Skip to main content

Optimality Conditions for Semivectorial Bilevel Convex Optimal Control Problems

  • Conference paper
  • First Online:
Computational and Analytical Mathematics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 50))

Abstract

We present optimality conditions for bilevel optimal control problems where the upper level is a scalar optimal control problem to be solved by a leader and the lower level is a multiobjective convex optimal control problem to be solved by several followers acting in a cooperative way inside the greatest coalition and choosing amongst efficient optimal controls. We deal with the so-called optimistic case, when the followers are assumed to choose the best choice for the leader amongst their best responses, as well with the so-called pessimistic case, when the best response chosen by the followers can be the worst choice for the leader. This paper continues the research initiated in Bonnel (SIAM J. Control Optim. 50(6), 3224–3241, 2012) where existence results for these problems have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If A and B f do not depend on t, it is well known that this system is controllable if, and only if, \(\mathrm{rank}\,(\mathbf{B_{f}},A\mathbf{B_{f}},{A}^{2}\mathbf{B_{f}},\ldots,{A}^{n-1}\mathbf{B_{f}}) = n\).

  2. 2.

    Note that the embedding \(H_{1}^{n}([t_{0},T]) \subset L_{2}^{n}([t_{0},T])\) is continuous.

  3. 3.

    In the sense that there exists a function \(\tilde{u}_{l}\) continuous at t 1 and \(\bar{u}_{l}(t) =\tilde{ u}_{l}(t)\) a.e. on [t 0 ,T]. Note that by Lusin’s theorem, we can find measurable sets of arbitrarily small positive measure and such functions \(\tilde{u}_{l}\) which are continuous on the complement of those sets.

  4. 4.

    We identify the Hilbert space \(L_{2}^{m_{l}}([t_{0},T])\) with its dual according to Riesz-Fréchet theorem; hence \(\nabla _{u_{l}}\hat{J}_{l}(\theta,t_{1},u_{l}) \in L_{2}^{m_{l}}([t_{0},T])\) (see, e.g. [7, p. 38]).

References

  1. Abou-Kandil, H., Freiling, G., Ionescu, V., Jank, G.: Matrix Riccati Equations in Control and Systems Theory. Birkhauser, Basel (2003)

    Book  MATH  Google Scholar 

  2. Alexeev, V.M., Tikhomirov, V.M., Fomin, S.V.: Optimal Control. Plenum, New York (1987)

    Google Scholar 

  3. Ankhili, Z., Mansouri, A.: An exact penalty on bilevel programs with linear vector optimization lower level. European J. Oper. Res. 197, 36–41 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aubin, J.-P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York (1984)

    MATH  Google Scholar 

  5. Bagchi, A.: Stackelberg Differential Games in Economic Models. Lecture Notes in Control and Information Sciences, vol. 64. Springer, Berlin (1984)

    Google Scholar 

  6. Basar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory, 2nd edn. Academic, London/New York (1995)

    MATH  Google Scholar 

  7. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics. Springer, New York (2010)

    Google Scholar 

  8. Benson, H.P.: Optimization over the efficient set. J. Math. Anal. Appl. 98, 562–580 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Benson, H.P.: A finite, non-adjacent extreme point search algorithm for optimization over the efficient set. J. Optim. Theory Appl. 73, 47–64 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bolintinéanu, S.: Minimization of a quasi-concave function over an efficient set. Math. Program. 61, 89–110 (1993)

    Article  MATH  Google Scholar 

  11. Bolintinéanu, S.: Necessary conditions for nonlinear suboptimization over the weakly-efficient set. J. Optim. Theory Appl. 78, 579–598 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bolintinéanu, S.: Optimality conditions for minimization over the (weakly or properly) efficient set. J. Math. Anal. Appl. 173(2), 523–541 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bolintinéanu, S., El Maghri, M.: Pénalisation dans l’optimisation sur l’ensemble faiblement efficient. RAIRO Oper. Res. 31(3), 295–310 (1997)

    MATH  Google Scholar 

  14. Bonnel, H.: Optimality conditions for the semivectorial bilevel optimization problem. Pacific J. Optim. 2(3), 447–468 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Bonnel, H., Kaya, C.Y.: Optimization over the efficient set in multiobjective convex optimal control problems. J. Optim. Theory Appl. 147(1), 93–112 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bonnel, H., Morgan, J.: Semivectorial bilevel optimization problem: Penalty Approach. J. Optim. Theory Appl. 131(3), 365–382 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bonnel, H., Morgan, J.: Semivectorial bilevel convex optimal control problems: existence results. SIAM J. Control Optim. 50(6), 3224–3241 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bonnel, H., Pham, N.S.: Nonsmooth optimization over the (weakly or properly) pareto set of a linear-quadratic multi-objective control problem: Explicit Optimality Conditions. J. Ind. Manag. Optim. 7(4), 789–809 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Borwein, J.: Proper efficient points for maximizations with respect to cones. SIAM J. Control Optim. 15(1), 57–63 (1977)

    Article  MATH  Google Scholar 

  20. Breton, M., Alj, A., Haurie, A.: Sequential Stackelberg Equilibrium in Two-person Games. J. Optim. Theory Appl. 59, 71–97 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Brezis, H.: Analyse fonctionnelle: théorie et applications. Dunod, Paris (1999)

    Google Scholar 

  22. Calvete, H., Galé, C.: On linear bilevel problems with multiple objectives at the lower level. Omega 39, 33–40 (2011)(Elsevier)

    Google Scholar 

  23. Chen, T., Cruz Jr., J.B.: Stackelberg solution for two person games with biased information patterns. IEEE Trans. Automatic Control 17, 791–798 (1972)

    Article  MATH  Google Scholar 

  24. Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Ann. Oper. Res. 153, 235–256 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Craven, B.D.: Aspects of multicriteria optimization. Recent Prospects in Mathematical Programming. Gordon and Breach, Philadelphia (1991)

    Google Scholar 

  26. Dauer, J.P.: Optimization over the efficient set using an active constraint approach. Z. Oper. Res. 35, 185–195 (1991)

    MathSciNet  MATH  Google Scholar 

  27. Dauer, J.P., Fosnaugh, T.A.: Optimization over the efficient set. J. Global Optim. 7, 261–277 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dempe, S.: Foundations of Bilevel Programming. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  29. Dempe, S.: Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints. Optimization 52, 333–359 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dempe, S., Gadhi, N., Zemkoho, A.B.: New optimality conditions for the semivectorial bilevel optimization problem. J. Optim. Theory Appl. 157, 54–74 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Eichfelder, G.: Multiobjective bilevel optimization. Math. Program. Ser. A 123, 419–449 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. Classics in Applied Mathematics, vol. 28. SIAM, Philadelphia (1999)

    Google Scholar 

  33. Fülöp, J.: A cutting plane algorithm for linear optimization over the efficient set. Generalized Convexity, Lecture notes in Economics and Mathematical System, vol. 405, pp. 374–385. Springer, Berlin (1994)

    Google Scholar 

  34. Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22, 618–630 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  35. Haurie, A.: A Historical Perspective on Cooperative Differential Games. Advances in dynamic games and applications (Maastricht, 1998). Ann. Internat. Soc. Dynam. Games, Part I 6, 19–29 (2001)

    MathSciNet  Google Scholar 

  36. Horst, R., Thoai, N.V.: Maximizing a concave function over the efficient or weakly-efficient set. European J. Oper. Res. 117, 239–252 (1999)

    Article  MATH  Google Scholar 

  37. Horst, R., Thoai, N.V., Yamamoto, Y., Zenke, D.: On Optimization over the Efficient Set in Linear Multicriteria Programming. J. Optim. Theory Appl. 134, 433–443 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Jahn, J.: Vector Optimization. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  39. Jahn, J.: Introduction to the Theory of Nonlinear Optimization. Springer, Berlin (2007)

    MATH  Google Scholar 

  40. Lignola, M.B., Morgan, J.: Topological Existence and Stability for Stackelberg Problems. J. Optim. Theory Appl. 84, 575–596 (1995)

    Article  MathSciNet  Google Scholar 

  41. Lignola, M.B., Morgan, J.: Stability of regularized bilevel programming problems. J. Optim. Theory Appl. 93, 575–596 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  42. Loridan, P., Morgan, J.: Approximation of the Stackelberg problem and applications in control theory. Proceedings of the Vth IFAC Workshop on Control Applications of Non Linear Programming and Optimization, Capri, 1985. Pergamon Press, Oxford (1986)

    Google Scholar 

  43. Loridan, P., Morgan, J.: A theoretical approximation scheme for Stackelberg problems. J. Optim. Theory Appl. 61, 95–110 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  44. Loridan, P., Morgan, J.: New results on approximate solutions in two-level optimization. Optimization 20, 819–836 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  45. Morgan, J.: Constrained well-posed two-level optimization problems. In: Clarke, F., Dem’yanov, V.F., Giannessi, F. (eds.) Nonsmooth Optimization and Related Topics. Ettore Majorana International Sciences Series, pp. 307–326. Plenum Press, New York (1989)

    Chapter  Google Scholar 

  46. Morgan, J.: Existence for Hierarchical differential non-zero sum games with coupled constraints. Workshop of the International Society of Game Theory and Applications. Sils-Maria, Switzerland (1997)

    Google Scholar 

  47. Philip, J.: Algorithms for the vector maximization problem. Math. Program. 2, 207–229 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  48. Simaan, M., Cruz, J.B., Jr.: On the Stackelberg strategy in nonzero-sum games. J. Optim. Theory Appl. 11(5), 533–555 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  49. Von Stackelberg, H.: The Theory of the Market Economy. Oxford University Press, Oxford (1952)

    Google Scholar 

  50. Yamamoto, Y.: Optimization over the efficient set: overview. J. Global Optim. 22, 285–317 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zheng, Y., Wan, Z.: A solution method for semivectorial bilevel programming problem via penalty method. J. Appl. Math. Comput. 37, 207–219 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Henri Bonnel thanks the University of Naples Federico II and CSEF for its support and the Department of Mathematics and Statistics for its hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri Bonnel .

Editor information

Editors and Affiliations

Additional information

Communicated By Michel Théra.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Bonnel, H., Morgan, J. (2013). Optimality Conditions for Semivectorial Bilevel Convex Optimal Control Problems. In: Bailey, D., et al. Computational and Analytical Mathematics. Springer Proceedings in Mathematics & Statistics, vol 50. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7621-4_4

Download citation

Publish with us

Policies and ethics