Skip to main content

The Adhesion Molecule Anosmin-1 in Neurology: Kallmann Syndrome and Beyond

  • Chapter
  • First Online:
Cell Adhesion Molecules

Abstract

Anosmin-1 is the glycoprotein encoded by the KAL1 gene and part of the extracellular matrix, which was first identified as defective in human Kallmann syndrome (KS, characterised by hypogonadotropic hypogonadism and anosmia); biochemically it is a cell adhesion protein. The meticulous biochemical dissection of the anosmin-1 domains has identified which domains are necessary for the protein to bind its different partners to display its biological effects. Research in the last decade has unravelled different roles of anosmin-1 during CNS development (axon pathfinding, axonal collateralisation, cell motility and migration), some of them intimately related with the cited KS but not only with this. More recently, anosmin-1 has been identified in other pathological scenarios both within (multiple sclerosis) and outside (cancer, atopic dermatitis) the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrenacci D, Grimaldi MR, Panetta V, Riano E, Rugarli EI, Graziani F (2006) Functional dissection of the Drosophila Kallmann's syndrome protein DmKal-1. BMC Genet 7:47

    PubMed Central  PubMed  Google Scholar 

  • Ardouin O, Legouis R, Fasano L, vid-Watine B, Korn H, Hardelin J, Petit C (2000) Characterization of the two zebrafish orthologues of the KAL-1 gene underlying X chromosome-linked Kallmann syndrome. Mech Dev 90:89–94

    CAS  PubMed  Google Scholar 

  • Arikawa E, Quellhorst G, Han Y, Pan H, Yang J (2011) RT2 profilerTM PCR arrays: pathway-focused gene expression profiling with qRT-PCR. Technical article. SuperArray Bioscience Corporation, Frederick, MD

    Google Scholar 

  • Arnett HA, Fancy SP, Alberta JA, Zhao C, Plant SR, Kaing S, Raine CS, Rowitch DH, Franklin RJ, Stiles CD (2004) bHLH transcription factor Olig1 is required to repair demyelinated lesions in the CNS. Science 306:2111–2115

    CAS  PubMed  Google Scholar 

  • Ayari B, Soussi-Yanicostas N (2007) FGFR1 and anosmin-1 underlying genetically distinct forms of Kallmann syndrome are co-expressed and interact in olfactory bulbs. Dev Genes Evol 217:169–175

    CAS  PubMed  Google Scholar 

  • Ayari B, Landoulsi A, Soussi-Yanicostas N (2012) Localization and characterization of kal 1.a and kal 1.b in the brain of adult zebrafish (Danio rerio). Brain Res Bull 88:345–353

    CAS  PubMed  Google Scholar 

  • Back SA, Tuohy TM, Chen H, Wallingford N, Craig A, Struve J, Luo NL, Banine F, Liu Y, Chang A, Trapp BD, Bebo BF Jr, Rao MS, Sherman LS (2005) Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med 11:966–972

    CAS  PubMed  Google Scholar 

  • Baer AS, Syed YA, Kang SU, Mitteregger D, Vig R, Ffrench-Constant C, Franklin RJ, Altmann F, Lubec G, Kotter MR (2009) Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be overcome by pharmacological modulation of Fyn-RhoA and protein kinase C signalling. Brain 132:465–481

    PubMed Central  PubMed  Google Scholar 

  • Bansal R, Kumar M, Murray K, Morrison RS, Pfeiffer SE (1996) Regulation of FGF receptors in the oligodendrocyte lineage. Mol Cell Neurosci 7:263–275

    CAS  PubMed  Google Scholar 

  • Barkhof F, Bruck W, De Groot CJ, Bergers E, Hulshof S, Geurts J, Polman CH, van der Valk P (2003) Remyelinated lesions in multiple sclerosis: magnetic resonance image appearance. Arch Neurol 60:1073–1081

    PubMed  Google Scholar 

  • Bauer NG, Ffrench-Constant C (2009) Physical forces in myelination and repair: a question of balance? J Biol 8:78

