Skip to main content

Primates, Pathogens and Evolution: An Introduction

  • Chapter
  • First Online:
Primates, Pathogens, and Evolution

Abstract

Pathogens are a major force affecting the evolution of mammals. In primates, strong interspecies differences in disease susceptibility, progression, and survival after exposure to particular pathogens such as immunodeficiency viruses, Plasmodium, Trypanosoma, herpesvirus suggests the existence of species-specific pathogen-associated selective pressures in the past. Despite increasing recognition that the immune systems of particular primates have evolved to respond to unique challenges, we have a fairly superficial understanding of differences in primate immune function, primate–pathogen molecular interaction, and pathogen–primate coevolution. Research in this field is hindered by a lack of interdisciplinary and cross-field integration, a focus on a limited number of pathogens, and the separation of research on primate molecular evolution and primate immune function. To better understand human and nonhuman primate evolution, immune function, and susceptibility to infectious disease, a synthesis of research on the pathogen-related evolution and biochemical mechanisms of primate interaction with a broad range of microorganisms is required. A comprehensive model of how primates and pathogens have coevolved is crucial, as interspecies differences in primate–pathogen molecular interaction play a role in the emergence of pandemic human pathogens (HIV–1/HIV-2, malaria/Plasmodium, and lice) and affect the sustainability of primate populations (Toxoplasma and Mycobacterium), the utility of primate biomedical models, and the evolution of primate genomes.

This volume was assembled to address these needs. Here, we discuss the importance of understanding primate–pathogen interaction in the context of primate evolution, conservation, and medicine, as well as highlighting current obstacles to developing a holistic picture of evolutionary interaction between primates and pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abi-Rached L, Moesta AK, Rajalingam R, Guethlein LA, Parham P (2010) Human-specific evolution and adaptation led to major qualitative differences in the variable receptors of human and chimpanzee natural killer cells. PLoS Genet 6(11):e1001192

    PubMed  PubMed Central  Google Scholar 

  • Allison AC (1956) The sickle-cell and haemoglobin C genes in some African populations. Ann Hum Genet 21(1):67–89

    CAS  PubMed  Google Scholar 

  • Arnaud F, Caporale M, Varela M, Biek R, Chessa B, Alberti A, Golder M, Mura M, Zhang YP, Yu L et al (2007) A paradigm for virus–host coevolution: sequential counter-adaptations between endogenous and exogenous retroviruses. PLoS Pathog 3(11):e170

    PubMed  PubMed Central  Google Scholar 

  • Artenstein AW, Hicks CB, Goodwin BS Jr, Hilliard JK (1991) Human infection with B virus following a needlestick injury. Rev Infect Dis 13(2):288–291

    CAS  PubMed  Google Scholar 

  • Bannert N, Kurth R (2006) The evolutionary dynamics of human endogenous retroviral families. Annu Rev Genomics Hum Genet 7:149–173

    CAS  PubMed  Google Scholar 

  • Berdoy M, Webster JP, Macdonald DW (2000) Fatal attraction in rats infected with Toxoplasma gondii. Proc Biol Sci 267(1452):1591–1594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown KA, Brain SD, Pearson JD, Edgeworth JD, Lewis SM, Treacher DF (2006) Neutrophils in development of multiple organ failure in sepsis. Lancet 368(9530):157–169

    CAS  PubMed  Google Scholar 

  • Carp HJ, Selmi C, Shoenfeld Y (2012) The autoimmune bases of infertility and pregnancy loss. J Autoimmun 38(2–3):J266–J274

    CAS  PubMed  Google Scholar 

  • Catão-Dias JL, Epiphanio S, Martins Kierulff MC (2013) Neotropical primates and their susceptibility to Toxoplasma gondii: new insights for an old problem. In: Brinkworth JF, Pechenkina E (eds) Primates, pathogens, and evolution. Springer, Heidelberg

    Google Scholar 

  • Chapman CA, Gillespie TR, Goldberg TL (2005) Primates and the ecology of their infectious diseases: How will anthropogenic change affect host-parasite interactions? Evolut Anthropol 14:134–144

    Google Scholar 

  • Chellman GJ, Lukas VS, Eugui EM, Altera KP, Almquist SJ, Hilliard JK (1992) Activation of B virus (Herpesvirus simiae) in chronically immunosuppressed cynomolgus monkeys. Lab Anim Sci 42(2):146–151

