Skip to main content

Bayesian Networks in the Presence of Temporal Information

  • Chapter
  • First Online:
Bayesian Networks in R

Part of the book series: Use R! ((USE R,volume 48))

Abstract

Real-world entities comprising a complex system evolve as a function of time and respond to external perturbations. Dynamic Bayesian networks extend the fundamental ideas behind static Bayesian networks to model associations arising from the temporal dynamics between the entities of interest. This has to be contrasted with static Bayesian networks, which model the network structure from multiple independent realizations of the entities of a snapshot of the process. More importantly, incorporating the temporal signatures is useful in capturing possible feedback loops that are implicitly disregarded in the case of static Bayesian networks. Since feedback loops are ubiquitous in biological pathways, dynamic Bayesian network modeling is expected to result in better representations of such pathways.

In this chapter, we will introduce basic definitions and models for modeling associations from multivariate linear time series using dynamic Bayesian networks. Applications include modeling gene networks from expression data. Two broad classes of multivariate time series are considered: those whose statistical properties are invariant as a function of time and those whose properties do show change of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beal M, Falciani F, Ghahramani Z, Rangel C, Wild D (2005) A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 21:349–356

    Article  Google Scholar 

  • Bera AK, Jarque CM (1981) Efficient tests for normality, homoscedasticity and serial independence of regression residuals: Monte Carlo evidence. Econ Lett 7(4):313–318

    Article  Google Scholar 

  • Chiquet J, Smith A, Grasseau G, Matias C, Ambroise C (2009) SIMoNe: statistical inference for modular networks. Bioinformatics 25(3):417–418

    Article  Google Scholar 

  • Csardi G, Nepusz T (2006) The igraph software package for complex network research. Int J Comp Syst:1695, pp 1–38

    Google Scholar 

  • Dondelinger F, Lèbre S, Husmeier D (2013) Non-homogeneous dynamic Bayesian networks with Bayesian regularization for inferring gene regulatory networks with gradually time-varying structure. Machine Learning 90(2):191–230

    Article  MATH  Google Scholar 

  • Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. Ann Stat 32(2):407–499

    Article  MathSciNet  MATH  Google Scholar 

  • Engle RF (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50(4):987–1007

    Article  MathSciNet  MATH  Google Scholar 

  • Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1–22

    Google Scholar 

  • Goeman JJ (2012) penalized R package. R package version 0.9-41

    Google Scholar 

  • Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82(4):711–732

    Article  MathSciNet  MATH  Google Scholar 

  • Hamilton JD (1994) Time-series analysis. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Hastie T, Efron B (2012) lars: least angle regression, lasso and forward stagewise. R package version 1.1

    Google Scholar 

  • Imoto S, Goto T, Miyano S (2002) Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. In: Proceedings of the 7th Pacific symposium on biocomputing, pp 175–186

    Google Scholar 

  • Imoto S, Kim S, Goto T, Aburatani S, Tashiro K, Kuhara S, Miyano S (2003) Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network. J Bioinforma Comput Biol 2:231–252

    Article  Google Scholar 

  • James W, Stein C (1961) Estimation with quadratic loss. In: Neyman J (ed) Proceedings of the 4th Berkeley symposium on mathematical statistics and probability, pp 361–379

    Google Scholar 

  • Jarque CM, Bera AK (1980) Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Econ Lett 6(3):255–259

    Article  MathSciNet  Google Scholar 

  • Jarque CM, Bera AK (1987) A test for normality of observations and regression residuals. Int Stat Rev 55(2):163–172

    Article  MathSciNet  MATH  Google Scholar 

  • Kim S, Imoto S, Miyano S (2003) Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief Bioinform 4(3):228

    Article  Google Scholar 

  • Kim S, Imoto S, Miyano S (2004) Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems 75(1–3):57–65

    Article  Google Scholar 

  • Lauritzen SL (1996) Graphical models. Oxford University Press, Oxford

    Google Scholar 

  • Lèbre S (2008) G1DBN: a package performing dynamic Bayesian network inference. R package version 3.1

    Google Scholar 

  • Lèbre S (2009) Inferring dynamic genetic networks with low order independencies. Stat Appl Genet Mol Biol 8(1):9

    MathSciNet  Google Scholar 

  • Lèbre S, Becq J, Devaux F, Lelandais G, Stumpf M (2010) Statistical inference of the time-varying structure of gene-regulation networks. BMC Syst Biol 4(130):1–16

    Google Scholar 

  • Ledoit O, Wolf M (2003) Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. J Empir Financ 10:603–621

    Article  Google Scholar 

  • Lütkepohl H (2005) New introduction to multiple time series analysis. Springer, New York

    MATH  Google Scholar 

  • Meinshausen N, Bühlman P (2006) High dimensional graphs and variable selection with the LASSO. Ann Stat 34(3):1436–1462

    Article  MATH  Google Scholar 

  • Ong IM, Glasner JD, Page D (2002) Modelling regulatory pathways in E. Coli from time series expression profiles. Bioinformatics 18(Suppl 1):S241–S248

    Google Scholar 

  • Opgen-Rhein R, Strimmer K (2007) Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process. BMC Bioinformatics 8(Suppl. 2):S3

    Article  Google Scholar 

  • Perrin BE, Ralaivola L, Mazurie A, Bottani S, Mallet J, d’Alché Buc F (2003) Gene networks inference using dynamic Bayesian networks. Bioinformatics 19(Suppl 2):S138–S148

    Google Scholar 

  • Pfaff B (2008a) Analysis of integrated and cointegrated time series with R, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Pfaff B (2008b) VAR, SVAR and SVEC models: implementation within R package vars. J Stat Softw 27(4):1–32

    Google Scholar 

  • Rangel C, Angus J, Ghahramani Z, Lioumi M, Sotheran E, Gaiba A, Wild DL, Falciani F (2004) Modeling T-cell activation using gene expression profiling and state-space models. Bioinformatics 20(9):1361–1372

    Article  Google Scholar 

  • Shäfer J, Strimmer K (2005) A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat Appl Genet Mol Biol 4:32

    MathSciNet  Google Scholar 

  • Smith SM, Fulton DC, Chia T, Thorneycroft D, Chapple A, Dunstan H, Hylton C, Zeeman SC, Smith AM (2004) Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiol 136(1):2687–2699

    Article  Google Scholar 

  • Stein C (1956) Inadmissibility of the usual estimator for the mean of a multivariate distribution. In: Neyman J (ed) Proceedings of the 3rd Berkeley symposium on mathematical statistics and probability, pp 197–206

    Google Scholar 

  • Sugimoto N, Iba H (2004) Inference of gene regulatory networks by means of dynamic differential Bayesian networks and nonparametric regression. Genome Inform 15(2):121–130

    Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc B 58(1): 267–288

    MathSciNet  MATH  Google Scholar 

  • Wu FX, Zhang WJ, Kusalik AJ (2004) Modeling gene expression from microarray expression data with state-space equations. In: Proceedings of the 9th Pacific Symposium on Biocomputing, pp 581–592

    Google Scholar 

  • Zou M, Conzen SD (2005) A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21(1):71–79

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nagarajan, R., Scutari, M., Lèbre, S. (2013). Bayesian Networks in the Presence of Temporal Information. In: Bayesian Networks in R. Use R!, vol 48. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6446-4_3

Download citation

Publish with us

Policies and ethics