis, with special reference to clinical course. Lancet 302:1221–1225

    Article  Google Scholar 

  • Kidd BA, Ho PP, Sharpe O, Zhao X, Tomooka BH, Kanter JL, Steinman L, Robinson WH (2008) Epitope spreading to citrullinated antigens in mouse models of autoimmune arthritis and demyelination. Arthritis Res Ther 10(5):R119

    Article  PubMed  CAS  Google Scholar 

  • Kostulas VK, Link H, Lefvert AK (1987) Oligoclonal IgG bands in cerebrospinal fluid. Principles for demonstration and interpretation based on findings in 1114 neurological patients. Arch Neurol 44(10):1041–1044

    Article  PubMed  CAS  Google Scholar 

  • Kroot EJJA, De Jong BAW, Van Leeuwen MA et al (2000) The prognostic value of anti-cyclic citrullinated peptide antibody in patients with recent‐onset rheumatoid arthritis. Arthritis Rheum 43:1831–1835

    Article  PubMed  CAS  Google Scholar 

  • Lassmann H, Brück W, Lucchinetti CF (2007) The immunopathology of multiple sclerosis: an overview. Brain Pathol 17:210–218

    Article  PubMed  Google Scholar 

  • Loos T, Mortier A, Gouwy M et al (2008) Citrullination of CXCL10 and CXCL11 by peptidylarginine deiminase: a naturally occurring posttranslational modification of chemokines and new dimension of immunoregulation. Blood 112:2648–2656

    Article  PubMed  CAS  Google Scholar 

  • Loos T, Opdenakker G, Van Damme J, Proost P (2009) Citrullination of CXCL8 increases this chemokine’s ability to mobilize neutrophils into the blood circulation. Haematologica 94(10):1346–1353

    Article  PubMed  CAS  Google Scholar 

  • Lublin FD, Reingold SC (1996) Defining the clinical course of multiple sclerosis: results of an international survey. Neurology 46:907

    Article  PubMed  CAS  Google Scholar 

  • Mastronardi FG, Ackerley CA, Arsenault L, Roots BI, Moscarello MA (1993) Demyelination in a transgenic mouse: a model for multiple sclerosis. J Neurosci Res 36(3):315–324

    Article  PubMed  CAS  Google Scholar 

  • Mastronardi FG, Wood DD, Mei J et al (2006) Increased citrullination of histone H3 in multiple sclerosis brain and animal models of demyelination: a role for tumor necrosis factor-induced peptidylarginine deiminase 4 translocation. J Neurosci 26:11387–11396

    Article  PubMed  CAS  Google Scholar 

  • Mastronardi FG, Noor A, Wood DD, Paton T, Moscarello MA (2007) Peptidyl argininedeiminase 2 CpG island in multiple sclerosis white matter is hypomethylated. J Neurosci Res 85:2006–2016

    Article  PubMed  CAS  Google Scholar 

  • Mayringer I, Timeltaler B, Deisenhammer F (2005) Correlation between the IgG index, oligoclonal bands in CSF, and the diagnosis of demyelinating diseases. Eur J Neurol 12(7):527–530

    Article  PubMed  CAS  Google Scholar 

  • Meyer O, Labarre C, Dougados M et al (2003) Anticitrullinated protein/peptide antibody assays in early rheumatoid arthritis for predicting five year radiographic damage. Ann Rheum Dis 62:120–126

    Article  PubMed  CAS  Google Scholar 

  • Mix E, Meyer-Rienecker H, Hartung HP, Zettl UK (2010) Animal models of multiple sclerosis – potentials and limitations. Prog Neurobiol 92(3):386–404

    Article  PubMed  Google Scholar 

  • Mortier A, Loos T, Gouwy M, Ronsse I, Van Damme J, Proost P (2010) Posttranslational modification of the NH2-terminal region of CXCL5 by proteases or peptidylarginine deiminases (PAD) differently affects its biological activity. J Biol Chem 285:29750–29759

    Article  PubMed  CAS  Google Scholar 

  • Moscarello M, Wood D, Ackerley C, Boulias C (1994) Myelin in multiple sclerosis is developmentally immature. J Clin Invest 94:146–154

    Article  PubMed  CAS  Google Scholar 

  • Moscarello MA, Mastronardi FG, Wood DD (2007) The role of citrullinated proteins suggests a novel mechanism in the pathogenesis of multiple sclerosis. Neurochem Res 32:251–256

    Article  PubMed  CAS  Google Scholar 

  • Moscarello MA, Lei H, Mastronardi FG, Winer S, Tsui H et al (2013) Inhibition of peptidyl-arginine deiminases reverses protein-hypercitrullination and disease in mouse models of multiple sclerosis. Dis Model Mech 6:467–478

    Article  PubMed  CAS  Google Scholar 

  • Musse AA, Harauz G (2007) Molecular “negativity” may underlie multiple sclerosis: role of the myelin basic protein family in the pathogenesis of MS. Int Rev Neurobiol 79:149–172

    Article  PubMed  CAS  Google Scholar 

  • Musse AA, Boggs JM, Harauz G (2006) Deimination of membrane-bound myelin basic protein in multiple sclerosis exposes an immunodominant epitope. Proc Natl Acad Sci USA 103:4422–4427

    Article  PubMed  CAS  Google Scholar 

  • Musse AA, Li Z, Ackerley CA, Bienzle D et al (2008) Peptidylarginine deiminase 2 [PAD2) overexpression in transgenic mice leads to myelin loss in the central nervous system. Dis Model Mech 1:229–240

    Article  PubMed  CAS  Google Scholar 

  • Naito S, Namerow N, Mickey M, Terasaki P (1972) Multiple sclerosis: association with HL-A3. Tissue Antigens 2:1–4

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Hagiwara T, Yamada M (2002) Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes. J Biol Chem 277:49562–49568

    Article  PubMed  CAS  Google Scholar 

  • Nicholas AP, Whitaker JN (2002) Preparation of a monoclonal antibody to citrullinated epitopes: its characterization and some applications to immunohistochemistry in human brain. Glia 37:328–336

    Article  PubMed  Google Scholar 

  • Nicholas AP, King JL, Sambandam T, Echols JD, Gupta KB, McInnis C, Whitaker JN (2003) Immunohistochemical localization of citrullinated proteins in adult rat brain. J Comp Neurol 459(3):251–266

    Article  PubMed  CAS  Google Scholar 

  • Nicholas AP, Sambandam T, Echols JD, Tourtellotte WW (2004) Increased citrullinated glial fibrillary acidic protein in secondary progressive multiple sclerosis. J Comp Neurol 473:128–136

    Article  PubMed  CAS  Google Scholar 

  • Nicholas AP, Sambandam T, Echols JD, Barnum SR (2005) Expression of citrullinated proteins in murine experimental autoimmune encephalomyelitis. J Comp Neurol 486:254–266

    Article  PubMed  CAS  Google Scholar 

  • Oguz K, Kurne A, Aksu A et al (2009) Assessment of citrullinated myelin by 1H-MR spectroscopy in early-onset multiple sclerosis. Am J Neuroradiol 30:716–721

    Article  PubMed  CAS  Google Scholar 

  • Pöllinger B, Krishnamoorthy G, Berer K, Lassmann H, Bösl MR, Dunn R, Domingues HS, Holz A, Kurschus FC, Wekerle H (2009) Spontaneous relapsing-remitting EAE in the SJL/J mouse: MOG-reactive transgenic T cells recruit endogenous MOG-specific B cells. J Exp Med 206(6):1303–1316

    Article  PubMed  CAS  Google Scholar 

  • Pranzatelli MR, Slev PR, Tate ED, Travelstead AL, Colliver JA, Joseph SA (2011) Cerebrospinal fluid oligoclonal bands in childhood opsoclonus-myoclonus. Pediatr Neurol 45(1):27–33

    Article  PubMed  Google Scholar 

  • Prineas JW, Wright RG (1978) Macrophages, lymphocytes, and plasma cells in the perivascular compartment in chronic multiple sclerosis. Lab Invest 38:409–421

    PubMed  CAS  Google Scholar 

  • Prineas JW, Kwon EE, Cho ES et al (2001) Immunopathology of secondary‐progressive multiple sclerosis. Ann Neurol 50:646–657

    Article  PubMed  CAS  Google Scholar 

  • Pritzker LB, Moscarello MA (1999) A novel microtubule independent effect of paclitaxel: the inhibition of peptidylarginine deiminase from bovine brain. Biochim Biophys Acta 1388(1):154–160