    CAS  PubMed  Google Scholar 

  • Cheney DL, Seyfarth RM, Andelman SJ, Lee PC (1988) Reproductive success in vervet monkeys. In: Clutton-Brock TH (ed) Reproductive success. Chicago University Press, Chicago, IL, pp 384–402

    Google Scholar 

  • Cormier LA (2010) The historical ecology of human and wild primate malarias in the new world. Diversity 2(2):256–280

    Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife–threats to biodiversity and human health. Science 287(5452):443–449

    CAS  PubMed  Google Scholar 

  • de Groot NG, Otting N, Doxiadis GG, Balla-Jhagjhoorsingh SS, Heeney JL, van Rood JJ, Gagneux P, Bontrop RE (2002) Evidence for an ancient selective sweep in the MHC class I gene repertoire of chimpanzees. Proc Natl Acad Sci USA 99(18):11748–11753

    PubMed  PubMed Central  Google Scholar 

  • Dunlap KA, Palmarini M, Varela M, Burghardt RC, Hayashi K, Farmer JL, Spencer TE (2006) Endogenous retroviruses regulate periimplantation placental growth and differentiation. Proc Natl Acad Sci USA 103(39):14390–14395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duval L, Ariey F (2012) Ape Plasmodium parasites as a source of human outbreaks. Clin Microbiol Infect 18(6):528–532

    CAS  PubMed  Google Scholar 

  • Elde NC, Child SJ, Geballe AP, Malik HS (2009) Protein kinase R reveals an evolutionary model for defeating viral mimicry. Nature 457(7228):485–489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elde NC, Child SJ, Eickbush MT, Kitzman JO, Rogers KS, Shendure J, Geballe AP, Malik HS (2012) Poxviruses deploy genomic accordions to adapt rapidly against host antiviral defenses. Cell 150(4):831–841

    CAS  PubMed  PubMed Central  Google Scholar 

  • Epiphanio S, Sinhorini IL, Catao-Dias JL (2003) Pathology of toxoplasmosis in captive new world primates. J Comp Pathol 129(2–3):196–204

    CAS  PubMed  Google Scholar 

  • Estep RD, Messaoudi I, Wong SW (2010) Simian herpesviruses and their risk to humans. Vaccine 28(Suppl 2):B78–B84

    CAS  PubMed  Google Scholar 

  • Farah I, Borjesson A, Kariuki T, Yole D, Suleman M, Hau J, Carlsson HE (2003) Morbidity and immune response to natural schistosomiasis in baboons (Papio anubis). Parasitol Res 91(4):344–348

    PubMed  Google Scholar 

  • Filip LC, Mundy NI (2004) Rapid evolution by positive Darwinian selection in the extracellular domain of the abundant lymphocyte protein CD45 in primates. Mol Biol Evol 21(8): 1504–1511

    CAS  PubMed  Google Scholar 

  • Gao, F, Bailes E, Robertson DL, Chen Y, Rodenburg CM, Michael SF, Cummins LB, Arthur LO, Peeters M, Shaw GM, Sharp PM, Hahn, BH (1999) Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature 397:436–441

    Google Scholar 

  • Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, Freedman BI, Bowden DW, Langefeld CD, Oleksyk TK, Uscinski Knob AL et al (2010) Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329(5993):841–845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gogvadze E, Stukacheva E, Buzdin A, Sverdlov E (2009) Human-specific modulation of transcriptional activity provided by endogenous retroviral insertions. J Virol 83(12):6098–6105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greenwood EJD, Schmidt F, Heeney JL (2013) The evolution of SIV in primates and the emergence of the pathogen of AIDS. In: Brinkworth JF, Pechenkina E (eds) Primates, pathogens, and evolution. Springer, Heidelberg

    Google Scholar 

  • Haldane JBS (1949) The rate of mutation of human genes. Heredita 35(suppl):267–273

    Google Scholar 

  • Hamblin MT, Di Rienzo A (2000) Detection of the signature of natural selection in humans: evidence from the Duffy blood group locus. Am J Hum Genet 66(5):1669–1679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hedrick P (2004) Estimation of relative fitnesses from relative risk data and the predicted future of haemoglobin alleles S and C. J Evol Biol 17(1):221–224

    CAS  PubMed  Google Scholar 

  • Horie M, Honda T, Suzuki Y, Kobayashi Y, Daito T, Oshida T, Ikuta K, Jern P, Gojobori T, Coffin JM et al (2010) Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature 463(7277):84–87

