Skip to main content

The EPR Effect in Cancer Therapy

  • Chapter
  • First Online:
Cancer Targeted Drug Delivery

Abstract

The enhanced permeability and retention (EPR) effect is the property which small sized nanoparticles and macromolecular drugs can accumulate more in tumor than in normal tissues. The EPR effect is generally due to the larger pore size of neo-vasculatures and poor lymphatic clearance of tumors, and it is strongly influenced by the size of small molecules including nanoparticles. The EPR effect has been considered as an alternative method for delivery of conventional anticancer drugs, and favorable bio-distribution of cancer therapeutic nanoparticles in blood would be considered to achieve a high level of accumulation in solid tumors. Based on the EPR concept, a variety of drugs in nano-carrier systems have been developed for cancer therapy. In this chapter, current progress and good examples for EPR effect-utilized anticancer therapy are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Douglas SJ, Davis SS, Illum L (1987) Nanoparticles in drug delivery. Crit Rev Ther Drug Carrier Syst 3(3):233–261

    CAS  PubMed  Google Scholar 

  2. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Pt 1):6387–6392

    CAS  PubMed  Google Scholar 

  3. Iyer AK et al (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11(17–18):812–818

    Article  CAS  PubMed  Google Scholar 

  4. Aird WC (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100(2):158–173

    Article  CAS  PubMed  Google Scholar 

  5. Acharya S, Sahoo SK (2011) PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev 63(3):170–183

    Article  CAS  PubMed  Google Scholar 

  6. Perrault SD et al (2009) Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 9(5):1909–1915

    Article  CAS  PubMed  Google Scholar 

  7. Na JH et al (2012) Effect of the stability and deformability of self-assembled glycol chitosan nanoparticles on tumor-targeting efficiency. J Control Release 163(1):2–9

    Article  CAS  PubMed  Google Scholar 

  8. Dreher MR et al (2006) Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 98(5):335–344

    Article  CAS  PubMed  Google Scholar 

  9. Park K et al (2007) Effect of polymer molecular weight on the tumor targeting characteristics of self-assembled glycol chitosan nanoparticles. J Control Release 122(3):305–314

    Article  CAS  PubMed  Google Scholar 

  10. Maeda H (2012) Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J Control Release 164(2):138–144

    Article  CAS  PubMed  Google Scholar 

  11. Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    Article  CAS  PubMed  Google Scholar 

  12. Kim K et al (2010) Tumor-homing multifunctional nanoparticles for cancer theragnosis: simultaneous diagnosis, drug delivery, and therapeutic monitoring. J Control Release 146(2):219–227

    Article  CAS  PubMed  Google Scholar 

  13. Kim JH et al (2006) Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel (Reprinted from Journal of Controlled Release, vol 109, pg 1, 2005). J Control Release 111(1–2):228–234

    Article  CAS  PubMed  Google Scholar 

  14. Choi HS, Frangioni JV (2010) Nanoparticles for biomedical imaging: fundamentals of clinical translation. Mol Imaging 9(6):291–310

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Wood LD et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318(5853):1108–1113

    Article  CAS  PubMed  Google Scholar 

  16. Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63(3):136–151

    Article  CAS  PubMed  Google Scholar 

  17. Torchilin V (2011) Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63(3):131–135

    Article  CAS  PubMed  Google Scholar 

  18. Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207

    Article  CAS  PubMed  Google Scholar 

  19. Yhee JY et al (2011) Multifunctional chitosan nanoparticles for tumor imaging and therapy. Chitosan for biomaterials I. Adv Polymer Sci 243:139–161

    Article  CAS  Google Scholar 

  20. Koo H et al (2011) In vivo targeted delivery of nanoparticles for theranosis. Acc Chem Res 44(10):1018–1028

    Article  CAS  PubMed  Google Scholar 

  21. Lipinski CA et al (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1–3):3–26

    Article  CAS  PubMed  Google Scholar 

  22. Maeda H, Bharate GY, Daruwalla J (2009) Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 71(3):409–419

    Article  CAS  PubMed  Google Scholar 

  23. Maeda H et al (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1–2):271–284

    Article  CAS  PubMed  Google Scholar 

  24. Maeda H, Sawa T, Konno T (2001) Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 74(1–3):47–61

    Article  CAS  PubMed  Google Scholar 

  25. Maeda H (2001) SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Deliv Rev 46(1–3):169–185

    Article  CAS  PubMed  Google Scholar 

  26. Kunath K et al (2000) HPMA copolymer-anticancer drug-OV-TL16 antibody conjugates. 3. The effect of free and polymer-bound Adriamycin on the expression of some genes in the OVCAR-3 human ovarian carcinoma cell line. Eur J Pharm Biopharm 49(1):11–15

    Article  CAS  PubMed  Google Scholar 

  27. Peterson CM et al (2003) HPMA copolymer delivery of chemotherapy and photodynamic therapy in ovarian cancer. Adv Exp Med Biol 519:101–123

    Article  CAS  PubMed  Google Scholar 

  28. Torchilin VP (2001) Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 73(2–3):137–172

    Article  CAS  PubMed  Google Scholar 

  29. Hamaguchi T et al (2005) NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br J Cancer 92(7):1240–1246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kim TY et al (2004) Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 10(11):3708–3716

    Article  CAS  PubMed  Google Scholar 

  31. Matsumura Y (2011) Preclinical and clinical studies of NK012, an SN-38-incorporating polymeric micelles, which is designed based on EPR effect. Adv Drug Deliv Rev 63(3):184–192

    Article  CAS  PubMed  Google Scholar 

  32. Frokjaer S, Otzen DE (2005) Protein drug stability: a formulation challenge. Nat Rev Drug Discov 4(4):298–306

    Article  CAS  PubMed  Google Scholar 

  33. Sinha VR, Trehan A (2003) Biodegradable microspheres for protein delivery. J Control Release 90(3):261–280

    Article  CAS  PubMed  Google Scholar 

  34. Morishita M, Peppas NA (2006) Is the oral route possible for peptide and protein drug delivery? Drug Discov Today 11(19–20):905–910

    Article  CAS  PubMed  Google Scholar 

  35. Harris JM, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2(3):214–221

    Article  CAS  PubMed  Google Scholar 

  36. Bersani C et al (2005) PEG-metronidazole conjugates: synthesis, in vitro and in vivo properties. Farmaco 60(9):783–788

    Article  CAS  PubMed  Google Scholar 

  37. Veronese FM, Pasut G (2005) PEGylation, successful approach to drug delivery. Drug Discov Today 10(21):1451–1458

    Article  CAS  PubMed  Google Scholar 

  38. Hershfield MS (1995) PEG-ADA replacement therapy for adenosine deaminase deficiency: an update after 8.5 years. Clin Immunol Immunopathol 76(3 Pt 2):S228–S232

    Article  CAS  PubMed  Google Scholar 

  39. Asselin BL (1999) The three asparaginases. Comparative pharmacology and optimal use in childhood leukemia. Adv Exp Med Biol 457:621–629

    Article  CAS  PubMed  Google Scholar 

  40. Bailon P et al (2001) Rational design of a potent, long-lasting form of interferon: a 40 kDa branched polyethylene glycol-conjugated interferon alpha-2a for the treatment of hepatitis C. Bioconjug Chem 12(2):195–202

    Article  CAS  PubMed  Google Scholar 

  41. Wang YS et al (2002) Structural and biological characterization of pegylated recombinant interferon alpha-2b and its therapeutic implications. Adv Drug Deliv Rev 54(4):547–570

    Article  CAS  PubMed  Google Scholar 

  42. Graham ML (2003) Pegaspargase: a review of clinical studies. Adv Drug Deliv Rev 55(10):1293–1302

    Article  CAS  PubMed  Google Scholar 

  43. Bonanno G et al (2010) Effects of pegylated G-CSF on immune cell number and function in patients with gynecological malignancies. J Transl Med 8:114

    Article  PubMed Central  PubMed  Google Scholar 

  44. Hermeling S et al (2004) Structure-immunogenicity relationships of therapeutic proteins. Pharm Res 21(6):897–903

    Article  CAS  PubMed  Google Scholar 

  45. Mundargi RC et al (2008) Nano/micro technologies for delivering macromolecular therapeutics using poly(D, L-lactide-co-glycolide) and its derivatives. J Control Release 125(3):193–209

    Article  CAS  PubMed  Google Scholar 

  46. Pisal DS, Kosloski MP, Balu-Iyer SV (2010) Delivery of therapeutic proteins. J Pharm Sci 99(6):2557–2575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Carrasquillo KG et al (2001) Non-aqueous encapsulation of excipient-stabilized spray-freeze dried BSA into poly(lactide-co-glycolide) microspheres results in release of native protein. J Control Release 76(3):199–208

    Article  CAS  PubMed  Google Scholar 

  48. Lee SJ et al. (2013) Structural modification of siRNA for efficient gene silencing. Biotechnol Adv 31(5):491–503.

    Google Scholar 

  49. Lemkine GF, Demeneix BA (2001) Polyethylenimines for in vivo gene delivery. Curr Opin Mol Ther 3(2):178–182

    CAS  PubMed  Google Scholar 

  50. Zou SM et al (2000) Systemic linear polyethylenimine (L-PEI)-mediated gene delivery in the mouse. J Gene Med 2(2):128–134

    Article  CAS  PubMed  Google Scholar 

  51. Saranya N et al (2011) Chitosan and its derivatives for gene delivery. Int J Biol Macromol 48(2):234–238

    Article  CAS  PubMed  Google Scholar 

  52. Lin C et al (2006) Linear poly(amido amine)s with secondary and tertiary amino groups and variable amounts of disulfide linkages: synthesis and in vitro gene transfer properties. J Control Release 116(2):130–137

    Article  CAS  PubMed  Google Scholar 

  53. Son S, Singha K, Kim WJ (2010) Bioreducible BPEI-SS-PEG-cNGR polymer as a tumor targeted nonviral gene carrier. Biomaterials 31(24):6344–6354

    Article  CAS  PubMed  Google Scholar 

  54. Liu XD et al (2007) The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Biomaterials 28(6):1280–1288

    Article  CAS  PubMed  Google Scholar 

  55. Zhang YQ et al (2007) A novel PEGylation of chitosan nanoparticles for gene delivery. Biotechnol Appl Biochem 46:197–204

    Article  CAS  PubMed  Google Scholar 

  56. Lee D et al (2007) Thiolated chitosan/DNA nanocomplexes exhibit enhanced and sustained gene delivery. Pharm Res 24(1):157–167

    Article  CAS  PubMed  Google Scholar 

  57. Saravanakumar G et al (2009) Hydrotropic oligomer-conjugated glycol chitosan as a carrier of paclitaxel: synthesis, characterization, and in vivo biodistribution. J Control Release 140(3):210–217

    Article  CAS  PubMed  Google Scholar 

  58. Lee SJ et al (2012) Tumor-homing poly-siRNA/glycol chitosan self-cross-linked nanoparticles for systemic siRNA delivery in cancer treatment. Angew Chem Int Ed 51(29):7203–7207

    Article  CAS  Google Scholar 

  59. Huh MS et al (2010) Tumor-homing glycol chitosan/polyethylenimine nanoparticles for the systemic delivery of siRNA in tumor-bearing mice. J Control Release 144(2):134–143

    Article  CAS  PubMed  Google Scholar 

  60. Hatakeyama H, Akita H, Harashima H (2011) A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma. Adv Drug Deliv Rev 63(3):152–160

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was funded by the Intramural Research Program (Global RNAi Initiative) of KIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ick Chan Kwon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yhee, J.Y., Son, S., Son, S., Joo, M.K., Kwon, I.C. (2013). The EPR Effect in Cancer Therapy. In: Bae, Y., Mrsny, R., Park, K. (eds) Cancer Targeted Drug Delivery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7876-8_23

Download citation

Publish with us

Policies and ethics