Skip to main content

Site-Directed Spin Labeling of Membrane Proteins

  • Chapter
Membrane Protein Structure

Part of the book series: Methods in Physiology Series ((METHPHYS))

Abstract

Membrane-associated proteins present a particularly difficult problem for structure determination. Diffraction approaches are hampered by the lack of crystallization methods, and multidimensional nuclear magnetic resonance (NMR)-approaches are not generally applicable due to the lack of high-resolution spectra (but see Opella, Chapter 11). For this class of proteins, the technique of spin labeling offers an attractive alternative for obtaining structural information. In this method, a stable nitroxide-free radical (the “spin label”) is attached at a specific site in the system of interest, and the electron paramagnetic resonance (EPR) spectrum is analyzed to yield information regarding the local environment around the label. Humphries and McConnell (1982) and Marsh (1981) have written excellent reviews of the technique and its capabilities. The two-volume series, Spin Labeling: Theory and Application, (Berliner, 1976, 1979) and Volume 8 of the series, Biological Magnetic Resonance, (Berliner and Reuben, 1990) provide a comprehensive treatment of continuous-wave EPR aspects of the subject. Two recent books, EPR and Advanced EPR Studies of Biological Systems (Dalton, 1985) and Advanced EPR: Applications in Biology and Biochemistry (Hoff, 1989), treat more advanced concepts and time-domain EPR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altenbach, C., and Hubbell, W. L. (1988) The aggregation state of spin-labeled melittin in solution and bound to phospholipid membranes: evidence that membrane bound melittin is monomeric. Proteins: Struct. Funct. Genet. 3: 230–242.

    Article  CAS  Google Scholar 

  • Altenbach, C., Froncisz, W., Hyde, J. S., and Hubbell, W. L. (1989a) Conformation of spin-labeled melittin at membrane surfaces investigated by pulse saturation recovery and continuous wave saturation ESR. Biophys. J. 56: 1183–1193.

    Article  PubMed  CAS  Google Scholar 

  • Altenbach, C., Flitsch, S. L., Khorana, H. G., and Hubbell, W. L. (1989b) Structural studies on trans-membrane proteins. 2. Spin labeling of bacteriorhodopsin mutants at unique cysteines. Biochemistry 28: 7806–7812.

    Article  PubMed  CAS  Google Scholar 

  • Altenbach, C., Marti, T., Khorana, H. G., and Hubbell, W. L. (1990) Transmembraneprotein structure: spin labeling of bacteriorhodopsin mutants. Science 248: 1088–1092.

    Article  PubMed  CAS  Google Scholar 

  • Anthony-Cahill, S., Benfield, P., Fairman, R., Wasserman, Z., Brenner, S., Altenbach, C., Hubbell, W., Stafford, W., DeGrado, W. (1992) Molecular characterization of helix-loop-helix peptides. Science 255: 979–983.

    Article  PubMed  CAS  Google Scholar 

  • Arnold, F. H., and Haymore, B. L. (1991) Engineered metal-binding proteins: purification to protein folding. Science 252: 1796–1797.

    Article  PubMed  CAS  Google Scholar 

  • Bain, J. D., Diala, E. S., Glabe, C. G., Wacker, D. A., Lyttle, M. H., Dix, T. A., and Chamberlin, A. R. (1989) Site-specific incorporation of nonnatural residues during in vitro protein biosynthesis with semisynthetic aminoacyl-tRNAs. Biochemistry 30: 5411–5421.

    Article  Google Scholar 

  • Bashford, D., Chothia, C., and Lesk, A. M. (1987) Determinants of a protein fold. J. Mol. Biol. 196: 199–216.

    Article  PubMed  CAS  Google Scholar 

  • Berliner, L. J. (1976) Spin Labeling: Theory and Applications. New York: Academic Press, 650 pp.

    Google Scholar 

  • Berliner, L. J., Grinwald, J., Hankovszky, H. O., and Hideg, K. (1982) A novel reversible thiol-specific spin label-papain active-site labeling and inhibition. Anal. Biochem. 119: 450.

    Article  PubMed  CAS  Google Scholar 

  • Berliner, L. J. (1979) Spin Labeling II: Theory and Applications. New York: Academic Press, 357 pp.

    Google Scholar 

  • Berliner, L. J., and Reuben (1990) Biological Magnetic Resonance, Vol. 8. New York: Plenum Press, 650 pp.

    Google Scholar 

  • Beth, A. H., Robinson, B. H., Cobb, C. E., Dalton, L. R., Trommer, W. E., Birktoft, J. J., and Park, J. H. (1984) Interactions and spatial arrangement of spin-labelled NAD+ bound glyceraldehyde-3phosphate dehydrogenase. J. Biol. Chem. 259: 9717–9728.

    PubMed  CAS  Google Scholar 

  • Boeyens, J.C.A., and McConnell, H. M. (1966) Spin labeled hemoglobin Proc. Natl. Acad. Sci. USA 56: 22–25.

    Article  PubMed  CAS  Google Scholar 

  • Bowie, J. U., Reidhaar-Olson, J. F., Lim, W. A., and Sauer, R. T. (1990) Deciphering the message in protein sequences: tolerance to amino acid substitutions. Science 247: 1306–1310.

    Article  PubMed  CAS  Google Scholar 

  • Braiman, M. S., Stern, L. J., Chao, B. H., and Khorana, H. G. (1987) Structure-function studies on bacteriorhodopsin IV. Purification and renaturation of bacterio-opsin polypeptide expressed in Escherichia coli. J. Biol. Chem. 262: 9271–9276.

    CAS  Google Scholar 

  • Catterall, W. A. (1988) Structure and function of voltage-sensitive ion channels. Science 242: 50–61.

    Article  PubMed  CAS  Google Scholar 

  • Cramer, W. A., Cohen, F. S., Merrill, A. R., and Song, H. Y. (1990) Structure and dynamics of the colicin El channel. Mol. Microbiol. 4: 519–526.

    Article  PubMed  CAS  Google Scholar 

  • Cseko, J., Hankovszky, H. O., and Hideg, K. (1984) Synthesis of novel, highly reactive 1-oxy1–2,2,6,6tetramethyl-1,2,5,6-tetrahydropyridine derivatives. Can. J. Chem. 63: 940–943.

    Article  Google Scholar 

  • Dalton, L. R. (1985) Electron Paramagnetic Resonance. Boca Raton, FL: CRC Press 314 pp.

    Google Scholar 

  • Dalton, L. A., McIntyre, J. O., and Fleischer, S. (1987) Distance estimate of the active center of n-13-hydroxybutyrate dehydrogenase from the membrane surface. Biochemistry 26: 2117–2130.

    Article  PubMed  CAS  Google Scholar 

  • Delmelle, M., and Virmaux, N. (1977) Location of two sulfhydryl groups in the rhodopsin molecule by use of the spin label technique. Biochim. Biophys. Acta 464: 370–377.

    Article  PubMed  CAS  Google Scholar 

  • Dickerson, R. E. (1980) Cytochrome c and the evolution of energy metabolism. Sci. Am. 242: 136.

    Article  CAS  Google Scholar 

  • Eastman, M. P., Kooser, R. G., Das, M. R., and Freed, J. H. (1969) Studies of Heisenberg spin exchange in ESR spectra. I. Linewidth and saturation effects. J. Chem. Phys. 51: 2690–2709.

    Article  CAS  Google Scholar 

  • Eastman, M. P., Bruno, G. V., and Freed, J. H. (1970) ESR study of Heisenberg spin exchange. II. Effects of radial charge and size. J. Chem. Phys. 52: 2511–2522.

    Article  CAS  Google Scholar 

  • Eaton, G., and Eaton, S. (1989) Resolved electron-electron spin-spin splittings in EPR spectra. In: Biological Magnetic Resonance, edited by L. J. Berliner and J. Reuben. New York, Plenum, vol. 8, p. 340–397.

    Google Scholar 

  • Eaton, S. S., and Eaton, G. R. (1978) Interaction of spin labels with transition metals. Coord. Chem. Rev. 26: 207–262.

    Article  CAS  Google Scholar 

  • Eaton, S., More, K. M., Sawant, B. M., Boymel, P. M., and Eaton, G. (1983) Metal-nitroxyl interations. 29. EPR studies of spin-labeled copper complexes in frozen solution. J. Magn. Reson. 52: 435–449.

    CAS  Google Scholar 

  • Eaton, S. S., and Eaton, G. R. (1988) Interaction of spin labels with transition metals: Part 2. Coord. Chem. Rev. 83: 29–72.

    Article  CAS  Google Scholar 

  • Feix, J., Hubbell, C., and Hubbell, W. L. (1989) Motional dynamics of steric acid spin labels and lipid protein interactions in bovine rod outer segment membranes as studied by ELDOR and saturation recovery EPR. Biophys. J. 55, 325a.

    Google Scholar 

  • Grassetti, D. R., and Murray J. F. Jr. (1967) Determination of sulfhydryl groups with 2,2’-or 4,4’-dithiopyridine. Arch. Biochem. Biophys. 119: 41–49.

    Article  PubMed  CAS  Google Scholar 

  • Greenhalgh, D., Altenbach, C., Hubbell, W. L., and Khorana, H. G. (1991) Locations of Arg-82, Asp-85 and Asp-96 in helix C of bacteriorhodopsin relative to the aqueous boundaries. Proc. Natl. Acad. Sci. USA 88, 8626–8630.

    Article  PubMed  CAS  Google Scholar 

  • Guy, H. R., and Seetharamulu, P. (1986) Molecular model of the action potential sodium channel. Proc. Natl. Acad. Sci. USA 83: 508–512.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, R., and Unwin, P.N.T. (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257: 28–32.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E., and Downing, K. H. (1990) A model of the structure of bacteriorhodopsin based on high resolution cryo-electron microscopy. J. Mol. Biol. 213: 899–929.

    Article  PubMed  CAS  Google Scholar 

  • Hideg, K., Sar, C. P., Hankovszky, O. H., and Jerkovich, G. (1991) Allylic nitroxyl spin label reagents. Synthesis 615–620.

    Google Scholar 

  • Hemminga, M. A. (1983) Interpretation of ESR and saturation transfer ESR spectra of spin labeled lipids and membranes. Chem. Phys. Lipids 32: 323–383.

    Article  CAS  Google Scholar 

  • Hoff, A. J. (1989) Advanced EPR: Applications in Biology and Biochemistry. New York: Elsevier, 918 pp.

    Google Scholar 

  • Humphries, G.M.K., and McConnell, H. M. (1982) Nitroxide spin labels. In: Methods of Experimental Physics, edited by C. Marton. New York: Academic Press, vol. 20, p. 53–122.

    Google Scholar 

  • Hyde, J. S., Chien, C. W., and Freed, J. H. (1968) Electron-electron double resonance of free radicals in solution. J. Chem. Phys. 48: 4211–4226.

    Article  CAS  Google Scholar 

  • Hyde, J. S. (1979) Saturation recovery methodology. In: Time Domain Electron Spin Resonance, edited by L. Kevan and R. N. Schwartz. New York: John Wiley and Sons, p. 1–29.

    Google Scholar 

  • Hyde, J. S., Swartz, H. M., and Antholine, W. E. (1979) The spin-probe-spin-label method. In: Spin Labeling, edited by L. J. Berliner. New York: Academic Press, vol. 2, p. 71–113.

    Google Scholar 

  • Hyde, J. S., and Thomas, D. D. (1980) Saturation transfer spectroscopy. Annu. Rev. Phys. Chem. 31: 293–317.

    Article  CAS  Google Scholar 

  • Hyde, J. S., Yin, J. J., Froncisz, W., and Feix, J. B. (1985) Electron-electron double resonance with a loop-gap resonator. J. Magn. Reson. 63: 142–150.

    CAS  Google Scholar 

  • Hyde, J. S., and Froncisz, W. (1989) Loop-gap resonators. In: Advanced EPR: Applications in Biology and Biochemistry, edited by A. J. Hoff. Amsterdam: Elsevier, p. 277–305.

    Google Scholar 

  • Hyde, J. S., and Feix, J. B. (1989) Electron-electron double resonance. In: Biological Magnetic Resonance. edited by L. J. Berliner and J. Reuben. New York: Plenum, vol. 8, p. 305–337.

    Google Scholar 

  • Hyde, J. S., and Subszynski, W. K. (1990) Spin-label oximetry. In: Biological Magnetic Resonance. edited by L. J. Berliner and J. Reuben. New York: Plenum, p. 399–425.

    Google Scholar 

  • Karnik, S. S., and Khorana, H. G. (1990) Assembly of functional rhodopsin requires a disulfide bond between residues 110 and 187. J. Biol. Chem. 265: 17520–17524.

    PubMed  CAS  Google Scholar 

  • Khramtsov, V. V., Yelinova, V. I., Weiner, L. M., Berezina, T. A., Martin, V. V. and Volodarsky, L. B. (1989) Quantitative determination of SH groups in low-and high-molecular-weight compounds by an electron spin resonance method. Anal. Biochem. 182: 58–63.

    Article  PubMed  CAS  Google Scholar 

  • Kokorin, A. I., Zamarayev, K. I., Grigoryan, G. L., Ivanov, V. P., and Rozantsex, E. G. (1972) Measurement of the distances between the paramagnetic centres in solid solutions of nitroxide radicals, biradicals and spin-labeled proteins. Biofizika 17: 34–41.

    PubMed  CAS  Google Scholar 

  • Kokorin, A. I., and Formazyuk, V. E. (1981) New method of measuring distances between spin label and paramagnetic metal ions in macromolecules. Mol. Biol. 15: 930–938.

    CAS  Google Scholar 

  • Kulikov, A. V. (1976) Determination of distances between the spins of a label and a paramagnetic center in spin-labeled proteins from the parameters of the saturation curve of the ESR spectrum of the label at 77° K. Mol. Biol. 10: 132–141.

    CAS  Google Scholar 

  • Kulikov, A. V., and Likhtenstein, G. I. (1977) The use of spin relaxation phenomena in the investigation of the structure of model and biological systems by the method of spin labels. Adv. Mol. Relax. Interact. Processes 10: 47–79.

    Article  CAS  Google Scholar 

  • Lakey, J. H., Baty, D., and Pattus, F. (1991a) Fluoresence energy transfer distance measurements using site-directed single cysteine mutants: the membrane insertion of colicin El. J. Mol. Biol. 218: 639653.

    Google Scholar 

  • Lakey, J. H., Massotte, D., Heitz, F., Dasseux, J.-L., Faucon, J.-F., Parker, M. W., and Pattus, F. (199b) Membrane insertion of the pore forming domain of colicin A: a spectroscopic study. Eur. J. Biochem. 196: 599–607.

    Google Scholar 

  • Lazdunski, C. J., Baty, D., Geli, V., Cavard, D., Morlon, J., Lloubes, R., Howard, S. P., Knibiehler, M., Chartier, M., Varenne, S., Frenette, M., Dasseux, J.-L., and Pattus, F. (1988) The membrane channel-forming colicin A: synthesis, recreation, structure, action and immunity. Biochim. Biophys. Acta 947: 445–464.

    Article  PubMed  CAS  Google Scholar 

  • Leigh, J. S. (1969) ESR Rigid-lattice line shape in a system of two interacting spins. J. Chem. Phys. 52: 2608–2612.

    Article  Google Scholar 

  • Lesk, A. M., and Chothia, C. (1980) How different amino acid sequences determine similar protein structures: the structure and evolutionary dynamics of the globins. J. Mol. Biol. 136: 225–270.

    Article  PubMed  CAS  Google Scholar 

  • Lesk, A. M., and Chothia, C. (1982) Evolution of proteins formed by 9-sheets. II. The core of the immunoglobulin domain. J. Mol. Biol. 160: 325–342.

    Article  PubMed  CAS  Google Scholar 

  • Lex, L., Hideg, K., and Hankovszky, H. O. (1982) Nitroxide IX. Synthesis of nitroxide free radical a-amino acids. Can. J. Chem. 60: 1448–1451.

    Article  CAS  Google Scholar 

  • Lim, W. A., and Sauer, R. T. (1989) Alternative packing arrangements in the hydrophobic core of A-repressor. Nature 339: 31–36.

    Article  PubMed  CAS  Google Scholar 

  • Marsh, D. (1981) In: Membrane Spectroscopy, edited by E. Grell. Berlin: Springer-Verlag, p. 51–137. Morin, Y. N., Salikhov, K. M., and Zamaraev, K. I. (1980) Spin Exchange. Berlin: Springer-Verlag.

    Google Scholar 

  • Nakaie, C. R., Goissis, G., Schreier, S., and Paiva, A.C.M. (1981) pH dependence of EPR spectra of nitroxides containing ionizable groups. Brazilian J. Med. Biol. Res. 14: 173–180.

    Google Scholar 

  • Nassal, M., Mogi, T., Karnik, S., and Khorana, H. G. (1987) Structure-function studies on bacteriorhodopsin III. Total synthesis of a gene for bacterio-opsin and its expression in Escherichia coli. J. Biol. Chem. 262: 9264–9270.

    CAS  Google Scholar 

  • Noren, C. J., Anthony-Cahill, S. J., Griffith, M. C., and Schultz, P. G. (1989a) A general method for site-specific incorporation of unnatural amino acids into proteins. Science 244: 182–188.

    Article  PubMed  CAS  Google Scholar 

  • Noren, C. J., Anthony-Cahill, S. J., Suich, D. J., Noren, K. A., Griffith, M. C., and Schultz, P. G. (1989b) In vitro suppresion of an amber mutation by a chemically aminoacylated transfer RNA prepared by runoff transcription. Nucleic Acids Res. 18: 83–88.

    Article  Google Scholar 

  • Pakula, A. A., and Sauer, R. T. (1989) Genetic analysis of protein stability and function. Annu. Rev. Genet. 23: 289–310.

    Article  PubMed  CAS  Google Scholar 

  • Parker, M. W., Pattus, F., Tucker, A. D., and Tsernoglou, D. (1989) Structure of the membrane-poreforming fragment of colicin A. Nature 337: 93–96.

    Article  PubMed  CAS  Google Scholar 

  • Rassat, A., and Rey, P. (1967) Nitroxides XXIII. Preparation d’aminoacides radicalaires et de leurs sels complexes. Bull. Soc. Chin. Fr. 3: 815–818.

    CAS  Google Scholar 

  • Schneider, D. J., and Freed, J. H. (1989) Calculating slow motional magnetic resonance spectra: a user’s guide. In: Biological Magnetic Resonance, edited by L. J. Berliner and J. Reuben. New York: Plenum, vol. 8, p. 1–76.

    Google Scholar 

  • Shapiro, A. B., and Dmitriev, P. I. (1981) Organometallic nitroxyl radicals of piperidine. Doklady Akad. Nauk SSSR 257: 898–902.

    CAS  Google Scholar 

  • Shin, Y.-K., and Hubbell, W. L. (1992) Determination of electrostatic potential at biological interfaces using electron-electron double resonance. Biophys. J. 61: 1443–1453.

    Article  PubMed  CAS  Google Scholar 

  • Stetter, E., Vieth, E.-H., and Hausser, K. H. (1976) Eldor studies of nitroxide radicals: discrimination between rotational and translational correlation times in liquds. J. Magn. Reson. 23: 493–504.

    CAS  Google Scholar 

  • Subczynski, W. K., and Hyde, J. S. (1981) The diffusion-concentration product of oxygen in lipid bilayers using the spin label Ti method. Biochim. Biophys. Acta 643: 283–291.

    Article  PubMed  CAS  Google Scholar 

  • Todd, A. P., Cong, J., Levinthal, F., Levinthal, C., and Hubbell, W. L. (1989) Site-directed mutagenesis of colicin El provides specific attachment sites for spin labels whose spectra are sensitive to local conformation. Proteins Struct. Funct. Genet. 6: 294.

    Article  PubMed  CAS  Google Scholar 

  • Vaughan, W. M., and Weber, G. (1970) Oxygen quenching of pyrenebutyric acid fluorescence in water. A dynamic probe of the microenvironment. Biochemistry 9: 464–473.

    Article  PubMed  CAS  Google Scholar 

  • Volwerk, J. J., and Griffith, O. H. (1988) In: Magnetic Resonance Review. London: Gordon and Breach, vol. 13, p. 135–178.

    Google Scholar 

  • Weinkam, R. J., and Jorgensen, E. C. (1971) Angiotensin II analogs. VIII. The use of free radical containing peptides to indicate the conformation of the carboxyl terminal region of angiotensin II. J. Am. Chem. Soc. 93: 7033–7038.

    Article  PubMed  CAS  Google Scholar 

  • Wormald, M. R., Merrill, A. R., Cramer, W. A., and Williams, R.J.P. (1990) Solution studies of colicin El C-terminal thermolytic peptide: structural comparison with colicin A and the effects of pH changes. Eur. J. Biochem. 191: 155–161.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 American Physiological Society

About this chapter

Cite this chapter

Hubbell, W.L., Altenbach, C. (1994). Site-Directed Spin Labeling of Membrane Proteins. In: White, S.H. (eds) Membrane Protein Structure. Methods in Physiology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7515-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7515-6_10

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7515-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics