Skip to main content

Identifying the Matrix Ring: Algorithms for Quaternion Algebras and Quadratic Forms

  • Chapter
  • First Online:
Quadratic and Higher Degree Forms

Part of the book series: Developments in Mathematics ((DEVM,volume 31))

Abstract

We discuss the relationship between quaternion algebras and quadratic forms with a focus on computational aspects. Our basic motivating problem is to determine if a given algebra of rank 4 over a commutative ring R embeds in the 2 ×2-matrix ring M2(R) and, if so, to compute such an embedding. We discuss many variants of this problem, including algorithmic recognition of quaternion algebras among algebras of rank 4, computation of the Hilbert symbol, and computation of maximal orders.

Research partially supported by NSA Grant H98230-09-1-0037 and NSF Grant DMS-0901971.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, PRIMES is in P, Ann. of Math. (2) 160 (2004), no. 2, 781–793.

    Google Scholar 

  2. Leonard M. Adleman, Carl Pomerance, and Robert S. Rumely, On distinguishing prime numbers from composite numbers, Ann. of Math. (2) 117 (1983), no. 1, 173–206.

    Google Scholar 

  3. Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), vol. 3–4, 235–265.

    Google Scholar 

  4. J. A. Buchmann and H. W. Lenstra, Jr., Approximating rings of integers in number fields, J. Théor. Nombres Bordeaux 6 (1994), no. 2, 221–260.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. L. Chistov, The complexity of the construction of the ring of integers of a global field, Soviet Math. Dokl. 39 (1989), no. 3, 597–600.

    MathSciNet  MATH  Google Scholar 

  6. Henri Cohen, Computational algebraic number theory, Grad. Texts in Math., vol. 193, Springer, Berlin, 2000.

    Google Scholar 

  7. Henri Cohen, Advanced topics in computational algebraic number theory, Grad. Texts in Math., vol. 193, Springer, Berlin, 2000.

    Google Scholar 

  8. J. E. Cremona and D. Rusin, Efficient solution of rational conics, Math. Comp. 72 (2003), no. 243, 1417–1441.

    Article  MathSciNet  MATH  Google Scholar 

  9. Harold Davenport, Multiplicative number theory, 3rd. ed., Graduate texts in mathematics, vol. 74, Springer-Verlag, Berlin, 2000.

    Google Scholar 

  10. Leonard Eugene Dickson, Algebras and their arithmetics, Dover, New York, 1960.

    Google Scholar 

  11. Carsten Friedrichs, Berechnung von Maximalordnungen uber Dedekindringen, Ph. D. dissertation, Technischen Universität Berlin, 2000.

    Google Scholar 

  12. A. Fröhlich, Local fields, in Algebraic number theory, J.W.S. Cassels and A. Fröhlich, eds., Thompson Book Company, Washington, 1967, 1–41.

    Google Scholar 

  13. Joachim von zur Gathen and Jürgen Gerhard, Modern computer algebra, 2nd edition, Cambridge University Press, Cambridge, 2003.

    Google Scholar 

  14. Florian Hess, Computing Riemann-Roch spaces in algebraic function fields and related topics, J. Symbolic Comput. 33 (2002), no. 4, 425–445.

    Article  MathSciNet  MATH  Google Scholar 

  15. Gábor Ivanyos and Ágnes Szántó, Lattice basis reduction for indefinite forms and an application, Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993), Discrete Math. 153 (1996), no. 1–3, 177–188.

    Article  MathSciNet  MATH  Google Scholar 

  16. Gábor Ivanyos and Lajos Rónyai, Finding maximal orders in semisimple algebras over \(\mathbb{Q}\), Comput. Complexity 3 (1993), no. 3, 245–261.

    Article  MathSciNet  MATH  Google Scholar 

  17. Nathan Jacobson, Finite-dimensional division algebras over fields, Springer-Verlag, Berlin, 1996.

    Book  MATH  Google Scholar 

  18. Markus Kirschmer and John Voight, Algorithmic enumeration of ideal classes for quaternion orders, SIAM J. Comput. (SICOMP) 39 (2010), no. 5, 1714–1747.

    Article  MathSciNet  MATH  Google Scholar 

  19. Max-Albert Knus, Quadratic forms, Clifford algebras and spinors, Seminários de Matemática, 1, Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Ciência da Computaç ã o, Campinas, 1988.

    Google Scholar 

  20. Max-Albert Knus, Alexander Merkurjev, and Jean-Pierre Tignol, The book of involutions, American Math. Soc. Colloquium Publications, vol. 44, AMS, Providence, RI, 1998.

    Google Scholar 

  21. T.Y. Lam, A first course in noncommutative rings, 2nd ed., Graduate texts in mathematics, vol. 131, American Math. Soc., Providence, 2001.

    Google Scholar 

  22. H.W. Lenstra, Jr., Algorithms in algebraic number theory, Bull. Amer. Math. Soc. (N.S.) 26 (1992), no. 2, 211–244.

    Google Scholar 

  23. H. W. Lenstra, Jr., Computing Jacobi symbols in algebraic number fields, Nieuw Arch. Wisk. (4) 13 (1995), no. 3, 421–426.

    Google Scholar 

  24. Gabriele Nebe and Allan Steel, Recognition of division algebras, J. Algebra 322 (2009), no. 3, 903–909.

    Article  MathSciNet  MATH  Google Scholar 

  25. Jürgen Neukirch, Algebraic number theory, Grundlehren der mathematischen Wissenschaften, vol. 322, Springer-Verlag, Berlin, 1999.

    Google Scholar 

  26. O.Timothy O’Meara, Introduction to quadratic forms, Classics in Mathematics, Springer-Verlag, Berlin, 2000.

    Google Scholar 

  27. Michael Pohst and Hans Zassenhaus, Algorithmic algebraic number theory, Revised reprint, Encyclopedia of Mathematics and its Applications, vol. 30, Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  28. Irving Reiner, Maximal orders, Clarendon Press, Oxford, 2003.

    MATH  Google Scholar 

  29. Lajos Rónyai, Zero divisors in quaternion algebras, J. Algorithms 9 (1988), 494–506.

    Article  MathSciNet  MATH  Google Scholar 

  30. Lajos Rónyai, Algorithmic properties of maximal orders in simple algebras over \(\mathbb{Q}\), Comput. Complexity 2 (1992), no. 3, 225–243.

    Article  MathSciNet  MATH  Google Scholar 

  31. Lajos Rónyai, Simple algebras are difficult, Proceedings, 19th ACM Symp. on Theory of Computing, 1990, 398–408.

    Google Scholar 

  32. Lajos Rónyai, Computing the structure of finite algebras, J. Symbolic Computation 9 (1990), 355–373.

    Article  MATH  Google Scholar 

  33. Winfried Scharlau, Quadratic and Hermitian forms, Springer-Verlag, Berlin, 1985.

    Book  MATH  Google Scholar 

  34. Viggo Stoltenberg-Hansen and John V. Tucker, Computable rings and fields, Handbook of computability theory, ed. Edward R. Griffor, North-Holland, Amsterdam, 1999, 336–447.

    Google Scholar 

  35. Dénis Simon, Equations dans les corps de nombres et discriminants minimaux, thèse, Universit Bordeaux I, 1998.

    Google Scholar 

  36. Dénis Simon, Solving quadratic equations using reduced unimodular quadratic forms, Math. Comp. 74 (2005), no. 251, 1531–1543.

    Article  MathSciNet  MATH  Google Scholar 

  37. Christiaan van de Woestijne, Deterministic equation solving over finite fields, ISSAC’05, ACM, New York, 2005, 348–353.

    Google Scholar 

  38. Marie-France Vignéras, Arithmétique des algèbres de quaternions, Lecture notes in mathematics, vol. 800, Springer, Berlin, 1980.

    Google Scholar 

  39. John Voight, Quadratic forms and quaternion algebras: Algorithms and arithmetic, Ph.D. thesis, University of California, Berkeley, 2005.

    Google Scholar 

  40. John Voight, Rings of low rank with a standard involution, Illinois J. Math. 55 (2011), no. 3, 1135–1154.

    MathSciNet  MATH  Google Scholar 

  41. John Voight, Characterizing quaternion rings over an arbitrary base, J. Reine Angew. Math. 657 (2011), 113–134

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Voight .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Voight, J. (2013). Identifying the Matrix Ring: Algorithms for Quaternion Algebras and Quadratic Forms. In: Alladi, K., Bhargava, M., Savitt, D., Tiep, P. (eds) Quadratic and Higher Degree Forms. Developments in Mathematics, vol 31. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7488-3_10

Download citation

Publish with us

Policies and ethics