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hraber P, Kuiken C, Yusim K (2007) Evidence for human leukocyte antigen heterozygote advantage against hepatitis C virus infection. Hepatology 46(6):1713–1721

    CAS  PubMed  Google Scholar 

  • Huang ES, Kilpatrick B, Lakeman A, Alford CA (1978) Genetic analysis of a cytomegalovirus-like agent isolated from human brain. J Virol 26(3):718–723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter P (2010) The missing link. Viruses revise evolutionary theory. EMBO Rep 11(1):28–31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Izutsu Y (2009) The immune system is involved in Xenopus metamorphosis. Front Biosci 14:141–149

    CAS  Google Scholar 

  • Jackson JA, Tinsley RC (2002) Effects of environmental temperature on the susceptibility of Xenopus laevis and X. wittei (Anura) to Protopolystoma xenopodis(Monogenea). Parasitol Res 88(7):632–638

    CAS  PubMed  Google Scholar 

  • Jia B, Serra-Moreno R, Neidermyer W, Rahmberg A, Mackey J, Fofana IB, Johnson WE, Westmoreland S, Evans DT (2009) Species-specific activity of SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2. PLoS Pathog 5(5):e1000429

    PubMed  PubMed Central  Google Scholar 

  • Jones JL, Kruszon-Moran D, Sanders-Lewis K, Wilson M (2007) Toxoplasma gondii infection in the United States, 1999 2004, decline from the prior decade. Am J Trop Med Hyg 77(3):405–410

    PubMed  Google Scholar 

  • Kageruka P, Mangus E, Bajyana Songa E, Nantulya V, Jochems M, Hamers R, Mortelmans J (1991) Infectivity of Trypanosoma (Trypanozoon) brucei gambiense for baboons (Papio hamadryas, Papio papio). Ann Soc Belg Med Trop 71(1):39–46

    CAS  PubMed  Google Scholar 

  • Keet DF, Kriek NP, Bengis RG, Grobler DG, Michel A (2000) The rise and fall of tuberculosis in a free-ranging chacma baboon troop in the Kruger National Park. Onderstepoort J Vet Res 67(2):115–122

    CAS  PubMed  Google Scholar 

  • Kim N, Dabrowska A, Jenner RG, Aldovini A (2007) Human and simian immunodeficiency virus-mediated upregulation of the apoptotic factor TRAIL occurs in antigen-presenting cells from AIDS-susceptible but not from AIDS-resistant species. J Virol 81(14):7584–7597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HS, Kim DS, Huh JW, Ahn K, Yi JM, Lee JR, Hirai H (2008) Molecular characterization of the HERV-W env gene in humans and primates: expression, FISH, phylogeny, and evolution. Mol Cells 26(1):53–60

    CAS  PubMed  Google Scholar 

  • Klimovich VB (2002) Actual problems of evolutional immunology. Zh Evol Biokhim Fiziol 38(5):442–451

    CAS  PubMed  Google Scholar 

  • Kondgen S, Kuhl H, N'Goran PK, Walsh PD, Schenk S, Ernst N, Biek R, Formenty P, Matz-Rensing K, Schweiger B et al (2008) Pandemic human viruses cause decline of endangered great apes. Curr Biol 18(4):260–264

    PubMed  Google Scholar 

  • Koppensteiner H, Brack-Werner R, Schindler M (2012) Macrophages and their relevance in human immunodeficiency virus type I infection. Retrovirology 9:82

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koyanagi M, Kerns JA, Chung L, Zhang Y, Brown S, Moldoveanu T, Malik HS, Bix M (2010) Diversifying selection and functional analysis of interleukin-4 suggests antagonism-driven evolution at receptor-binding interfaces. BMC Evol Biol 10:223

    PubMed  PubMed Central  Google Scholar 

  • Kwiatkowski DP (2005) How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Hum Genet 77(2):171–192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lambrecht FL (1985) Trypanosomes and Hominid evolution. Bioscience 35(10):640–646

    Google Scholar 

  • Lapoumeroulie C, Dunda O, Ducrocq R, Trabuchet G, Mony-Lobe M, Bodo JM, Carnevale P, Labie D, Elion J, Krishnamoorthy R (1992) A novel sickle cell mutation of yet another origin in Africa: the Cameroon type. Hum Genet 89(3):333–337

    CAS  PubMed  Google Scholar 

  • Lee YK, Mazmanian SK (2010) Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330(6012):1768–1773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leffler EM, Gao Z, Pfeifer S, Segurel L, Auton A, Venn O, Bowden R, Bontrop R, Wall JD, Sella G et al (2013) Multiple instances of ancient balancing selection shared between humans and chimpanzees. Science 339(6127):1578–1582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levin JL, Hilliard JK, Lipper SL, Butler TM, Goodwin WJ (1988) A naturally occurring epizootic of simian agent 8 in the baboon. Lab Anim Sci 38(4):394–397

    CAS  PubMed  Google Scholar 

  • Liu W, Li Y, Learn GH, Rudicell RS, Robertson JD, Keele BF, Ndjango JB, Sanz CM, Morgan DB, Locatelli S et al (2010) Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature 467(7314):420–425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loisel DA, Rockman MV, Wray GA, Altmann J, Alberts SC (2006) Ancient polymorphism and functional variation in the primate MHC-DQA1 5′ cis-regulatory region. Proc Natl Acad Sci USA 103(44):16331–16336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maier AG, Duraisingh MT, Reeder JC, Patel SS, Kazura JW, Zimmerman PA, Cowman AF (2003) Plasmodium falciparum erythrocyte invasion through glycophorin C and selection for Gerbich negativity in human populations. Nat Med 9(1):87–92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mandl JN, Barry AP, Vanderford TH, Kozyr N, Chavan R, Klucking S, Barrat FJ, Coffman RL, Staprans SI, Feinberg MB (2008) Divergent TLR7 and TLR9 signaling and type I interferon production distinguish pathogenic and nonpathogenic AIDS virus infections. Nat Med 14(10):1077–1087

    CAS  PubMed  Google Scholar 

  • Mandl JN, Akondy R, Lawson B, Kozyr N, Staprans SI, Ahmed R, Feinberg MB (2011) Distinctive TLR7 signaling, type I IFN production, and attenuated innate and adaptive immune responses to yellow fever virus in a primate reservoir host. J Immunol 186(11):6406–6416

    CAS  PubMed  Google Scholar 

  • Marmor M, Sheppard HW, Donnell D, Bozeman S, Celum C, Buchbinder S, Koblin B, Seage GR 3rd (2001) Homozygous and heterozygous CCR5-Delta32 genotypes are associated with resistance to HIV infection. J Acquir Immune Defic Syndr 27(5):472–481

    CAS  PubMed  Google Scholar 

  • Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12: 991–1045

    CAS  PubMed  Google Scholar 

  • Matzinger P (2002) The danger model: a renewed sense of self. Science 296(5566):301–305

    CAS  PubMed  Google Scholar 

  • Maynard CL, Elson CO, Hatton RD, Weaver CT (2012) Reciprocal interactions of the intestinal microbiota and immune system. Nature 489(7415):231–241

    CAS  PubMed  Google Scholar 

  • Moesta AK, Abi-Rached L, Norman PJ, Parham P (2009) Chimpanzees use more varied receptors and ligands than humans for inhibitory killer cell Ig-like receptor recognition of the MHC-C1 and MHC-C2 epitopes. J Immunol 182(6):3628–3637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murdoch C, Finn A (2003) The role of chemokines in sepsis and septic shock. Contrib Microbiol 10:38–57

    CAS  PubMed  Google Scholar 

  • Murray S, Stem C, Boudreau B, Goodall J (2000) Intestinal parasites of baboons (Papio cynocephalus anubis) and chimpanzees (Pan troglodytes) in Gombe National Park. J Zoo Wildl Med 31(2):176–178

    CAS  PubMed  Google Scholar 

  • Mutombo M, Arita I, Jezek Z (1983) Human monkeypox transmitted by a chimpanzee in a tropical rain-forest area of Zaire. Lancet 1(8327):735–737

    CAS  PubMed  Google Scholar 

  • Nakajima T, Ohtani H, Satta Y, Uno Y, Akari H, Ishida T, Kimura A (2008) Natural selection in the TLR-related genes in the course of primate evolution. Immunogenetics 60(12):727–735

    CAS  PubMed  Google Scholar 

  • Nunn CL (2012) Primate disease ecology in comparative and theoretical perspective. Am J Primatol 74(6):497–509

    PubMed  Google Scholar 

  • Nunn C, Thrall P, Stewart K, Harcourt A (2008) Emerging infectious diseases and animal social systems. Evolut Ecol 22(4):519–543

    Google Scholar 

  • Oner C, Dimovski AJ, Olivieri NF, Schiliro G, Codrington JF, Fattoum S, Adekile AD, Oner R, Yuregir GT, Altay C et al (1992) Beta S haplotypes in various world populations. Hum Genet 89(1):99–104

    CAS  PubMed  Google Scholar 

  • Ortiz M, Bleiber G, Martinez R, Kaessmann H, Telenti A (2006) Patterns of evolution of host proteins involved in retroviral pathogenesis. Retrovirology 3:11

    PubMed  PubMed Central  Google Scholar 

  • Oyston PC, Dorrell N, Williams K, Li SR, Green M, Titball RW, Wren BW (2000) The response regulator PhoP is important for survival under conditions of macrophage-induced stress and virulence in Yersinia pestis. Infect Immun 68(6):3419–3425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palacios G, Lowenstine LJ, Cranfield MR, Gilardi KV, Spelman L, Lukasik-Braum M, Kinani JF, Mudakikwa A, Nyirakaragire E, Bussetti AV et al (2011) Human metapneumovirus infection in wild mountain gorillas, Rwanda. Emerg Infect Dis 17(4):711–713

    PubMed  PubMed Central  Google Scholar 

  • Pandrea I, Apetrei C (2010) Where the wild things are: pathogenesis of SIV infection in African nonhuman primate hosts. Curr HIV/AIDS Rep 7(1):28–36

    PubMed  PubMed Central  Google Scholar 

  • Pandrea I, Apetrei C, Gordon S, Barbercheck J, Dufour J, Bohm R, Sumpter B, Roques P, Marx PA, Hirsch VM et al (2007) Paucity of CD4+CCR5+ T cells is a typical feature of natural SIV hosts. Blood 109(3):1069–1076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puissant B, Abbal M, Blancher A (2003) Polymorphism of human and primate RANTES, CX3CR1, CCR2 and CXCR4 genes with regard to HIV/SIV infection. Immunogenetics 55(5):275–283

    CAS  PubMed  Google Scholar 

  • Pujol C, Bliska JB (2003) The ability to replicate in macrophages is conserved between Yersinia pestis and Yersinia pseudotuberculosis. Infect Immun 71(10):5892–5899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Redford PS, Murray PJ, O’Garra A (2011) The role of IL-10 in immune regulation during M. tuberculosis infection. Mucosal Immunol 4(3):261–270

    CAS  PubMed  Google Scholar 

  • Reynolds MG, Carroll DS, Karem KL (2012) Factors affecting the likelihood of monkeypox’s emergence and spread in the post-smallpox era. Curr Opin Virol 2(3):335–343

    PubMed  Google Scholar 

  • Rockman MV, Hahn MW, Soranzo N, Goldstein DB, Wray GA (2003) Positive selection on a human-specific transcription factor binding site regulating IL4 expression. Curr Biol 13(23):2118–2123

    CAS  PubMed  Google Scholar 

  • Santiago ML, Rodenburg CM, Kamenya S, Bibollet-Ruche F, Gao F, Bailes E, Meleth S, Soong SJ, Kilby JM, Moldoveanu Z et al (2002) SIVcpz in wild chimpanzees. Science 295(5554):465

    CAS  PubMed  Google Scholar 

  • Sawyer SL, Emerman M, Malik HS (2004) Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G. PLoS Biol 2(9):E275

    PubMed  PubMed Central  Google Scholar 

  • Sawyer SL, Wu LI, Emerman M, Malik HS (2005) Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain. Proc Natl Acad Sci USA 102(8):2832–2837

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song B, Javanbakht H, Perron M, Park DH, Stremlau M, Sodroski J (2005) Retrovirus restriction by TRIM5alpha variants from old world and new world primates. J Virol 79(7):3930–3937

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soto PC, Stein LL, Hurtado-Ziola N, Hedrick SM, Varki A (2010) Relative over-reactivity of human versus chimpanzee lymphocytes: implications for the human diseases associated with immune activation. J Immunol 184(8):4185–4195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stenger S, Hanson DA, Teitelbaum R, Dewan P, Niazi KR, Froelich CJ, Ganz T, Thoma-Uszynski S, Melián A, Bogdan C et al (1998) An antimicrobial activity of cytolytic T cells mediated by granulysin. Science (New York, NY) 282(5386):121–125

    CAS  Google Scholar 

  • Stothard JR, Mugisha L, Standley CJ (2012) Stopping schistosomes from “monkeying-around” in chimpanzees. Trends Parasitol 28(8):320–326

    PubMed  Google Scholar 

  • Switzer WM, Parekh B, Shanmugam V, Bhullar V, Phillips S, Ely JJ, Heneine W (2005) The epidemiology of simian immunodeficiency virus infection in a large number of wild- and captive-born chimpanzees: evidence for a recent introduction following chimpanzee divergence. AIDS Res Hum Retroviruses 21(5):335–342

    PubMed  Google Scholar 

  • Thomson R, Molina-Portela P, Mott H, Carrington M, Raper J (2009) Hydrodynamic gene delivery of baboon trypanosome lytic factor eliminates both animal and human-infective African trypanosomes. Proc Natl Acad Sci USA 106(46):19509–19514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tishkoff SA, Varkonyi R, Cahinhinan N, Abbes S, Argyropoulos G, Destro-Bisol G, Drousiotou A, Dangerfield B, Lefranc G, Loiselet J et al (2001) Haplotype diversity and linkage disequilibrium at human G6PD: recent origin of alleles that confer malarial resistance. Science 293(5529):455–462

    CAS  PubMed  Google Scholar 

  • Van Heuverswyn F, Li Y, Neel C, Bailes E, Keele BF, Liu W, Loul S, Butel C, Liegeois F, Bienvenue Y et al (2006) Human immunodeficiency viruses: SIV infection in wild gorillas. Nature 444(7116):164

    PubMed  Google Scholar 

  • Van Valen L (1973) A new evolutionary law. Evolut Theor 1:1–30

    Google Scholar 

  • Vandamme AM, Salemi M, Desmyter J (1998) The simian origins of the pathogenic human T-cell lymphotropic virus type I. Trends Microbiol 6(12):477–483

    CAS  PubMed  Google Scholar 

  • Vizoso AD (1975) Recovery of herpes simiae (B virus) from both primary and latent infections in rhesus monkeys. Br J Exp Pathol 56(6):485–488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wallis J, Lee DR (1999) Primate conservation: the prevention of disease transmission. Int J Primatol 20(6):803–826

    Google Scholar 

  • Wang T, Zeng J, Lowe CB, Sellers RG, Salama SR, Yang M, Burgess SM, Brachmann RK, Haussler D (2007) Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc Natl Acad Sci USA 104(47):18613–18618

    CAS  PubMed  PubMed Central  Google Scholar 

  • Welburn SC, Fevre EM, Coleman PG, Odiit M, Maudlin I (2001) Sleeping sickness: a tale of two diseases. Trends Parasitol 17(1):19–24

    CAS  PubMed  Google Scholar 

  • Wheatley B, Harya Putra DK (1994) Biting the hand that feeds you: Monkeys and tourists in Balinese monkey forests. Trop Biodivers 2:317–327

    Google Scholar 

  • Wlasiuk G, Nachman MW (2010) Adaptation and constraint at Toll-like receptors in primates. Mol Biol Evol 27(9):2172–2186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wooding S, Stone AC, Dunn DM, Mummidi S, Jorde LB, Weiss RK, Ahuja S, Bamshad MJ (2005) Contrasting effects of natural selection on human and chimpanzee CC chemokine receptor 5. Am J Hum Genet 76(2):291–301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yim JJ, Adams AA, Kim JH, Holland SM (2006) Evolution of an intronic microsatellite polymorphism in Toll-like receptor 2 among primates. Immunogenetics 58(9):740–745

    CAS  PubMed  Google Scholar 

  • Yohn CT, Jiang Z, McGrath SD, Hayden KE, Khaitovich P, Johnson ME, Eichler MY, McPherson JD, Zhao S, Paabo S et al (2005) Lineage-specific expansions of retroviral insertions within the genomes of African great apes but not humans and orangutans. PLoS Biol 3(4):e110

    PubMed  PubMed Central  Google Scholar 

  • Zemans RL, Colgan SP, Downey GP (2009) Transepithelial migration of neutrophils: mechanisms and implications for acute lung injury. Am J Respir Cell Mol Biol 40(5):519–535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou D, Han Y, Yang R (2006) Molecular and physiological insights into plague transmission, virulence and etiology. Microbes Infect 8(1):273–284

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica F. Brinkworth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brinkworth, J.F., Pechenkina, K. (2013). Primates, Pathogens and Evolution: An Introduction. In: Brinkworth, J., Pechenkina, K. (eds) Primates, Pathogens, and Evolution. Developments in Primatology: Progress and Prospects. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7181-3_1

Download citation

Publish with us

Policies and ethics