    PubMed Central  PubMed  Google Scholar 

  • Bramow S, Frischer JM, Lassmann H, Koch-Henriksen N, Lucchinetti CF, Sorensen PS, Laursen H (2010) Demyelination versus remyelination in progressive multiple sclerosis. Brain 133:2983–2998

    PubMed  Google Scholar 

  • Bribián A, Barallobre MJ, Soussi-Yanicostas N, de Castro F (2006) Anosmin-1 modulates the FGF-2-dependent migration of oligodendrocyte precursors in the developing optic nerve. Mol Cell Neurosci 33:2–14

    PubMed  Google Scholar 

  • Bribián A, Esteban PF, Clemente D, Soussi-Yanicostas N, Thomas JL, Zalc B, de Castro F (2008) A novel role for anosmin-1 in the adhesion and migration of oligodendrocyte precursors. Dev Neurobiol 68:1503–1516

    PubMed  Google Scholar 

  • Bülow HE, Hobert O (2004) Differential sulfations and epimerization define heparan sulfate specificity in nervous system development. Neuron 41:723–736

    PubMed  Google Scholar 

  • Bülow HE, Berry KL, Topper LH, Peles E, Hobert O (2002) Heparan sulfate proteoglycan-dependent induction of axon branching and axon misrouting by the Kallmann syndrome gene kal-1. Proc Natl Acad Sci USA 99:6346–6351

    PubMed Central  PubMed  Google Scholar 

  • Capello E, Voskuhl RR, McFarland HF, Raine CS (1997) Multiple sclerosis: re-expression of a developmental gene in chronic lesions correlates with remyelination. Ann Neurol 41:797–805

    CAS  PubMed  Google Scholar 

  • Cariboni A, Pimpinelli F, Colamarino S, Zaninetti R, Piccolella M, Rumio C, Piva F, Rugarli EI, Maggi R (2004) The product of X-linked Kallmann's syndrome gene (KAL1) affects the migratory activity of gonadotropin-releasing hormone (GnRH)-producing neurons. Hum Mol Genet 13:2781–2791

    CAS  PubMed  Google Scholar 

  • Charles P, Hernandez MP, Stankoff B, Aigrot MS, Colin C, Rougon G, Zalc B, Lubetzki C (2000) Negative regulation of central nervous system myelination by polysialylated-neural cell adhesion molecule. Proc Natl Acad Sci USA 97:7585–7590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Charles P, Reynolds R, Seilhean D, Rougon G, Aigrot MS, Niezgoda A, Zalc B, Lubetzki C (2002) Re-expression of PSA-NCAM by demyelinated axons: an inhibitor of remyelination in multiple sclerosis? Brain 125:1972–1979

    PubMed  Google Scholar 

  • Chung WC, Tsai PS (2010) Role of fibroblast growth factor signaling in gonadotropin-releasing hormone neuronal system development. Front Horm Res 39:37–50

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chung WC, Matthews TA, Tata BK, Tsai PS (2010) Compound deficiencies in multiple fibroblast growth factor signalling components differentially impact the murine gonadotrophin-releasing hormone system. J Neuroendocrinol 22:944–950

    CAS  PubMed Central  PubMed  Google Scholar 

  • Church DM et al (2009) Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol 7:e1000112

    PubMed Central  PubMed  Google Scholar 

  • Clemente D, Esteban PF, Del Valle I, Bribian A, Soussi-Yanicostas N, Silva A, de Castro F (2008) Expression pattern of Anosmin-1 during pre- and postnatal rat brain development. Dev Dyn 237:2518–2528

    CAS  PubMed  Google Scholar 

  • Clemente D, Ortega MC, Arenzana FJ, de Castro F (2011) FGF-2 and Anosmin-1 are selectively expressed in different types of multiple sclerosis lesions. J Neurosci 31:14899–14909

