Skip to main content

Stem Cell Populations Giving Rise to Liver, Biliary Tree, and Pancreas

  • Chapter
  • First Online:
Stem Cells Handbook

Abstract

Determined stem cells for liver and pancreas are present in stem cell niches, peribiliary glands (PBGs), throughout the biliary tree. PBGs are connected to intrahepatic stem cell niches, canals of Hering, and niches of committed progenitors, pancreatic duct glands. The phenotypic traits in the most primitive populations comprise both liver and pancreatic markers (transcription factors, pluripotency genes, endodermal genes), and their highest numbers are in large intrahepatic bile ducts and the hepato-pancreatic common duct. Their descendants have phenotypic traits implicating maturational lineages along a radial axis within bile duct walls and a proximal-to-distal axis from duodenum to mature cells near or in the liver or pancreas. The stem cells and lineages constitute a biological framework for hepatic and pancreatic organogenesis throughout life.

Immune- or culture-selected stem cells differentiate to mature cells when transplanted in vivo. In vitro they self-replicate vs. lineage restrict to an adult fate with wholly defined culture conditions.

Clinical trials are ongoing with stem cells transplanted via the hepatic artery into the liver of patients with various diseases and without immunosuppression. The transplants result in significant improvements in liver functions and longer life spans for patients. These findings offer hope for utilizing these stem cell populations for regenerative medicine for liver and pancreas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFP:

Alpha-fetoprotein

CD133:

Prominin 1

CFTR:

Cystic fibrosis transmembrane conductance regulator

CK:

Cytokeratin

C-PEP:

C-peptide

CS-PG:

Chondroitin sulfate proteoglycan

CXCR4:

CXC-chemokine receptor 4

CYP450:

Cytochrome p450

DS-PG:

Dermatan sulfate proteoglycan

EGF:

Epidermal growth factor

EpCAM:

Epithelial cell adhesion molecule (CD326)

ES cells:

Embryonic stem cells

FBS:

Fetal bovine serum

FGF:

Fibroblast growth factor

FOXA2:

Forkhead box A2

GAG:

Glycosaminoglycan

GCG:

Glucagon

GFAP:

Glial fibrillary acidic protein

HA:

Hyaluronan

hBTSC:

Human biliary tree stem cell

HDM:

Serum-free, hormonally defined medium

HGF:

Hepatocyte growth factor

hHB:

Human hepatoblast

hHpSC:

Human hepatic stem cell

HNF:

Hepatocyte nuclear factor

HP-PG:

Heparin proteoglycan

HS-PG:

Heparan sulfate proteoglycan

ICAM-1:

Intercellular adhesion molecule-1

INS:

Insulin

iPS:

Induced pluripotent stem

KM:

Kubota’s Medium

LGR5:

Leucine-rich repeat-containing G protein coupled receptor 5

MIXL1:

Mix paired-like homeobox gene (expressed in primitive streak in embryos)

MUC6:

Mucin 6, oligomeric mucus/gel-forming

NCAM:

Neural cell adhesion molecule

NGN3:

Neurogenin 3

PBG:

Peribiliary gland

PCNA:

Proliferating cell nuclear antigen

PDG:

Pancreatic duct gland

PDX1:

Pancreatic and duodenal homeobox 1

PROX1:

Prospero homeobox protein 1

SALL4:

Sal-like protein 4

SEM:

Scanning electron microscopy

SMAD:

Homolog of the Drosophila protein, mothers against decapentaplegic (MAD) and the Caenorhabditis elegans protein, SMA

SOX:

Sry-related HMG box

TEM:

Transmission electron microscopy

VCAM:

Vascular cell adhesion molecule

VEGF:

Vascular endothelial cell growth factor

References

  1. Cardinale V, Wang Y, Alpino G, Mendel G, Gaudio E, Reid LM, Alvaro D, et al. The biliary tree: a reservoir of multipotent stem cells. Nat Rev Gastroenterol Hepatol. 2012;9:231–40.

    Article  PubMed  CAS  Google Scholar 

  2. Wang Y, Lanzoni G, Carpino G, Cui C, Dominguez-Bendala J, Wauthier E, Cardinale V, Oikawa T, Pilegg A, Gerber D, Furth ME, Alvaro D, Gaudio E, Inverardi L, Reid LM. Biliary tree stem cells, precursors to pancreatic committed progenitors, evidence for life-long pancreatic organogenesis. Stem Cells. 2013; in press.

    Google Scholar 

  3. Turner R, Lozoya O, Wang VF, Cardinale V, Gaudio E, Alpini G, Mendel G, Wauthier E, Barbier C, Alvaro D, Reid LM. Hepatic stem cells and maturational liver lineage biology. Hepatology. 2011;53:1035–45.

