Skip to main content

Nuclear Medicine and PET Phantoms

  • Chapter
  • First Online:
The Phantoms of Medical and Health Physics

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 2535 Accesses

Abstract

Nuclear medicine is a medical field where radioactive materials are administered to patients to either obtain diagnostic information or deliver a therapeutic radiation dose. Although the therapeutic application of nuclear medicine is primarily limited to the treatment for hyperthyroid conditions and several cancers (e.g., thyroid cancer, lymphoma, and bone metastases palliation), there are diagnostic nuclear medicine procedures for virtually every tissue and organ system of the body. TableĀ 11.1 summarizes common nuclear medicine procedures.

TableĀ 11.1 Example nuclear medicine procedures

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Snyder, W. S., Fisher, H. L, Jr, Ford, M. R., & Warner, G. G. (1969). Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. Journal of Nuclear Medicine, (Suppl 3), 7ā€“52.

    Google ScholarĀ 

  2. Loeevinger, R., & Berman, M. (1968). A schema for absorbed-dose calculations for biologically-distributed radionuclides. Journal of Nuclear Medicine, (Suppl 1), 9ā€“14.

    Google ScholarĀ 

  3. Stabin, M. G., Xu, X. G., Emmons, M. A., Segars, W. P., Shi, C., & Fernald, M. J. (2012). RADAR reference adult, pediatric, and pregnant female phantom series for internal and external dosimetry. Journal of Nuclear Medicine, 53, 1807ā€“1813.

    ArticleĀ  Google ScholarĀ 

  4. Cristy, M. & Eckerman, K. (1987). Specific absorbed fractions of energy at various ages from internal photon sources. Report ORNL/TM 8381.

    Google ScholarĀ 

  5. Stabin, M., Watson, E., Cristy, M., Ryman, J., Eckerman, K., Davis, J., Marshall, D. & Gehlen, M. (1995). Mathematical models and specific absorbed fractions of photon energy in the nonpregnant adult female and at the end of each trimester of pregnancy. Oak Ridge National Laboratory Report.

    Google ScholarĀ 

  6. Zaidi, H., & Xu, X. G. (2007). Computational anthropomorphic models of the human anatomy: the path to realistic Monte Carlo modeling in radiological sciences. Annual Review of Biomedical Engineering, 9, 471ā€“500.

    ArticleĀ  Google ScholarĀ 

  7. LaCroix, K. J., Tsui, B. M., & Hasegawa, B. H. (1998). A comparison of 180 degrees and 360 degrees acquisition for attenuation-compensated thallium-201 SPECT images. Journal of Nuclear Medicine, 39, 562ā€“574.

    Google ScholarĀ 

  8. Segars, W. P., Tsui, B. M., Frey, E. C., Johnson, G. A., & Berr, S. S. (2004). Development of a 4-D digital mouse phantom for molecular imaging research. Molecular Imaging Biology, 6, 149ā€“159.

    ArticleĀ  Google ScholarĀ 

  9. Segars, W. P., Sturgeon, G., Mendonca, S., Grimes, J., & Tsui, B. M. (2010). 4D XCAT phantom for multimodality imaging research. Medical Physics, 37, 4902ā€“4915.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  10. Hines, H., Kayayan, R., Colsher, J., Hashimoto, D., Schubert, R., Fernando, J., et al. (2000). National electrical manufacturers association recommendations for implementing SPECT instrumentation quality control. Journal of Nuclear Medicine, 41, 383ā€“389.

    Google ScholarĀ 

  11. Graham, L. S. (1995). Quality control for SPECT systems. Radiographics, 15, 1471ā€“1481.

    ArticleĀ  Google ScholarĀ 

  12. Graham, L. S., Fahey, F. H., Madsen, M. T., van Aswegen, A., & Yester, M. V. (1995). Quantitation of SPECT performance: Report of task group 4, nuclear medicine committee. Medical Physics, 22, 401ā€“409.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  13. National Electrical Manufacturers Association. (2007). Performance Measurement of Positron Emission Tomographs. Rosslyn: National Electrical Manufacturers Association.

    Google ScholarĀ 

  14. Kadrmas, D. J., & Christian, P. E. (2002). Comparative evaluation of lesion detectability for 6 PET imaging platforms using a highly reproducible whole-body phantom with (22)Na lesions and localization ROC analysis. Journal of Nuclear Medicine, 43, 1545ā€“1554.

    Google ScholarĀ 

  15. Doot, R. K., Scheuermann, J. S., Christian, P. E., Karp, J. S., & Kinahan, P. E. (2010). Instrumentation factors affecting variance and bias of quantifying tracer uptake with PET/CT. Medical Physics, 37, 6035ā€“6046.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  16. Beyer, T., Czernin, J., & Freudenberg, L. S. (2011). Variations in clinical PET/CT operations: results of an international survey of active PET/CT users. Journal of Nuclear Medicine, 52, 303ā€“310.

    ArticleĀ  Google ScholarĀ 

  17. Larsson, E., Strand, S. E., Ljungberg, M., & Jonsson, B. A. (2007). Mouse S-factors based on Monte Carlo simulations in the anatomical realistic Moby phantom for internal dosimetry. Cancer Biother Radiopharm, 22, 438ā€“442.

    ArticleĀ  Google ScholarĀ 

  18. Keenan, M. A., Stabin, M. G., Segars, W. P., & Fernald, M. J. (2010). RADAR realistic animal model series for dose assessment. Journal of Nuclear Medicine, 51, 471ā€“476.

    ArticleĀ  Google ScholarĀ 

  19. Goertzen, A. L., Bao, Q., Bergeron, M., Blankemeyer, E., Blinder, S., Canadas, M., et al. (2012). NEMA NU 4-2008 comparison of preclinical PET imaging systems. Journal of Nuclear Medicine, 53, 1300ā€“1309.

    ArticleĀ  Google ScholarĀ 

  20. DiFilippo, F. P., Price, J. P., Kelsch, D. N., & Muzic, R. F, Jr. (2004). Porous phantoms for PET and SPECT performance evaluation and quality assurance Med. Physics, 31, 1183ā€“1194.

    Google ScholarĀ 

  21. Difilippo, F. P., Gallo, S. L., Klatte, R. S., & Patel, S. (2010). A fillable micro-hollow sphere lesion detection phantom using superposition. Physics in Medicine and Biology, 55, 5363ā€“5381.

    ArticleĀ  ADSĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark T. Madsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Madsen, M.T., Sunderland, J.J. (2014). Nuclear Medicine and PET Phantoms. In: DeWerd, L., Kissick, M. (eds) The Phantoms of Medical and Health Physics. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8304-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8304-5_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8303-8

  • Online ISBN: 978-1-4614-8304-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics