Skip to main content

The Role of B Cells and Humoral Immunity in Mycobacterium tuberculosis Infection

  • Chapter
  • First Online:
The New Paradigm of Immunity to Tuberculosis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 783))

Abstract

Tuberculosis (TB) remains a serious threat to public health, causing 2 million deaths annually world-wide. The control of TB has been hindered by the requirement of long duration of treatment involving multiple chemotherapeutic agents, the increased susceptibility to Mycobacterium tuberculosis infection in the HIV-infected population, and the development of multi-drug resistant and extensively resistant strains of tubercle bacilli. An efficacious and cost-efficient way to control TB is the development of effective anti-TB vaccines. This measure requires thorough understanding of the immune response to M. tuberculosis. While the role of cell-mediated immunity in the development of protective immune response to the tubercle bacillus has been well established, the role of B cells in this process is not clearly understood. Emerging evidence suggests that B cells and humoral immunity can modulate the immune response to various intracellular pathogens, including M. tuberculosis. These lymphocytes form conspicuous aggregates in the lungs of tuberculous humans, non-human primates, and mice, which display features of germinal center B cells. In murine TB, it has been shown that B cells can regulate the level of granulomatous reaction, cytokine production, and the T cell response. This chapter discusses the potential mechanisms by which specific functions of B cells and humoral immunity can shape the immune response to intracellular pathogens in general, and to M. tuberculosis in particular. Knowledge of the B cell-mediated immune response to M. tuberculosis may lead to the design of novel strategies, including the development of effective vaccines, to better control TB.

L. Kozakiewicz and J. Phuah contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization (2009) Global tuberculosis control: epidemiology, strategy, financing. WHO Report, 2009

    Google Scholar 

  2. Flynn JL, Chan J (2003) Immune evasion by Mycobacterium tuberculosis: living with the enemy. Curr Opin Immunol 15(4):450–455

    Article  PubMed  CAS  Google Scholar 

  3. Cooper AM (2003) Cell-mediated immune responses in tuberculosis. Annu Rev Immunol X 27:393–422

    Article  CAS  Google Scholar 

  4. North RJ, Jung YJ (2004) Immunity to tuberculosis. Annu Rev Immunol 22:599–623

    Article  PubMed  CAS  Google Scholar 

  5. Kaufmann SH (2002) Protection against tuberculosis: cytokines, T cells, and macrophages. Ann Rheum Dis 61(suppl 2):ii54–ii58

    Google Scholar 

  6. Sperber SJ, Gornish N (1992) Reactivation of tuberculosis during therapy with corticosteroids. Clin Infect Dis 15(6):1073–1074

    Article  PubMed  CAS  Google Scholar 

  7. Keane J et al (2001) Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 345(15):1098–1104

    Article  PubMed  CAS  Google Scholar 

  8. Selwyn PA et al (1989) A prospective study of the risk of tuberculosis among intravenous drug users with human immunodeficiency virus infection. N Engl J Med 320(9):545–550

    Article  PubMed  CAS  Google Scholar 

  9. Flynn JL (2004) Immunology of tuberculosis and implications in vaccine development. Tuberculosis 84(1–2):93–101

    Article  PubMed  Google Scholar 

  10. Dye C (2009) Doomsday postponed? Preventing and reversing epidemics of drug-resistant tuberculosis. Nat Rev Microbiol 7(1):81–87

    Article  PubMed  CAS  Google Scholar 

  11. Flynn JL, Chan J (2001) Immunology of tuberculosis. Annu Rev Immunol 19:93–129

    Article  PubMed  CAS  Google Scholar 

  12. Kaufmann SH (2010) Future vaccination strategies against tuberculosis: thinking outside the box. Immunity 33(4):567–577

    Article  PubMed  CAS  Google Scholar 

  13. Kaufmann SH (2001) How can immunology contribute to the control of tuberculosis? Nat Rev Immunol 1(1):20–30

    Article  PubMed  CAS  Google Scholar 

  14. Colditz GA et al (1994) Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. J Am Med Assoc 271(9):698–702

    Article  CAS  Google Scholar 

  15. Corbett EL et al (2003) The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med 163(9):1009–1021

    Article  PubMed  Google Scholar 

  16. Dye C et al (1999) Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. J Am Med Assoc 282(7):677–686

    Article  CAS  Google Scholar 

  17. Andersen P (2007) Tuberculosis vaccines—an update. Nat Rev Microbiol 5(7):484–487

    Article  PubMed  CAS  Google Scholar 

  18. Kaufmann SH (2007) The contribution of immunology to the rational design of novel antibacterial vaccines. Nat Rev Microbiol 5(7):491–504

    Article  PubMed  CAS  Google Scholar 

  19. Casadevall A, Pirofski LA (2012) A new synthesis for antibody-mediated immunity. Nat Immunol 13(1):21–82

    Article  CAS  Google Scholar 

  20. Glatman-Freedman A, Casadevall A (1998) Serum therapy for tuberculosis revisited: reappraisal of the role of antibody-mediated immunity against Mycobacterium tuberculosis. Clin Microbiol Rev 11(3):514–532

    PubMed  CAS  Google Scholar 

  21. Maglione PJ, Chan J (2009) How B cells shape the immune response against Mycobacterium tuberculosis. Eur J Immunol 39(3):676–686

    Article  PubMed  CAS  Google Scholar 

  22. Kumararatne DS (1997) Tuberculosis and immunodeficiency of mice and men. Clin Exp Immunol 107(1):11–14

    Article  PubMed  CAS  Google Scholar 

  23. Kaufmann SH (2008) Elie Metchnikoff’s and Paul Ehrlich’s impact on infection biology. Microbes Infect/Institut Pasteur 10(14–15):1417–1419

    Article  CAS  Google Scholar 

  24. Silverstein AM (2003) Darwinism and immunology: from Metchnikoff to Burnet. Nat Immunol 4(1):3–6

    Article  PubMed  CAS  Google Scholar 

  25. Tan SY, Dee MK (2009) Elie Metchnikoff (1845–1916): discoverer of phagocytosis. Singap Med J 50(5):456–457

    CAS  Google Scholar 

  26. Collins FM (1978) Cellular antimicrobial immunity. CRC Crit Rev Microbiol 7(1):27–91

    Article  PubMed  CAS  Google Scholar 

  27. Mackaness GB (1962) Cellular resistance to infection. J Exp Med 116:381–406

    Article  PubMed  CAS  Google Scholar 

  28. Casadevall A (2003) Antibody-mediated immunity against intracellular pathogens: two-dimensional thinking comes full circle. Infect Immun 71(8):4225–4228

    Article  PubMed  CAS  Google Scholar 

  29. Casadevall A, Pirofski LA (2006) A reappraisal of humoral immunity based on mechanisms of antibody-mediated protection against intracellular pathogens. Adv Immunol 91:1–44

    Article  PubMed  CAS  Google Scholar 

  30. Pulendran B, Ahmed R (2011) Immunological mechanisms of vaccination. Nat Immunol 12(6):509–517

    Article  PubMed  CAS  Google Scholar 

  31. Seder RA, Hill AV (2000) Vaccines against intracellular infections requiring cellular immunity. Nature 406(6797):793–798

    Article  PubMed  CAS  Google Scholar 

  32. Culkin SJ, Rhinehart-Jones T, Elkins KL (1997) A novel role for B cells in early protective immunity to an intracellular pathogen, Francisella tularensis strain LVS. J Immunol 158(7):3277–3284

    PubMed  CAS  Google Scholar 

  33. Langhorne J et al (1998) A role for B cells in the development of T cell helper function in a malaria infection in mice. Proc Natl Acad Sci U S A 95(4):1730–1734