    Article  PubMed  CAS  Google Scholar 

  4. Furth ME, Childers MK, Reid LM. Stem and progenitor cells in regenerative pharmacology. In: Christ G, Erikson K, editors. Regenerative pharmacology. New York, NY: Cambridge University Press; 2013; pp. 75–126.

    Google Scholar 

  5. Christ GJ, Saul JM, Furth ME, Andersson KE. The pharmacology of regenerative medicine. Pharmacological Reviews 2013;65(3):1091–1133.

    Google Scholar 

  6. Zorn AM, Wells JM. Molecular basis of vertebrate endoderm development. Int Rev Cytol. 2007;259:49–111.

    Article  PubMed  CAS  Google Scholar 

  7. McLin VA, Zorn AM. Organogenesis: making pancreas from liver. Curr Biol. 2003;13:R96–8.

    Article  PubMed  CAS  Google Scholar 

  8. Sinner D, Rankin S, Lee M, Zorn AM. Sox17 and beta-catenin cooperate to regulate the transcription of endodermal genes. Development. 2004;131:3069–80.

    Article  PubMed  CAS  Google Scholar 

  9. Wandzioch E, Zaret KS. Dynamic signaling network for the specification of embryonic pancreas and liver progenitors. Science. 2009;324:1707–10.

    Article  PubMed  CAS  Google Scholar 

  10. Zaret K. Developmental competence of the gut endoderm: genetic potentiation by GATA and HNF3/fork head proteins. Dev Biol. 1999;209:1–10.

    Article  PubMed  CAS  Google Scholar 

  11. Tremblay KD, Zaret KS. Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues. Dev Biol. 2005;280:87–99.

    Article  PubMed  CAS  Google Scholar 

  12. Barker N, van de Wetering M, Clevers H. The intestinal stem cell. Genes Dev. 2008;22:1856–64.

    Article  PubMed  CAS  Google Scholar 

  13. Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH, Sato T, Stange DE, Begthel H, van den Born M, et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 2010;6:25–36.

    Article  PubMed  CAS  Google Scholar 

  14. Lange AW, Keiser AR, Wells JM, Zorn AM, Whitsett JA. Sox17 promotes cell cycle progression and inhibits TGF-beta/Smad3 signaling to initiate progenitor cell behavior in the respiratory epithelium. PLoS One. 2009;4:e5711.

    Article  PubMed  Google Scholar 

  15. Snyder JC, Teisanu RM, Stripp BR. Endogenous lung stem cells and contribution to disease. J Pathol. 2009;217:254–64.

    Article  PubMed  CAS  Google Scholar 

  16. Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature. 2004;429:41–6.

    Article  PubMed  CAS  Google Scholar 

  17. Houbracken I, Bouwens L. The quest for tissue stem cells in the pancreas and other organs, and their application in beta-cell replacement, 112–123. Rev Diabet Stud. 2010;7:112–23.

    Article  PubMed  Google Scholar 

  18. Xu X, D’Hoker J, Stange G, Bonne S, De Leu N, Xiao X, Van de Casteele M, Mellitzer G, Ling Z, Pipeleers D, Bouwens L, Scharfmann R, Gradwohl G, Heimberg H. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell. 2008;132:197–207.

    Article  PubMed  CAS  Google Scholar 

  19. Chung WS, Shin CH, Stainier DY. Bmp2 signaling regulates the hepatic versus pancreatic fate decision. Dev Cell. 2008;15: 738–48.

    Article  PubMed  CAS  Google Scholar 

  20. Scadden DT. The stem cell niche as an entity of action. Nature. 2006;441:1075–9.

    Article  PubMed  CAS  Google Scholar 

  21. Cardinale V, Wang Y, Carpino G, Cui C, Inverardi L, Dominguez-Bendala J, Ricordi C, Mendel G, Furth ME, Gaudio E, Alvaro D, Reid L. Multipotent stem cells in the extrahepatic biliary tree give rise to hepatocytes, bile ducts and pancreatic islets. Hepatology. 2011;54:2159–72.

    Article  PubMed  CAS  Google Scholar 

  22. Carpino G, Cardinale V, Onori P, Franchitto A, Bartolomeo Berloco P, Rossi M, Wang Y, Semeraro R, Anceschi M, Brunelli R, Alvaro D, Reid LM, Gaudio G. Biliary tree stem/progenitor cells in glands of extrahepatic and intrahepatic bile ducts: an anatomical in situ study yielding evidence of maturational lineages. J Anat. 2012;220: 186–99.

    Article  PubMed  Google Scholar 

  23. Saxena R, Theise N. Canals of Hering: recent insights and current knowledge. Semin Liver Dis. 2004;24:43–8.

    Article  PubMed  Google Scholar 

  24. Theise ND, Saxena R, Portmann BC, Thung SN, Yee H, Chiriboga L, Kumar A, Crawford JM. The canals of Hering and hepatic stem cells in humans. Hepatology. 1999;30:1425–33.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang L, Theise N, Chua M, Reid LM. Human hepatic stem cells and hepatoblasts: symmetry between liver development and liver regeneration. Hepatology. 2008;48:1598–607.

    Article  PubMed  CAS  Google Scholar 

  26. Bonner-Weir S, Tosch IE, Inada A, Reitz P, Fonseca SY, Aye T, Sharma A. The pancreatic ductal epithelium serves as a potential pool of progenitor cells. Pediatr Diabetes. 2004;5:16–22.

    Article  PubMed  Google Scholar 

  27. Kushner JA, Weir GC, Bonner-Weir S. Ductal origin hypothesis of pancreatic regeneration under attack. Cell Metab. 2010;11:2–3.

    Article  PubMed  CAS  Google Scholar 

  28. Strobel O, Rosow DE, Rahaklin EY, Lauwers GY, Trainor AG, Alsina J, Castillo CF, Warshaw AL, Thayer SP. Pancreatic duct glands are distinct ductal compartments that react to chronic injury and mediate Shh-induced metaplasia. Gastroenterology. 2010;138: 1166–77.

    Article  PubMed  Google Scholar 

  29. Kubota H, Reid LM. Clonogenic hepatoblasts, common precursors for hepatocytic and biliary lineages, are lacking classical major histocompatibility complex class I antigens. Proc Natl Acad Sci USA. 2000;97:12132–7.

    Google Scholar 

  30. McClelland R, Wauthier E, Uronis J, Reid LM. Gradient in extracellular matrix chemistry from periportal to pericentral zones: regulation of hepatic progenitors. Tissue Eng. 2008;14:59–70.

    Article  CAS  Google Scholar 

  31. Schmelzer E, Zhang L, Bruce A, Wauthier E, Ludlow J, Yao H, Moss N, Melhem A, McClelland RL, Turner W, Kulik ML, Sherwood S, Tallheden T, Cheng N, Furth ME, Reid LM. Human hepatic stem cells from fetal and postnatal donors. J Exp Med. 2007;204:1973–87.

    Article  PubMed  CAS  Google Scholar 

  32. Sicklick JK, Li YX, Melhem A, Schmelzer E, Zdanowicz M, Huang J, Caballero M, Fair JH, Ludlow JW, McClelland RE, Reid LM, Diehl AM. Hedgehog signaling maintains resident hepatic progenitors throughout life. Am J Physiol Gastrointest Liver Physiol. 2006;290:G859–70.

    Article  PubMed  CAS  Google Scholar 

  33. Wang Y, Yao H, Barbier C, Wauthier E, Cui C, Moss N, Yamauchi M, Sricholpech M, Costello MJ, Gerber D, Loboa EG, Reid LM. Lineage-dependent epithelial-mesenchymal paracrine signals dictate growth versus differentiation of human hepatic stem cells to adult fates. Hepatology. 2010;52:1443–54.

    Article  PubMed  Google Scholar 

  34. Couvelard A, Bringuier AF, Dauge MC, Nejjari M, Darai E, Benifla JL, Feldmann G, Henin D, Scoazec JY. Expression of integrins during liver organogenesis in humans. Hepatology. 1998;27:839–47.

    Article  PubMed  CAS  Google Scholar 

  35. Kamiya A, Kinoshita T, Ito Y, Matsui T, Morikawa Y, Senba E, Nakashima K, Taga T, Yoshida K, Kishimoto T, Miyajima A. Fetal liver development requires a paracrine action of oncostatin M through the gp130 signal transducer. EMBO J. 1999;18: 2127–36.

    Article  PubMed  CAS  Google Scholar 

  36. Kinoshita T, Miyajima A. Cytokine regulation of liver development. Biochim Biophys Acta. 2002;1592:303–12.

    Article  PubMed  CAS  Google Scholar 

  37. Kubota H, Yao H, Reid LM. Identification and characterization of vitamin A-storing cells in fetal liver. Stem Cells. 2007;25:2339–49.

    Article  PubMed  CAS  Google Scholar 

  38. Nakanuma Y, Hoso M, Sanzen T, Sasaki M. Microstructure and development of the normal and pathologic biliary tract in humans, including blood supply. A review. Microsc Res Tech. 1997;15: 552–70.

    Article  Google Scholar 

  39. Nakanuma Y, Katayanagi K, Terada T, Saito K. Intrahepatic peribiliary glands of humans. I. Anatomy, development and presumed functions. A review. J Gastroenterol Hepatol. 1994;9:75–9.

    Article  PubMed  CAS  Google Scholar 

  40. Nakanuma Y, Sasaki M, Terada T, Harada K. Intrahepatic peribiliary glands of humans. II. Pathological spectrum. J Gastroenterol Hepatol. 1994;9:80–6.

    Article  PubMed  CAS  Google Scholar 

  41. Wang Y, Cui C, Miguez P, Yamauchi M, Costello J, Wauthier E, Gerber D, Reid LM. Lineage restriction of hepatic stem cells to mature fates is made efficient by tissue-specific biomatrix scaffolds. Hepatology. 2011;53:293–305.

    Article  PubMed  CAS  Google Scholar 

  42. Wauthier E, McClelland R, Turner W, Schmelzer E, Kubota H, Zhang L, Ludlow J, Bruce A, Yao H, Furth ME, LeCluyse E, Moss N, Turner R, Merrick P, Barbier C, Lozoya O, Ruiz J, Reid LM. Hepatic stem cells and hepatoblasts: identification, isolation and ex vivo maintenance. Methods Cell Biol. 2008;86:137–225.

    Article  PubMed  CAS  Google Scholar 

  43. Michalopoulos GK. Liver regeneration: alternative epithelial pathways. Int J Biochem Cell Biol. 2011;43:173–9.

    Article  PubMed  CAS  Google Scholar 

  44. Cohen DE, Melton D. Turning straw into gold: directing cell fate for regenerative medicine. Nat Rev Genet. 2011;12:243–52.

    Article  PubMed  CAS  Google Scholar 

  45. Puppi J, Strom SJ, Hughes RD, Bansal S, Castell JV, Dagher I, Ellis ECS, Ericzon B, Fox IJ, Gómez-Lechón J, Guha C, Gupta S, Mitry JR, Ohashi K, Ott M, Reid LM, Roy-Chowdhury J, Sokal E, Weber A, Dhawana A. Improving the techniques for human hepatocyte transplantation: report from a consensus meeting in London. Cell Transplant. 2012;21(1):1–10.

    Article  PubMed  Google Scholar 

  46. Washburn ML, Bility MT, Zhang L, Kovalev GI, Buntzman A, Frelinger JA, Barry W, Ploss A, Rice CM, Su L. A humanized mouse model to study hepatitis C virus infection, immune response, and liver disease. Gastroenterology. 2011;140:1334–44.

    Article  PubMed  CAS  Google Scholar 

  47. Fukumitsu K, Yagi H, Soto-Gutierrez A. Bioengineering in organ transplantation: targeting the liver. Transplant Proc. 2011;43: 2137–8.

    Article  PubMed  CAS  Google Scholar 

  48. Gerlach JC. Bioreactors for extracorporeal liver support. Cell Transplant. 2006;15 Suppl 1:S91–103.

    Article  PubMed  Google Scholar 

  49. Parveen N, Aleem AK, Habeeb MA, Habibullah CM. An update on hepatic stem cells: bench to bedside. Curr Pharm Biotechnol. 2011;12:226–30.

    Article  PubMed  CAS  Google Scholar 

  50. Russo FP, Parola M. Stem and progenitor cells in liver regeneration and repair. Cytotherapy. 2011;13:135–44.

    Article  PubMed  Google Scholar 

  51. Duncan A, Hickey RD, Paulk NK, Culberson AJ, Olson SB, Finegold MJ, Grompe M. Ploidy reductions in murine fusion-derived hepatocytes. PLoS Genet. 2009;5(2):e1000385.

    Article  PubMed  Google Scholar 

  52. Formin ME, Tai LK, Bárcena A, Muench MO. Coexpression of CD14 and CD326 discriminate hepatic precursors in the human fetal liver. Stem Cells. 2011;20:1247–57.

    Article  Google Scholar 

  53. Navarro-Alvarez N, Soto-Gutierrez A, Kobayashi N. Hepatic stem cells and liver development. Methods Mol Biol. 2010;640:181–236.

    Article  PubMed  CAS  Google Scholar 

  54. Tanaka M, Itoh T, Tanimizu N, Miyajima A. Liver stem/progenitor cells: their characteristics and regulatory mechanisms. J Biochem. 2011;149:231–9.

    Article  PubMed  CAS  Google Scholar 

  55. Thorgeirsson S, Factor V, Grisham J. Early activation and expansion of hepatic stem cells. In: Lanza R, Blau H, Melton DA, Moore DD, Thomas E, Verfaille CM, Weissman IL, West M, editors. Handbook of stem cells, vol. 2. New York, NY: Elsevier; 2004. p. 497–512.

    Chapter  Google Scholar 

  56. Vessey CJ, de la Hall PM. Hepatic stem cells: a review. Pathology. 2001;33:130–41.

    PubMed  CAS  Google Scholar 

  57. Rubin EM, Martin AA, Thung SN, Gerber MA. Morphometric and immunohistochemical characterization of human liver regeneration. Am J Pathol. 1995;147:397–404.

    PubMed  CAS  Google Scholar 

  58. Ruebner BH, Blankenberg TA, Burrows DA, SooHoo W, Lund JK. Development and transformation of the ductal plate in the developing human liver. Pediatr Pathol. 1990;10:55–68.

    Article  PubMed  CAS  Google Scholar 

  59. De Alwis N, Hudson G, Burt AD, Day CP, Chinnery PF. Human liver stem cells originate from the canals of Hering. Hepatology. 2009;50:992–3.

    Article  PubMed  Google Scholar 

  60. Falkowski O, An HJ, Ianus IA, Chiriboga L, Yee H, West AB, Theise ND. Regeneration of hepatocyte ‘buds’ in cirrhosis from intrabiliary stem cells. J Hepatol. 2003;39:357–64.

    Article  PubMed  CAS  Google Scholar 

  61. Stachelscheid H, Urbaniak T, Ring A, Spengler B, Gerlach JC, Zeilinger K. Isolation and characterization of adult human liver progenitors from ischemic liver tissue derived from therapeutic hepatectomies. Tissue Eng Part A. 2009;15:1633–43.

    Article  PubMed  CAS  Google Scholar 

  62. McClelland R, Wauthier E, Zhang L, Barbier C, Melhem A, Schmelzer E, Reid LM. Ex vivo conditions for self-replication of human hepatic stem cells. Tissue Eng. 2008;14:1–11.

    Article  Google Scholar 

  63. Schmelzer E, Reid LM. Telomerase activity in human hepatic stem cells, hepatoblasts and hepatocytes from neonatal, pediatric, adult and geriatric donors. Eur J Gastroenterol Hepatol. 2009;21: 1191–8.

    Article  PubMed  CAS  Google Scholar 

  64. Oikawa T, Kamiya A, Zeniya M, Hyuck AD, Yamazaki Y, Wauthier E, Tajir H, Reid LM, Nakauchi H, et al. SALL4, a stem cell biomarker for liver cancers. Hepatology. 2013;57(4):1469–83.

    Article  PubMed  CAS  Google Scholar 

  65. Turner R, Gerber D, Reid LM. Transplantation of cells from solid organs requires grafting protocols. Transplantation. 2010;90:807–10.

    Article  PubMed  Google Scholar 

  66. Turner WS, Schmelzer E, McClelland R, Wauthier E, Chen W, Reid LM. Human hepatoblast phenotype maintained by hyaluronan hydrogels. J Biomed Mater. 2007;82:156–68.

    Google Scholar 

  67. Turner WS, Seagle C, Galanko J, Favorov O, Prestwich GD, Macdonald JM, Reid LM. Metabolomic footprinting of human hepatic stem cells and hepatoblasts cultured in engineered hyaluronan-matrix hydrogel scaffolds. Stem Cells. 2008;26: 1547–55.

    Article  PubMed  CAS  Google Scholar 

  68. Lozoya OA, Wauthier E, Turner R, Barbier C, Prestwich GD, Guilak F, Superfine R, Lubkin SR, Reid LM. Mechanical properties of experimental models of the human liver’s stem cell niche microenvironment. I. Biomaterials. 2011;32:7389–402.

    Article  PubMed  CAS  Google Scholar 

  69. Turner RA, Mendel G, Wauthier E, Barbier C, Reid LM. Hyaluronan-supplemented buffers preserve adhesion mechanisms facilitating cryopreservation of human hepatic stem/progenitor cells. Cell Transplantation 2012;21(10):2257–2266.

    Google Scholar 

  70. Li W, Ding S. Small molecules that modulate embryonic stem cell fate and somatic cell reprogramming. Trends Pharmacol Sci. 2010;31:36–45.

    Article  PubMed  Google Scholar 

  71. Weber A, Groyer-Picard MT, Franco D, Dagher I. Hepatocyte transplantation in animal models. Liver Transpl. 2009;15:7–14.

    Article  PubMed  Google Scholar 

  72. Weber A, Mahieu-Caputo D, Michelle Hadchoue M, Franco D. Hepatocyte transplantation: studies in preclinical models. J Inherit Metab Dis. 2006;29:436–41.

    Article  PubMed  Google Scholar 

  73. Khan AA, Shaik MV, Parveen N, Rajendraprasad A, Aleem MA, Habeeb MA, Srinivas G, Raj TA, Tiwari SK, Kumaresan K, Venkateswarlu J, Pande G, Habibullah CM. Human fetal liver-derived stem cell transplantation as supportive modality in the management of end-stage decompensated liver cirrhosis. Cell Transplant. 2010;19:409–18.

    PubMed  Google Scholar 

  74. Turner R, Wauthier E, Lozoya O, McClelland R, Bowsher J, Barbier C, Gerber D, Prestwich G, Hsu E, Reid LM. Successful transplantation of human hepatic stem cells with restricted localization to liver using hyaluronan grafts. Hepatology. 2013;57(2): 775–84.

    Article  PubMed  CAS  Google Scholar 

  75. Macdonald JM, Xu A, Kubota H, Lecluyse E, Hamilton G, Liu H, Rong Y, Moss N, Lodestro C, Luntz T, Wolfe SP, Reid LM. Liver cell culture and lineage biology. In: Atala A, Lanza RP, editors. Methods of tissue engineering. London: Academic; 2002. p. 151–202.

    Google Scholar 

  76. Rojkind M, Gatmaitan Z, Mackensen S, Giambrone MA, Ponce P, Reid LM. Connective tissue biomatrix: its isolation and utilization for long-term cultures of normal rat hepatocytes. J Cell Biol. 1980;87:255–63.

    Article  PubMed  CAS  Google Scholar 

  77. Capila I, Linhardt RJ. Heparin ± protein interactions. Angew Chem Int Ed Engl. 2002;41:390–412.

    Article  CAS  Google Scholar 

  78. Purushothaman A, Hurst DR, Pisano C, Mizumoto S, Sugahara K, Sanderson RD. Heparanase-mediated loss of nuclear syndecan-1 enhances histone acetyltransferase (HAT) activity to promote expression of genes that drive an aggressive tumor phenotype. J Biol Chem. 2011;286:30377–83.

    Article  PubMed  CAS  Google Scholar 

  79. Linhardt R, Liu J. Synthetic heparin. Curr Opin Pharmacol. 2012;12(2):217–9.

    Article  PubMed  CAS  Google Scholar 

  80. Fux L, Ilan N, Sanderson RD, Vlodavsky I. Heparanase busy at the cell surface. Trends Biochem Sci. 2009;34(10):511–9.

    Article  PubMed  CAS  Google Scholar 

  81. Ramani VC, Yang Y, Ren Y, Nan L, Sanderson RD. Heparanase plays a dual role in driving hepatocyte growth factor (HGF) signaling enhancing HGF expression and activity. J Biol Chem. 2011;286(8):6490–9.

    Article  PubMed  CAS  Google Scholar 

  82. Ramani VC, Pruett PS, Thompson CA, DeLucas LD, Sanderson RD. Heparan sulfate chains of syndecan-1 regulate ectodomain shedding. J Biol Chem. 2012;287(13):9952–61.

    Article  PubMed  CAS  Google Scholar 

  83. Chiang JY. Bile acid regulation of gene expression: roles of nuclear hormone receptors. Endocr Rev. 2002;23:443–63.

    Article  PubMed  CAS  Google Scholar 

  84. Perelman A, Brandan E. Different membrane-bound forms of acetylcholinesterase are present at the cell surface of hepatocytes. Eur J Biochem. 1989;182:203–7.

    Article  PubMed  CAS  Google Scholar 

  85. Alvaro D, Alpini G, Jezequel AM, Bassotti C, Francia C, Fraioli F, Romeo R, Marucci L, Le Sage G, Glaser SS, Benedetti A. Role and mechanisms of action of acetylcholine in the regulation of rat cholangiocyte secretory functions. J Clin Invest. 1997;100: 1349–62.

    Article  PubMed  CAS  Google Scholar 

  86. LeSage EG, Alvaro D, Benedetti A, Glaser S, Marucci L, Baiocchi L, Eisel W, Caligiuri A, Phinizy JL, Rodgers R, Francis H, Alpini G. Cholinergic system modulates growth, apoptosis, and secretion of cholangiocytes from bile duct-ligated rats. Gastroenterology. 1999;117:191–9.

    Article  PubMed  CAS  Google Scholar 

  87. Vongchan P, Warda M, Toyoda H, Toida T, Marks RM, Linhardt RJ. Structural characterization of human liver heparan sulfate. Biochim Biophys Acta. 2005;1721:1–8.

    Article  PubMed  CAS  Google Scholar 

  88. Fujita M, Spray DC, Choi H, Saez JC, Watanabe T, Rosenberg LC, Hertzberg EL, Reid LM. Glycosaminoglycans and proteoglycans induce gap junction expression and restore transcription of tissue-specific mRNAs in primary liver cultures. Hepatology. 1987;7:1S–9.