    CAS  PubMed  Google Scholar 

  • de Morsier G (1954) Studies in cranio-encephalic dysraphia. I. Agenesia of the olfactory lobe (lateral telencephaloschisis) and of the callous and anterior commissures (median telencephaloschisis); olfacto-genital dysplasia. Schweiz Arch Neurol Psychiatr 74:309–361

    Google Scholar 

  • Decker L, Durbec P, Rougon G, Evercooren AB (2002) Loss of polysialic residues accelerates CNS neural precursor differentiation in pathological conditions. Mol Cell Neurosci 19:225–238

    CAS  PubMed  Google Scholar 

  • de Castro F, Bribián A (2005) The molecular orchestra of the migration of oligodendrocyte progenitors during development. Brain Res Rev 49:227–241

    Google Scholar 

  • del Castillo I, Cohen-Salmon M, Blanchard S, Lutfalla G, Petit C (1992) Structure of the X-linked Kallmann syndrome gene and its homologous pseudogene on the Y chromosome. Nat Genet 2:305–310

    PubMed  Google Scholar 

  • Dellovade TL, Hardelin JP, Soussi-Yanicostas N, Pfaff DW, Schwanzel-Fukuda M, Petit C (2003) Anosmin-1 immunoreactivity during embryogenesis in a primitive eutherian mammal. Brain Res Dev Brain Res 140:157–167

    CAS  PubMed  Google Scholar 

  • Dodé C, Hardelin JP (2009) Kallmann syndrome. Eur J Hum Genet 17:139–146

    PubMed Central  PubMed  Google Scholar 

  • Dode C et al (2003) Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat Genet 33:463–465

    CAS  PubMed  Google Scholar 

  • Dode C, Teixeira L, Levilliers J, Fouveaut C, Bouchard P, Kottler ML, Lespinasse J, Lienhardt-Roussie A, Mathieu M, Moerman A, Morgan G, Murat A, Toublanc JE, Wolczynski S, Delpech M, Petit C, Young J, Hardelin JP (2006) Kallmann syndrome: mutations in the genes encoding prokineticin-2 and prokineticin receptor-2. PLoS Genet 2:e175

    PubMed Central  PubMed  Google Scholar 

  • Dubois-Dalcq M, Ffrench-Constant C, Franklin RJ (2005) Enhancing central nervous system remyelination in multiple sclerosis. Neuron 48:9–12

    CAS  PubMed  Google Scholar 

  • Duke VM, Winyard PJ, Thorogood P, Soothill P, Bouloux PM, Woolf AS (1995) KAL, a gene mutated in Kallmann's syndrome, is expressed in the first trimester of human development. Mol Cell Endocrinol 110:73–79

    CAS  PubMed  Google Scholar 

  • Endo Y, Ishiwata-Endo H, Yamada KM (2012) Extracellular Matrix Protein Anosmin Promotes Neural Crest Formation and Regulates FGF, BMP, and WNT Activities. Dev Cell 23:305–316

    CAS  PubMed Central  PubMed  Google Scholar 

  • Falardeau J et al (2008) Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice. J Clin Invest 118:2822–2831

    CAS  PubMed Central  PubMed  Google Scholar 

  • Franco B, Guioli S, Pragliola A, Incerti B, Bardoni B, Tonlorenzi R, Carrozzo R, Maestrini E, Pieretti M, Taillon-Miller P, Brown CJ, Willard HF, Lawrence C, Graziella PM, Camerino G, Ballabio A (1991) A gene deleted in Kallmann's syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature 353:529–536

    CAS  PubMed  Google Scholar 

  • Frohman EM, Racke MK, Raine CS (2006) Multiple sclerosis–the plaque and its pathogenesis. N Engl J Med 354:942–955

    CAS  PubMed  Google Scholar 

  • García-González D, Clemente D, Coelho M, Esteban PF, Soussi-Yanicostas N, de Castro F (2010) Dynamic roles of FGF-2 and Anosmin-1 in the migration of neuronal precursors from the subventricular zone during pre- and postnatal development. Exp Neurol 222:285–295

    PubMed  Google Scholar 

  • Gianola S, de Castro F, Rossi F (2009) Anosmin-1 stimulates outgrowth and branching of developing Purkinje axons. Neuroscience 158:570–584

    CAS  PubMed  Google Scholar 

  • Gill JC, Moenter SM, Tsai PS (2004) Developmental regulation of gonadotropin-releasing hormone neurons by fibroblast growth factor signaling. Endocrinology 145:3830–3839

    CAS  PubMed  Google Scholar 

  • Gläser B, Myrtek D, Rumpler Y, Schiebel K, Hauwy M, Rappold GA, Schempp W (1999) Transposition of SRY into the ancestral pseudoautosomal region creates a new pseudoautosomal boundary in a progenitor of simian primates. Hum Mol Genet 8:2071–2078

    PubMed  Google Scholar 

  • González-Martínez D, Kim SH, Hu Y, Guimond S, Schofield J, Winyard P, Vannelli GB, Turnbull J, Bouloux PM (2004) Anosmin-1 modulates fibroblast growth factor receptor 1 signaling in human gonadotropin-releasing hormone olfactory neuroblasts through a heparan sulfate-dependent mechanism. J Neurosci 24:10384–10392

    PubMed  Google Scholar 

  • Guimond SE, Turnbull JE (1999) Fibroblast growth factor receptor signalling is dictated by specific heparan sulphate saccharides. Curr Biol 9:1343–1346

    CAS  PubMed  Google Scholar 

  • Hardelin JP, Julliard AK, Moniot B, Soussi-Yanicostas N, Verney C, Schwanzel-Fukuda M, Ayer-Le Lievre C, Petit C (1999) Anosmin-1 is a regionally restricted component of basement membranes and interstitial matrices during organogenesis: implications for the developmental anomalies of X chromosome-linked Kallmann syndrome. Dev Dyn 215:26–44

    CAS  PubMed  Google Scholar 

  • Hayes FJ, Seminara SB, Crowley WF, Jr. (1998) Hypogonadotropic hypogonadism. Endocrinol Metab Clin North Am 27:739-63, vii.

    Google Scholar 

  • Hu Y, Bouloux PM (2011) X-linked GnRH deficiency: role of KAL-1 mutations in GnRH deficiency. Mol Cell Endocrinol 346:13–20

    CAS  PubMed  Google Scholar 

  • Hu Y, Gonzalez-Martinez D, Kim SH, Bouloux PM (2004) Cross-talk of anosmin-1, the protein implicated in X-linked Kallmann's syndrome, with heparan sulphate and urokinase-type plasminogen activator. Biochem J 384:495–505

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu Y, Guimond SE, Travers P, Cadman S, Hohenester E, Turnbull JE, Kim SH, Bouloux PM (2009) Novel mechanisms of fibroblast growth factor receptor 1 regulation by extracellular matrix protein anosmin-1. J Biol Chem 284:29905–29920

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu Y, Yu H, Shaw G, Pask AJ, Renfree MB (2011) Kallmann syndrome 1 gene is expressed in the marsupial gonad. Biol Reprod 84:595–603

    CAS  PubMed  Google Scholar 

  • Hudson ML, Kinnunen T, Cinar HN, Chisholm AD (2006) C. elegans Kallmann syndrome protein KAL-1 interacts with syndecan and glypican to regulate neuronal cell migrations. Dev Biol 294:352–365

    CAS  PubMed  Google Scholar 

  • Jakovcevski I, Mo Z, Zecevic N (2007) Down-regulation of the axonal polysialic acid-neural cell adhesion molecule expression coincides with the onset of myelination in the human fetal forebrain. Neuroscience 149:328–337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jian B, Nagineni CN, Meleth S, Grizzle W, Bland K, Chaudry I, Raju R (2009) Anosmin-1 involved in neuronal cell migration is hypoxia inducible and cancer regulated. Cell Cycle 8:3770–3776