    Article  PubMed  CAS  Google Scholar 

  34. Li JS, Winslow GM (2003) Survival, replication, and antibody susceptibility of Ehrlichia chaffeensis outside of host cells. Infect Immun 71(8):4229–4237

    Article  PubMed  CAS  Google Scholar 

  35. Mastroeni P et al (2000) Igh-6(−/−) (B-cell-deficient) mice fail to mount solid acquired resistance to oral challenge with virulent Salmonella enterica serovar typhimurium and show impaired Th1 T-cell responses to Salmonella antigens. Infect Immun 68(1):46–53

    Article  PubMed  CAS  Google Scholar 

  36. Su H et al (1997) Chlamydia trachomatis genital tract infection of antibody-deficient gene knockout mice. Infect Immun 65(6):1993–1999

    PubMed  CAS  Google Scholar 

  37. Woelbing F et al (2006) Uptake of Leishmania major by dendritic cells is mediated by Fcgamma receptors and facilitates acquisition of protective immunity. J Exp Med 203(1):177–188

    Article  PubMed  CAS  Google Scholar 

  38. Yang X, Brunham RC (1998) Gene knockout B cell-deficient mice demonstrate that B cells play an important role in the initiation of T cell responses to Chlamydia trachomatis (mouse pneumonitis) lung infection. J Immunol 161(3):1439–1446

    PubMed  CAS  Google Scholar 

  39. Grosset J (2003) Mycobacterium tuberculosis in the extracellular compartment: an underestimated adversary. Antimicrob Agents Chemother 47(3):833–836

    Article  PubMed  CAS  Google Scholar 

  40. Hoff DR et al (2011) Location of intra- and extracellular M. tuberculosis populations in lungs of mice and guinea pigs during disease progression and after drug treatment. PLoS ONE 6(3):e17550

    Article  PubMed  CAS  Google Scholar 

  41. Wayne LG, Sohaskey CD (2001) Nonreplicating persistence of Mycobacterium tuberculosis. Annu Rev Microbiol 55:139–163

    Article  PubMed  CAS  Google Scholar 

  42. Fujinami RS, Oldstone MB (1979) Antiviral antibody reacting on the plasma membrane alters measles virus expression inside the cell. Nature 279(5713):529–530

    Article  PubMed  CAS  Google Scholar 

  43. Griffin DE, Metcalf T (2011) Clearance of virus infection from the CNS. Curr Opin Virol 1(3):216–221

    Article  PubMed  Google Scholar 

  44. Metcalf TU, Griffin DE (2011) Alphavirus-induced encephalomyelitis: antibody-secreting cells and viral clearance from the nervous system. J Virol 85(21):11490–11501

    Article  PubMed  CAS  Google Scholar 

  45. Yanase K et al (1994) A subgroup of murine monoclonal anti-deoxyribonucleic acid antibodies traverse the cytoplasm and enter the nucleus in a time-and temperature- dependent manner. Lab Investig J Tech Methods Pathol 71(1):52–60

    CAS  Google Scholar 

  46. Mazanec MB, Coudret CL, Fletcher DR (1995) Intracellular neutralization of influenza virus by immunoglobulin A anti-hemagglutinin monoclonal antibodies. J Virol 69(2):1339–1343

    PubMed  CAS  Google Scholar 

  47. Mazanec MB et al (1992) Intracellular neutralization of virus by immunoglobulin A antibodies. Proc Natl Acad Sci U S A 89(15):6901–6905

    Article  PubMed  CAS  Google Scholar 

  48. Lund FE, Randall TD (2010) Effector and regulatory B cells: modulators of CD4(+) T cell immunity. Nat Rev Immunol 10(4):236–247

    Article  PubMed  CAS  Google Scholar 

  49. Elkins KL, Bosio CM, Rhinehart-Jones TR (1999) Importance of B cells, but not specific antibodies, in primary and secondary protective immunity to the intracellular bacterium Francisella tularensis live vaccine strain. Infect Immun 67(11):6002–6007