    Article  PubMed  CAS  Google Scholar 

  89. Spray DC, Fujita M, Saez JC, Choi H, Watanabe T, Hertzberg E, Rosenberg LC, Reid LM. Proteoglycans and glycosaminoglycans induce gap junction synthesis and function in primary liver cultures. J Cell Biol. 1987;105:541–51.

    Article  PubMed  CAS  Google Scholar 

  90. Cervantes S, Lau J, Cano DA, Borromeo-Austin C, Hebrok M. Primary cilia regulate Gli/Hedgehog activation in pancreas. Proc Natl Acad Sci U S A. 2010;107:10109–14.

    Article  PubMed  CAS  Google Scholar 

  91. Huang BQ, Masyuk TV, Muff MA, Tietz PS, Masyuk AI, Larusso NF. Isolation and characterization of cholangiocyte primary cilia. Am J Physiol Gastrointest Liver Physiol. 2006;291:G500–9.

    Article  PubMed  CAS  Google Scholar 

  92. Masyuk AI, Masyuk TV, LaRusso NF. Cholangiocyte primary cilia in liver health and disease. Dev Dyn. 2008;237:2007–12.

    Article  PubMed  CAS  Google Scholar 

  93. Michalopoulos GK, Appasamy R. Metabolism of HGF-SF and its role in liver regeneration. EXS. 1993;65:275–83 [Review] [15 refs].

    PubMed  CAS  Google Scholar 

  94. Michalopoulos GK, DeFrances MC. Liver regeneration. Science. 1997;276:60–6 [Review] [98 refs].

    Article  PubMed  CAS  Google Scholar 

  95. Liu H, Di Cunto F, Imarisio S, Reid LM. Citron kinase is a cell cycle-dependent, nuclear protein required for G2/M transition of hepatocytes. J Biol Chem. 2003;278:2541–8.

    Article  PubMed  CAS  Google Scholar 

  96. Sigal SH, Rajvanshi P, Gorla GR, Sokhi RP, Saxena R, Gebhard Jr DR, Reid LM, Gupta S. Partial hepatectomy-induced polyploidy attenuates hepatocyte replication and activates cell aging events. Am J Physiol Gastrointest Liver Physiol. 1999;276:G1260–72.

    CAS  Google Scholar 

  97. Khan AA, Parveen N, Mahaboob VS, Prasad R, Ravindraprakash A, Venkateswarlu J, Rao P, Pande G, Lakshmi Narusu M, Khaja MN, Pramila R, Habeeb A, Habibullah CM. Management of hyperbilirubinemia in biliary atresia by hepatic progenitor cell transplantation through hepatic artery: a case report. Transplant Proc. 2008;40:1153–5.

    Article  PubMed  CAS  Google Scholar 

  98. Khan AA, Parveen N, Mahaboob VS, Rajendraprasad A, Ravindraprakas HR, Venkateswarlu J, Rao P, Pande G, Lakshmi Narusu M, Khaja MN, Pramila R, Habeeb A, Habibullah CM. Treatment of Crigler-Najjar Syndrome type 1 by hepatic progenitor cell therapy: a simple procedure for hyperbilirubinemia. Transplant Proc. 2008;40:1148–50.

    Article  PubMed  CAS  Google Scholar 

  99. Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet. 2005;366:2019–25.

    Article  PubMed  Google Scholar 

  100. Cirulli V, Beattie GM, Klier G, Ellisman M, Ricordi C, Quaranta V, Frasier F, Ishii JK, Hayek A, Salomon DR. Expression and function of alpha(v)beta(3) and alpha(v)beta(5) integrins in the developing pancreas: roles in the adhesion and migration of putative endocrine progenitor cells. J Cell Biol. 2000;150:1445–60.

    Google Scholar 

  101. Cirulli V, Crisa L, Beattie GM, Mally MI, Lopez AD, Fannon A, Ptasznik A, Inverardi L, Ricordi C, Deerinck T, Ellisman M, Reisfeld RA, Hayek A. KSA antigen EpCAM mediates cell-cell adhesion of pancreatic epithelial cells: morphoregulatory roles in pancreatic islet development. J Cell Biol. 1998;140:1519–34.

    Google Scholar 

  102. Frandsen U, Porneki AD, Floridon C, Abdallah BM, Kassem M. Activin B mediated induction of Pdx1 in human embryonic stem cell derived embryoid bodies. Biochem Biophys Res Commun. 2007;362:568–74.

    Google Scholar 

  103. Hayes A, Tudor D, Nowell M, Caterson B, Hughes C. Unique forms of chondroitin sulfate proteoglycans in stem cell niches. J Histochem Cytochem. 2007;56:125–38.

    Google Scholar 

  104. Hori Y, Fukumoto M, Kuroda Y. Enrichment of putative pancreatic progenitor cells from mice by sorting for prominin1 (CD133) and platelet-derived growth factor receptor beta. Stem Cells. 2008; 26:2912–20.

    Google Scholar 

  105. Jiang W, Sui X, Zhang D, Liu M, Ding M, Shi Y, Deng H. CD24: a novel surface marker for PDX1-positive pancreatic progenitors derived from human embryonic stem cells. Stem Cells. 2011; 29:609–17.

    Google Scholar 

  106. Koblas T, Zacharovová K, Berková Z, Mindlová M, Girman P, Dovolilová E, Karasová L, Saudek F. Isolation and characterization of human CXCR4-positive pancreatic cells. Folia Biol (Praha). 2007;53:13–22.

    Google Scholar 

  107. Lardon J, Corbeil D, Huttner WB, Ling Z, Bouwens L. Stem cell marker prominin-1/AC133 is expressed in duct cells of the adult human pancreas. Pancreas. 2008;36:e1–6.

    Google Scholar 

  108. Schaffer AE, Freude KK, Nelson SB, Sander M. Nkx6 transcription factors and Ptf1a function as antagonistic lineage determinants in multipotent pancreatic progenitors. Dev Dyn. 2010;18:1022–9.

    Google Scholar 

  109. Segev H, Fishman B, Schulman R, Itskovitz-Eldor J. The expression of the class 1 glucose transporter isoforms in human embryonic stem cells, and the potential use of GLUT2 as a marker for pancreatic progenitor enrichment. Stem Cell Dev. 2012;21: 1653–61.

    Google Scholar 

  110. Smukler SR, Arntfield ME, Razavi R, Bikopoulos G, Karpowicz P, Seaberg R, Dai F, Lee S, Ahrens R, Fraser PE, Wheeler MB, Van der Koo D. The adult mouse and human pancreas contain rare multipotent stem cells that express insulin. Cell Stem Cell. 2011; 8:281–93.

    Google Scholar 

  111. Tsaniras SC, Jones PM. Hedgehog signaling and the generation of b-cells from embryonic stem cells by manipulating signaling pathways. J Endocrinol. 2010;206:13–26.

    Google Scholar 

  112. Zaret KS. Genetic programming of liver and pancreas progenitors: lessons for stem-cell differentiation. Nat Rev Genet. 2008;9: 329–40.

    Google Scholar 

Download references

Acknowledgments

Findings from these studies have been included in patent applications belonging to Sapienza University (Rome, Italy) and/or to UNC (Chapel Hill, NC) and licensed to Vesta Therapeutics (Bethesda, MD). The authors do not have equity or a position in Vesta and are not paid consultants to the company. The authors declare no conflicts of interest. Almost all of the figures are reproduced from various publications with permission of the administrators of the journals in which they first appeared. The review was written primarily by Mark Furth and Lola Reid, with input and editing by all of the authors. All of the authors have contributed to the investigations and established the interpretations that are summarized in this review.

Authors’ note: As this book goes to press, we acknowledge the publication on “liver buds” (Takebe et al. 2013). The investigators mixed 3 different stem cell populations in culture under appropriate conditions to form the liver buds. Their findings demonstrate the importance of epithelial-mesenchymal interactions and the resulting paracrine signals in liver formation

Financial Support

UNC School of Medicine (Chapel Hill, NC). Funding derived from Vesta Therapeutics (Bethesda, MD) and from an NCI grant (CA016086).

Diabetes Research Institute (Miami, FL). Studies were funded by grants from NIH, the Juvenile Diabetes Research Foundation, ADA, and the Diabetes Research Institute Foundation. Dr. Lanzoni is supported by a scholarship dedicated to the memory of Proni Quinto and Caravita Zita, Centro Interdipartimentale per la Ricerca sul Cancro-University of Bologna, Italy.

Sapienza University Medical Center (Rome, Italy). Professor Gaudio was supported by research project grant from the University “Sapienza” of Rome and FIRB grant # RBAP10Z7FS_001 and by PRIN grant # 2009X84L84_001. Professor Alvaro was supported by FIRB grant # RBAP10Z7FS_004 and by PRIN grant # 2009X84L84_002. The study was also supported by Consorzio Interuniversitario Trapianti d’Organo, Rome, Italy.

Wake Forest School of Medicine (Winston-Salem, NC). Dr. Mark Furth is supported by WAKE FOREST INNOVATIONS of the Wake Forest School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lola M. Reid Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science + Business Media New York

About this chapter

Cite this chapter

Furth, M.E. et al. (2013). Stem Cell Populations Giving Rise to Liver, Biliary Tree, and Pancreas. In: Sell, S. (eds) Stem Cells Handbook. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-7696-2_21

Download citation

Publish with us

Policies and ethics