Skip to main content

Magnetic Resonance Imaging of Metastases in Xenograft Mouse Models of Cancer

  • Protocol
  • First Online:
Metastasis Research Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1070))

Abstract

Magnetic resonance imaging (MRI) of small animals has emerged as a valuable tool to noninvasively monitor tumor growth in mouse models of cancer. However, imaging of metastases in mouse models is difficult due to the need for high spatial resolution. We have demonstrated MRI of metastases in the liver, brain, adrenal glands, and lymph nodes in different xenograft mouse models of cancer. MRI of mice was performed with a clinical 3.0 T magnetic resonance scanner and a commercially available small-animal receiver coil. The imaging protocol consisted of T1- and T2-weighted fat-saturated spin echo sequences with a spatial resolution of 200 μm × 200 μm × 500 μm. Total acquisition time was 30 min per mouse. The technique allowed for repetitive examinations of larger animal cohorts to observe the development of metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Damadian R (1971) Tumor detection by nuclear magnetic resonance. Science 171:1151–1153

    Article  PubMed  CAS  Google Scholar 

  2. Barentsz J, Takahashi S, Oyen W et al (2006) Commonly used imaging techniques for diagnosis and staging. J Clin Oncol 24:3234–3244

    Article  PubMed  CAS  Google Scholar 

  3. Schmidt GP, Schoenberg SO, Reiser MF, Baur-Melnyk A (2005) Whole-body MR imaging of bone marrow. Eur J Radiol 55:33–40

    Article  PubMed  CAS  Google Scholar 

  4. Harisinghani MG, Barentsz J, Hahn PF et al (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348:2491–2499

    Article  PubMed  Google Scholar 

  5. Koo V, Hamilton PW, Williamson K (2006) Non-invasive in vivo imaging in small animal research. Cell Oncol 28:127–139

    PubMed  CAS  Google Scholar 

  6. Poirier-Quinot M, Ginefri JC, Girard O, Robert P, Darrasse L (2008) Performance of a miniature high-temperature superconducting (HTS) surface coil for in vivo microimaging of the mouse in a standard 1.5T clinical whole-body scanner. Magn Reson Med 60:917–927

    Article  PubMed  Google Scholar 

  7. Seierstad T, Roe K, Hovik B (2007) Construction of a modified capacitive overlap MR coil for imaging of small animals and objects in a clinical whole-body scanner. Phys Med Biol 52:N513–N522

    Article  PubMed  CAS  Google Scholar 

  8. Xu S, Gade TP, Matei C et al (2003) In vivo multiple-mouse imaging at 1.5 T. Magn Reson Med 49:551–557

    Article  PubMed  CAS  Google Scholar 

  9. Linn J, Schwarz F, Schichor C, Wiesmann M (2007) Cranial MRI of small rodents using a clinical MR scanner. Methods 43:2–11

    Article  PubMed  CAS  Google Scholar 

  10. Inderbitzin D, Stoupis C, Sidler D, Gass M, Candinas D (2007) Abdominal magnetic resonance imaging in small rodents using a clinical 1.5 T MR scanner. Methods 43:46–53

    Article  PubMed  CAS  Google Scholar 

  11. Garbow JR, Wang M, Wang Y, Lubet RA, You M (2008) Quantitative monitoring of adenocarcinoma development in rodents by magnetic resonance imaging. Clin Cancer Res 14:1363–1367

    Article  PubMed  CAS  Google Scholar 

  12. Lyons SK (2005) Advances in imaging mouse tumour models in vivo. J Pathol 205: 194–205

    Article  PubMed  CAS  Google Scholar 

  13. Ikehira H, Yamane T, Fukuda N et al (1988) Fundamental tumor perfusion analysis with nuclear magnetic resonance imaging using gadolinium-diethylene triamine pentaacetic acid. Am J Physiol Imaging 3:7–9

    PubMed  CAS  Google Scholar 

  14. Checkley D, Tessier JJ, Kendrew J, Waterton JC, Wedge SR (2003) Use of dynamic contrast-enhanced MRI to evaluate acute treatment with ZD6474, a VEGF signalling inhibitor, in PC-3 prostate tumours. Br J Cancer 89: 1889–1895

    Article  PubMed  CAS  Google Scholar 

  15. Gauvain KM, Garbow JR, Song SK, Hirbe AC, Weilbaecher K (2005) MRI detection of early bone metastases in b16 mouse melanoma models. Clin Exp Metastasis 22:403–411

    Article  PubMed  Google Scholar 

  16. Brandsma D, Taphoorn MJ, Reijneveld JC et al (2004) MR imaging of mouse leptomeningeal metastases. J Neurooncol 68:123–130

    Article  PubMed  Google Scholar 

  17. Thies A, Peldschus K, Ittrich H et al (2009) Magnetic resonance imaging of melanoma metastases in a clinical relevant human melanoma xenograft scid mouse model. Cancer Lett 274:194–200

    Article  PubMed  CAS  Google Scholar 

  18. Weber MH, Sharp JC, Latta P, Hassard TH, Orr FW (2007) Early detection and quantification of murine melanoma bone metastases with magnetic resonance imaging. Skeletal Radiol 36:659–666

    Article  PubMed  Google Scholar 

  19. Kalber TL, Waterton JC, Griffiths JR, Ryan AJ, Robinson SP (2008) Longitudinal in vivo susceptibility contrast MRI measurements of LS174T colorectal liver metastasis in nude mice. J Magn Reson Imaging 28:1451–1458

    Article  PubMed  Google Scholar 

  20. Koyama Y, Talanov VS, Bernardo M et al (2007) A dendrimer-based nanosized contrast agent dual-labeled for magnetic resonance and optical fluorescence imaging to localize the sentinel lymph node in mice. J Magn Reson Imaging 25:866–871

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Udo Schumacher, Dr. Anka Thies, and Dr. Daniel Benten for providing mouse models with metastases and helpful discussions. Furthermore, Johannes Salamon is acknowledged for technical assistance and image processing.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Peldschus, K., Ittrich, H. (2014). Magnetic Resonance Imaging of Metastases in Xenograft Mouse Models of Cancer. In: Dwek, M., Schumacher, U., Brooks, S. (eds) Metastasis Research Protocols. Methods in Molecular Biology, vol 1070. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-8244-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8244-4_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-8243-7

  • Online ISBN: 978-1-4614-8244-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics