Skip to main content

Introduction to Functional Differential Equations

  • Chapter
  • First Online:
Bifurcation Theory of Functional Differential Equations

Part of the book series: Applied Mathematical Sciences ((AMS,volume 184))

Abstract

There are different types of functional differential equations (FDEs) arising from important applications: delay differential equations (DDEs) (also referred to as retarded FDEs [RFDEs]), neutral FDEs (NFDEs), and mixed FDEs (MFDEs). The classification depends on how the current change rate of the system state depends on the history (the historical status of the state only or the historical change rate and the historical status) or whether the current change rate of the system state depends on the future expectation of the system. Later we will also see that the delay involved may also depend on the system state, leading to DDEs with state-dependent delay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arino, O., Sánchez, E.: A variation of constants formula for an abstract functional-differential equation of retarded type. Differ. Integr. Equat. 9(6), 1305–1320 (1996)

    MATH  Google Scholar 

  2. Bellman, R., Cooke, K.L.: Differential Difference Equations. Academic Press, New York (1963)

    MATH  Google Scholar 

  3. Busenberg, S., Huang, W.: Stability and Hopf bifurcation for a population delay model with diffusion effects. J. Differ. Equat. 124(1), 80–107 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Busenberg, S., Travis, C.C.: On the use of reducible functional differential equations. J. Math. Anal. Appl. 89, 46–66 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Campbell, S.A.: Time delays in neural systems. In: McIntosh, R., Jirsa, V.K. (eds.) Handbook of Brain Connectivity. Springer, New York (2007)

    Google Scholar 

  6. Chen, Y., Wu, J.: Existence and attraction of a phase-locked oscillation in a delayed network of two neurons. Differ. Integr. Equat. 14, 1181–1236 (2001)

    MATH  Google Scholar 

  7. Chow, S.-N., Mallet-Paret, J.: Singularly perturbed delay differential equations. In: Chandra, J., Scott, A. (eds.) Coupled Oscillators, pp. 7–12. North-Holland, Amsterdam (1983)

    Google Scholar 

  8. Cushing, J.M.: Integrodifferential Equations and Delay Models in Population Dynamics. Lecture Notes in Biomathematics, vol. 20. Springer, New York (1977)

    Google Scholar 

  9. Grabosch, A., Moustakas, U.: A semigroup approach to retarded differential equations. In: Nagel, R. (ed.) One-parameter Semigroups of Positive Operators. Lecture Notes in Mathematics, vol. 1184, pp. 219–232. Springer, Berlin (1986)

    Google Scholar 

  10. Hale, J.K.: Linear Functional-Differential Equations with Constant Coefficients. Contributions to Differential Equations II, pp. 291–317. Research Institute for Advanced Studies, Baltimore (1963)

    Google Scholar 

  11. Hale, J.K.: Flows on centre manifolds for scalar functional differential equations. Proc. Math. Roy. Soc. Edinb. 101A, 193–201 (1985)

    Article  MathSciNet  Google Scholar 

  12. Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  13. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Nat. Acad. Sci. U.S.A. 81, 3088–3092 (1984)

    Article  Google Scholar 

  14. Kuang, K.: Global attractivity and periodic solutions in delay-differential equations related to models in physiology and population biology. Jpn. J. Ind. Appl. Math. 9, 205–238 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kulenovic, M.R.S., Ladas, G.: Linearized oscillations in population dynamics. Bull. Math. Biol. 49, 615–627 (1987)

    MathSciNet  MATH  Google Scholar 

  16. Lenhart, S.N., Travis, C.C.: Stability of functional partial differential equations. J. Differ. Equat. 58, 212–227 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Levinger, B.W.: A Folk theorem in functional differential equations. J. Differ. Equat. 4, 612–619 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, S., Liao, X., Li, C., Wong, K.-W.: Hopf bifurcation of a two-neuron network with different discrete time delays. Int. J. Bifurcat. Chaos Appl. Sci. Eng. 15, 1589–1601 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Milton, J.: Dynamics of Small Neural Populations. American Mathematical Society, Providence, RI (1996)

    MATH  Google Scholar 

  20. Ruan, S., Filfil, R.F.: Dynamics of a two-neuron system with discrete and distributed delays. Phys. D 191, 323–342 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Skinner, F.K., Bazzazi, H., Campbell, S.A.: Two-cell to N-cell heterogeneous, inhibitory networks: precise linking of multistable and coherent properties. J. Comput. Neurosci. 18, 343–352 (2005)

    Article  MathSciNet  Google Scholar 

  22. Tu, F., Liao, X., Zhang, W.: Delay-dependent asymptotic stability of a two-neuron system with different time delays. Chaos Solitons Fractals 28, 437–447 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wright, E.M.: A nonlinear differential difference equation. J. Reine Angew. Math. 194, 66–87 (1955)

    MathSciNet  MATH  Google Scholar 

  24. Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996)

    Book  MATH  Google Scholar 

  25. Wu, J.: Introduction to Neural Dynamics and Signal Transmission Delay. Walter de Gruyter, Berlin (2001)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guo, S., Wu, J. (2013). Introduction to Functional Differential Equations. In: Bifurcation Theory of Functional Differential Equations. Applied Mathematical Sciences, vol 184. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6992-6_2

Download citation

Publish with us

Policies and ethics