    CAS  PubMed  Google Scholar 

  • Kallmann FJ, Schoenfeld WA, Barrera SE (1944) The genetic aspects of primary eunuchoidism. Am J Ment Defic 48:203–236

    Google Scholar 

  • Kawamata H, Furihata T, Omotehara F, Sakai T, Horiuchi H, Shinagawa Y, Imura J, Ohkura Y, Tachibana M, Kubota K, Terano A, Fujimori T (2003) Identification of genes differentially expressed in a newly isolated human metastasizing esophageal cancer cell line, T.Tn-AT1, by cDNA microarray. Cancer Sci 94:699–706

    CAS  PubMed  Google Scholar 

  • Kawauchi S, Shou J, Santos R, Hebert JM, McConnell SK, Mason I, Calof AL (2005) Fgf8 expression defines a morphogenetic center required for olfactory neurogenesis and nasal cavity development in the mouse. Development 132:5211–5223

    CAS  PubMed  Google Scholar 

  • Kim HG, Kurth I, Lan F, Meliciani I, Wenzel W, Eom SH, Kang GB, Rosenberger G, Tekin M, Ozata M, Bick DP, Sherins RJ, Walker SL, Shi Y, Gusella JF, Layman LC (2008) Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Am J Hum Genet 83:511–519

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kippert A, Fitzner D, Helenius J, Simons M (2009) Actomyosin contractility controls cell surface area of oligodendrocytes. BMC Cell Biol 10:71

    PubMed Central  PubMed  Google Scholar 

  • Kuhlmann T, Miron V, Cui Q, Wegner C, Antel J, Bruck W (2008) Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131:1749–1758

    CAS  PubMed  Google Scholar 

  • Laitinen EM, Vaaralahti K, Tommiska J, Eklund E, Tervaniemi M, Valanne L, Raivio T (2011) Incidence, phenotypic features and molecular genetics of Kallmann syndrome in Finland. Orphanet J Rare Dis 6:41

    PubMed Central  PubMed  Google Scholar 

  • Legouis R, Hardelin JP, Levilliers J, Claverie JM, Compain S, Wunderle V, Millasseau P, Le PD, Cohen D, Caterina D (1991) The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules. Cell 67:423–435

    CAS  PubMed  Google Scholar 

  • Legouis R, Lievre CA, Leibovici M, Lapointe F, Petit C (1993) Expression of the KAL gene in multiple neuronal sites during chicken development. Proc Natl Acad Sci USA 90:2461–2465

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148

    CAS  PubMed  Google Scholar 

  • Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271:978–981

    CAS  PubMed  Google Scholar 

  • Lutz B, Rugarli EI, Eichele G, Ballabio A (1993) X-linked Kallmann syndrome. A neuronal targeting defect in the olfactory system? FEBS Lett 325:128–134

    CAS  PubMed  Google Scholar 

  • Lutz B, Kuratani S, Rugarli EI, Wawersik S, Wong C, Bieber FR, Ballabio A, Eichele G (1994) Expression of the Kallmann syndrome gene in human fetal brain and in the manipulated chick embryo. Hum Mol Genet 3:1717–1723

    CAS  PubMed  Google Scholar 

  • Maestre de San Juan A (1856) Teratología: falta total de los nervios olfatorios con anosmia en un individuo en quien existía una atrofia congénita de los testículos y el miembro viril. El Siglo Médico, Madrid 3:211–221

    Google Scholar 

  • Mangs AH, Morris BJ (2007) The human pseudoautosomal region (PAR): origin, function and future. Curr Genomics 8:129–136

    CAS  Google Scholar 

  • Martin C, Balasubramanian R, Dwyer AA, Au MG, Sidis Y, Kaiser UB, Seminara SB, Pitteloud N, Zhou QY, Crowley WF Jr (2011) The role of the prokineticin 2 pathway in human reproduction: evidence from the study of human and murine gene mutations. Endocr Rev 32:225–246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mihara M, Yoshida Y, Tsukamoto T, Inada K, Nakanishi Y, Yagi Y, Imai K, Sugimura T, Tatematsu M, Ushijima T (2006) Methylation of multiple genes in gastric glands with intestinal metaplasia: A disorder with polyclonal origins. Am J Pathol 169:1643–1651

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murcia-Belmonte V, Esteban PF, García-González D, de Castro F (2010) Biochemical dissection of Anosmin-1 interaction with FGFR1 and components of the extracellular matrix. J Neurochem 115:1256–1265

    CAS  PubMed  Google Scholar 

  • Okubo K, Sakai F, Lau EL, Yoshizaki G, Takeuchi Y, Naruse K, Aida K, Nagahama Y (2006) Forebrain gonadotropin-releasing hormone neuronal development: insights from transgenic medaka and the relevance to X-linked Kallmann syndrome. Endocrinology 147:1076–1084

    CAS  PubMed  Google Scholar 

  • Omari KM, John GR, Sealfon SC, Raine CS (2005) CXC chemokine receptors on human oligodendrocytes: implications for multiple sclerosis. Brain 128:1003–1015

    PubMed  Google Scholar 

  • Patani R, Balaratnam M, Vora A, Reynolds R (2007) Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol Appl Neurobiol 33:277–287

    CAS  PubMed  Google Scholar 

  • Patrikios P, Stadelmann C, Kutzelnigg A, Rauschka H, Schmidbauer M, Laursen H, Sorensen PS, Bruck W, Lucchinetti C, Lassmann H (2006) Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129:3165–3172

    PubMed  Google Scholar 

  • Peretto P, Giachino C, Aimar P, Fasolo A, Bonfanti L (2005) Chain formation and glial tube assembly in the shift from neonatal to adult subventricular zone of the rodent forebrain. J Comp Neurol 487:407–427

    PubMed  Google Scholar 

  • Perry J, Palmer S, Gabriel A, Ashworth A (2001) A short pseudoautosomal region in laboratory mice. Genome Res 11:1826–1832

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petreanu L, Álvarez-Buylla A (2002) Maturation and death of adult-born olfactory bulb granule neurons: role of olfaction. J Neurosci 22:6106–6113

    CAS  PubMed  Google Scholar 

  • Pitteloud N, Zhang C, Pignatelli D, Li JD, Raivio T, Cole LW, Plummer L, Jacobson-Dickman EE, Mellon PL, Zhou QY, Crowley WF Jr (2007) Loss-of-function mutation in the prokineticin 2 gene causes Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism. Proc Natl Acad Sci USA 104:17447–17452

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prineas JW, Connell F (1979) Remyelination in multiple sclerosis. Ann Neurol 5:22–31

    CAS  PubMed  Google Scholar 

  • Raju R, Dalakas MC (2005) Gene expression profile in the muscles of patients with inflammatory myopathies: effect of therapy with IVIg and biological validation of clinically relevant genes. Brain 128:1887–1896

    PubMed  Google Scholar 

  • Robertson A, MacColl GS, Nash JA, Boehm MK, Perkins SJ, Bouloux PM (2001) Molecular modelling and experimental studies of mutation and cell-adhesion sites in the fibronectin type III and whey acidic protein domains of human anosmin-1. Biochem J 357:647–659

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ross MT et al (2005) The DNA sequence of the human X chromosome. Nature 434:325–337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rugarli EI, Lutz B, Kuratani SC, Wawersik S, Borsani G, Ballabio A, Eichele G (1993) Expression pattern of the Kallmann syndrome gene in the olfactory system suggests a role in neuronal targeting. Nat Genet 4:19–26

    CAS  PubMed  Google Scholar 

  • Rugarli EI, Ghezzi C, Valsecchi V, Ballabio A (1996) The Kallmann syndrome gene product expressed in COS cells is cleaved on the cell surface to yield a diffusible component. Hum Mol Genet 5:1109–1115