    Article  Google Scholar 

  • Pritzker LB, Joshi S, Gowan JJ, Harauz G, Moscarello MA (2000) Deimination of myelin basic protein. 1. Effect of deimination of arginyl residues of myelin basic protein on its structure and susceptibility to digestion by cathepsin D. Biochemistry 39:5374–5381

    Article  PubMed  CAS  Google Scholar 

  • Proost P, Loos T, Mortier A, Schutyser E, Gouwy M, Noppen S et al (2008) Citrullination of CXCL8 by peptidylarginine deiminase alters receptor usage, prevents proteolysis, and dampens tissue inflammation. J Exp Med 205:2085–2097

    Article  PubMed  CAS  Google Scholar 

  • Raijmakers R, Vogelzangs J, Croxford JL, Wesseling P, van Venrooij WJ, Pruijn GJM (2005) Citrullination of central nervous system proteins during the development of experimental autoimmune encephalomyelitis. J Comp Neurol 486:243–253

    Article  PubMed  Google Scholar 

  • Raijmakers R, Vogelzangs J, Raats J, Panzenbeck M, Corby M, Jiang H, Thibodeau M, Haynes N, van Venrooij WJ, Pruijn GJ, Werneburg B (2006) Experimental autoimmune encephalomyelitis induction in peptidylarginine deiminase 2 knockout mice. J Comp Neurol 498(2):217–226

    Article  PubMed  CAS  Google Scholar 

  • Reindl M, Linnington C, Brehm U et al (1999) Antibodies against the myelin oligodendrocyte glycoprotein and the myelin basic protein in multiple sclerosis and other neurological diseases: a comparative study. Brain 122:2047–2056

    Article  PubMed  Google Scholar 

  • Richards PT, Cuzner ML (1978) Proteolytic activity in CSF. Adv Exp Med Biol 100:521–527

    Article  PubMed  CAS  Google Scholar 

  • Rogers GE, Harding HWJ, Llewellyn-Smith IJ (1977) The origin of citrulline-containing proteins in the hair follicle and the chemical nature of trichohyalin, an intracellular precursor. Biochim Biophys Acta 495:159–175

    Article  PubMed  CAS  Google Scholar 

  • Rot A, von Andrian UH (2004) Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 22:891–928

    Article  PubMed  CAS  Google Scholar 

  • Rovaris M, Confavreux C, Furlan R, Kappos L, Comi G (2006) Filippi M Secondary progressive multiple sclerosis: current knowledge and future challenges. Lancet Neurol 5(4):343–354

    Article  PubMed  Google Scholar 

  • Sadovnick AD, Ebers GC, Dyment DA, Risch NJ (1996) Evidence for genetic basis of multiple sclerosis. Lancet 347:1728–1730

    Article  PubMed  CAS  Google Scholar 

  • Sambandam T, Belousova M, Accaviti-Loper MA et al (2004) Increased peptidylarginine deiminase type II in hypoxic astrocytes. Biochem Biophys Res Commun 325:1324–1329

    Article  PubMed  CAS  Google Scholar 

  • Schmidt S, Hasse CG, Bezman L et al (2001) Serum autoantibody responses to myelin oligodendrocyte glycoprotein and myelin basic protein in X-linked adrenoleukodystophy and multiple sclerosis. J Neuroimmunol 119:88–94

    Article  PubMed  CAS  Google Scholar 

  • Shideman CR, Hu S, Peterson PK, Thayer SA (2006) CCL5 evokes calcium signals in microglia through a kinase-, phosphoinositide-, and nucleotide-dependent mechanism. J Neurosci Res 83:1471–1484

    Article  PubMed  CAS  Google Scholar 

  • Shimoyama S, Nagadoi A, Tachiwana H, Yamada M, Sato M, Kurumizaka H, Nishimura Y, Akashi S (2010) Deimination stabilizes histone H2A/H2B dimers as revealed by electrospray ionization mass spectrometry. J Mass Spectrom 45(8):900–908

    Article  PubMed  CAS  Google Scholar 

  • Simpson J, Newcombe J, Cuzner M, Woodroofe M (2000a) Expression of the interferon‐γ‐inducible chemokines IP‐10 and Mig and their receptor, CXCR3, in multiple sclerosis lesions. Neuropathol Appl Neurobiol 26:133–142