    CAS  PubMed  Google Scholar 

  • Rugarli EI, Di SE, Hilliard MA, Arbucci S, Ghezzi C, Facciolli A, Coppola G, Ballabio A, Bazzicalupo P (2002) The Kallmann syndrome gene homolog in C. elegans is involved in epidermal morphogenesis and neurite branching. Development 129:1283–1294

    CAS  PubMed  Google Scholar 

  • Sauka-Spengler T, Bronner-Fraser M (2008) Evolution of the neural crest viewed from a gene regulatory perspective. Genesis 46:673–682

    PubMed  Google Scholar 

  • Schwanzel-Fukuda M, Bick D, Pfaff DW (1989) Luteinizing hormone-releasing hormone (LHRH)-expressing cells do not migrate normally in an inherited hypogonadal (Kallmann) syndrome. Brain Res Mol Brain Res 6:311–326

    CAS  PubMed  Google Scholar 

  • Seki T, Arai Y (1991) The persistent expression of a highly polysialylated NCAM in the dentate gyrus of the adult rat. Neurosci Res 12:503–513

    CAS  PubMed  Google Scholar 

  • Seki T, Arai Y (1993) Distribution and possible roles of the highly polysialylated neural cell adhesion molecule (NCAM-H) in the developing and adult central nervous system. Neurosci Res 17:265–290

    CAS  PubMed  Google Scholar 

  • Seminara SB, Hayes FJ, Crowley WF Jr (1998) Gonadotropin-releasing hormone deficiency in the human (idiopathic hypogonadotropic hypogonadism and Kallmann's syndrome): pathophysiological and genetic considerations. Endocr Rev 19:521–539

    CAS  PubMed  Google Scholar 

  • Shapiro LJ, Mohandas T, Weiss R, Romeo G (1979) Non-inactivation of an x-chromosome locus in man. Science 204:1224–1226

    CAS  PubMed  Google Scholar 

  • Soussi-Yanicostas N, Hardelin JP, Arroyo-Jiménez MM, Ardouin O, Legouis R, Levilliers J, Traincard F, Betton JM, Cabanie L, Petit C (1996) Initial characterization of anosmin-1, a putative extracellular matrix protein synthesized by definite neuronal cell populations in the central nervous system. J Cell Sci 109(Pt 7):1749–1757

    CAS  PubMed  Google Scholar 

  • Soussi-Yanicostas N, Faivre-Sarrailh C, Hardelin JP, Levilliers J, Rougon G, Petit C (1998) Anosmin-1 underlying the X chromosome-linked Kallmann syndrome is an adhesion molecule that can modulate neurite growth in a cell-type specific manner. J Cell Sci 111(Pt 19):2953–2965

    CAS  PubMed  Google Scholar 

  • Soussi-Yanicostas N, de Castro F, Julliard AK, Perfettini I, Chedotal A, Petit C (2002) Anosmin-1, defective in the X-linked form of Kallmann syndrome, promotes axonal branch formation from olfactory bulb output neurons. Cell 109:217–228

    CAS  PubMed  Google Scholar 

  • Tengara S, Tominaga M, Kamo A, Taneda K, Negi O, Ogawa H, Takamori K (2010) Keratinocyte-derived anosmin-1, an extracellular glycoprotein encoded by the X-linked Kallmann syndrome gene, is involved in modulation of epidermal nerve density in atopic dermatitis. J Dermatol Sci 58:64–71

    CAS  PubMed  Google Scholar 

  • Trainor PA, Ariza-McNaughton L, Krumlauf R (2002) Role of the isthmus and FGFs in resolving the paradox of neural crest plasticity and prepatterning. Science 295:1288–1291

    CAS  PubMed  Google Scholar 

  • Villanueva C, de Roux N (2010) FGFR1 mutations in Kallmann syndrome. Front Horm Res 39:51–61

    CAS  PubMed  Google Scholar 

  • Wang Y, Imitola J, Rasmussen S, O'Connor KC, Khoury SJ (2008) Paradoxical dysregulation of the neural stem cell pathway sonic hedgehog-Gli1 in autoimmune encephalomyelitis and multiple sclerosis. Ann Neurol 64:417–427

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whitlock KE, Smith KM, Kim H, Harden MV (2005) A role for foxd3 and sox10 in the differentiation of gonadotropin-releasing hormone (GnRH) cells in the zebrafish Danio rerio. Development 132:5491–5502

    CAS  PubMed  Google Scholar 

  • Williams A, Piaton G, Aigrot MS, Belhadi A, Theaudin M, Petermann F, Thomas JL, Zalc B, Lubetzki C (2007) Semaphorin 3A and 3F: key players in myelin repair in multiple sclerosis? Brain 130:2554–2565

    PubMed  Google Scholar 

  • Wray S, Grant P, Gainer H (1989) Evidence that cells expressing luteinizing hormone-releasing hormone mRNA in the mouse are derived from progenitor cells in the olfactory placode. Proc Natl Acad Sci USA 86:8132–8136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yanicostas C, Ernest S, Dayraud C, Petit C, Soussi-Yanicostas N (2008) Essential requirement for zebrafish anosmin-1a in the migration of the posterior lateral line primordium. Dev Biol 320:469–479

    CAS  PubMed  Google Scholar 

  • Yanicostas C, Herbomel E, Dipietromaria A, Soussi-Yanicostas N (2009) Anosmin-1a is required for fasciculation and terminal targeting of olfactory sensory neuron axons in the zebrafish olfactory system. Mol Cell Endocrinol 312:53–60

    CAS  PubMed  Google Scholar 

  • Young J, Metay C, Bouligand J, Tou B, Francou B, Maione L, Tosca L, Sarfati J, Brioude F, Esteva B, Briand-Suleau A, Brisset S, Goossens M, Tachdjian G, Guiochon-Mantel A (2012) SEMA3A deletion in a family with Kallmann syndrome validates the role of semaphorin 3A in human puberty and olfactory system development. Hum Reprod 27:1460–1465

    CAS  PubMed  Google Scholar 

  • Zhang H, Vutskits L, Calaora V, Durbec P, Kiss JZ (2004) A role for the polysialic acid-neural cell adhesion molecule in PDGF-induced chemotaxis of oligodendrocyte precursor cells. J Cell Sci 117:93–103

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our research is currently supported by grants from the Spanish Ministerio de Economía y Competitividad-MINECO (ADE10-0010, RD07-0060-2007, SAF2009-07842), and Fundación Eugenio Rodríguez Pascual (Spain) to FdC, Association pour la Recherche en Escleròse en Plaques-ARSEP (France) to DCL and FdC, and Gobierno de Castilla-La Mancha (PI2009/26 and PI2009/29,) to DCL and PFE, respectively. VMB is a PhD student who had a fellowship from Gobierno de Castilla-La Mancha (MOV2007-JI/19) and is currently hired under RD07-0060-2007. DGG is a PhD student who had a fellowship from Gobierno de Gastilla-La Mancha (PI2007-66) and is currently hired by SESCAM. DCL, FdCS and PFE are hired by SESCAM. ABA is the recipient of a Sara Borrell contract from the Spanish Ministerio de Economía y Competitividad-MINECO.

Compliance with Ethics Requirements

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando de Castro M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

de Castro, F., Esteban, P.F., Bribián, A., Murcia-Belmonte, V., García-González, D., Clemente, D. (2014). The Adhesion Molecule Anosmin-1 in Neurology: Kallmann Syndrome and Beyond. In: Berezin, V., Walmod, P. (eds) Cell Adhesion Molecules. Advances in Neurobiology, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8090-7_12

Download citation

Publish with us

Policies and ethics