    Article  PubMed  CAS  Google Scholar 

  • Simpson J, Rezaie P, Newcombe J, Cuzner ML, Male D, Woodroofe MN (2000b) Expression of the [beta]-chemokine receptors CCR2, CCR3 and CCR5 in multiple sclerosis central nervous system tissue* 1. J Neuroimmunol 108:192–200

    Article  PubMed  CAS  Google Scholar 

  • Smith KJ (2007) Sodium channels and multiple sclerosis: roles in symptom production, damage and therapy. Brain Pathol 17:230–242

    Article  PubMed  CAS  Google Scholar 

  • Struyf S, Noppen S, Loos T et al (2009) Citrullination of CXCL12 differentially reduces CXCR4 and CXCR7 binding with loss of inflammatory and anti-HIV-1 activity via CXCR4. J Immunol 182:666–674

    PubMed  CAS  Google Scholar 

  • Suzuki A, Yamada R, Chang X et al (2003) Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet 34:395–402

    Article  PubMed  CAS  Google Scholar 

  • Trapp BD, Nave K (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269

    Article  PubMed  CAS  Google Scholar 

  • Vencovský J, Macháček S, Šedová L et al (2003) Autoantibodies can be prognostic markers of an erosive disease in early rheumatoid arthritis. Ann Rheum Dis 62:427–430

    Article  PubMed  Google Scholar 

  • Vossenaar ER, Zendman AJW, van Venrooij WJ, Pruijn GJM (2003) PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. Bioessays 25:1106–1118

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Wysocka J, Sayegh J et al (2004) Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306:279–283

    Article  PubMed  CAS  Google Scholar 

  • Weber MS, Hemmer B (2010) Cooperation of B cells and T cells in the pathogenesis of multiple sclerosis. Results Probl Cell Differ 51:115–126

    Article  PubMed  CAS  Google Scholar 

  • Whitaker JN (1977) Myelin encephalitogenic protein fragments in cerebrospinal fluid of persons with multiple sclerosis. Neurology 27:911

    Article  PubMed  CAS  Google Scholar 

  • Whitaker JR, Granum PE (1980) An absolute method for protein determination based on difference in absorbance at 235 and 280 nm. Anal Biochem 109:156–159

    Article  PubMed  CAS  Google Scholar 

  • Willis VC, Gizinski AM, Banda NK, Causey CP, Knuckley B, Cordova KN, Luo Y, Levitt B, Glogowska M, Chandra P, Kulik L, Robinson WH, Arend WP, Thompson PR, Holers VM (2011) N-α-benzoyl-N5-(2-chloro-1-iminoethyl)-L-ornithine amide, a protein arginine deiminase inhibitor, reduces the severity of murine collagen-induced arthritis. J Immunol 186(7):4396–4404

    Article  PubMed  CAS  Google Scholar 

  • Wood D, Moscarello M (1989) The isolation, characterization, and lipid-aggregating properties of a citrulline containing myelin basic protein. J Biol Chem 264:5121–5127

    PubMed  CAS  Google Scholar 

  • Wood D, Bilbao J, O’Connors P, Moscarello M (1996) Acute multiple sclerosis (Marburg type) is associated with developmentally immature myelin basic protein. Ann Neurol 40:18–24

    Article  PubMed  CAS  Google Scholar 

  • Wood DD, Ackerley CA, Brand B et al (2008) Myelin localization of peptidylarginine deiminases 2 and 4: comparison of PAD2 and PAD4 activities. Lab Invest 88:354–364

    Article  PubMed  CAS  Google Scholar 

  • Zent CS, Wilson CS, Tricot G, Jagannath S, Siegel D, Desikan KR, Munshi N, Bracy D, Barlogie B, Butch AW (1998) Oligoclonal protein bands and Ig isotype switching in multiple myeloma treated with high-dose therapy and hematopoietic cell transplantation. Blood 91(9):3518–3523

    PubMed  CAS  Google Scholar 

  • Zuvich RL, McCauley JL, Pericak-Vance MA, Haines JL (2009) Genetics and pathogenesis of multiple sclerosis. Semin Immunol 21(6):328–333

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison K. Cross .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bradford, C., Nicholas, A.P., Woodroofe, N., Cross, A.K. (2014). Deimination in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. In: Nicholas, A., Bhattacharya, S. (eds) Protein Deimination in Human Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8317-5_10

Download citation

Publish with us

Policies and ethics