    PubMed  CAS  Google Scholar 

  50. Esser MT et al (2003) Memory T cells and vaccines. Vaccine 21(5–6):419–430

    Article  PubMed  CAS  Google Scholar 

  51. Linton PJ, Harbertson Bradley LM (2000) A critical role for B cells in the development of memory CD4 cells. J Immunol 165(10):5558–5565

    PubMed  CAS  Google Scholar 

  52. Lund FE et al (2006) B cells are required for generation of protective effector and memory CD4 cells in response to Pneumocystis lung infection. J Immunol 176(10):6147–6154

    PubMed  CAS  Google Scholar 

  53. Schultze JL et al (1999) Human non-germinal center B cell interleukin (IL)-12 production is primarily regulated by T cell signals CD40 ligand, interferon gamma, and IL-10: role of B cells in the maintenance of T cell responses. J Exp Med 189(1):1–12

    Article  PubMed  CAS  Google Scholar 

  54. Shen H et al (2003) A specific role for B cells in the generation of CD8 T cell memory by recombinant Listeria monocytogenes. J Immunol 170(3):1443–1451

    PubMed  CAS  Google Scholar 

  55. Stephens R, Langhorne J (2006) Priming of CD4+ T cells and development of CD4+ T cell memory; lessons for malaria. Parasite Immunol 28(1–2):25–30

    Article  PubMed  CAS  Google Scholar 

  56. Whitmire JK et al (2009) Requirement of B cells for generating CD4+ T cell memory. J Immunol 182(4):1868–1876

    Article  PubMed  CAS  Google Scholar 

  57. Wojciechowski W et al (2009) Cytokine-producing effector B cells regulate type 2 immunity to H. polygyrus. Immunity 30(3):421–433

    Article  PubMed  CAS  Google Scholar 

  58. Igietseme JU et al (2004) Antibody regulation of T cell immunity: implications for vaccine strategies against intracellular pathogens. Expert Rev Vaccines 3(1):23–34

    Article  PubMed  CAS  Google Scholar 

  59. Rawool DB et al (2008) Utilization of Fc receptors as a mucosal vaccine strategy against an intracellular bacterium, Francisella tularensis. J Immunol 180(8):5548–5557

    PubMed  CAS  Google Scholar 

  60. Weber SE, Tian H, Pirofski LA (2011) CD8+ cells enhance resistance to pulmonary serotype 3 Streptococcus pneumoniae infection in mice. J Immunol 186(1):432–442

    Article  PubMed  CAS  Google Scholar 

  61. van Schaik SM, Abbas AK (2007) Role of T cells in a murine model of Escherichia coli sepsis. Eur J Immunol 37(11):3101–3110

    Article  PubMed  CAS  Google Scholar 

  62. Vinuesa CG et al (2005) Follicular B helper T cells in antibody responses and autoimmunity. Nat Rev Immunol 5(11):853–865

    Article  PubMed  CAS  Google Scholar 

  63. Gray D, Gray M, Barr T (2007) Innate responses of B cells. Eur J Immunol 37(12):3304–3310

    Article  PubMed  CAS  Google Scholar 

  64. Czuczman MS, Gregory SA (2010) The future of CD20 monoclonal antibody therapy in B-cell malignancies. Leuk Lymphoma 51(6):983–994

    Article  PubMed  CAS  Google Scholar 

  65. Townsend MJ, Monroe JG, Chan AC (2010) B-cell targeted therapies in human autoimmune diseases: an updated perspective. Immunol Rev 237(1):264–283

    Article  PubMed  CAS  Google Scholar 

  66. Castiglioni P, Gerloni M, Zanetti M (2004) Genetically programmed B lymphocytes are highly efficient in inducing anti-virus protective immunity mediated by central memory CD8 T cells. Vaccine 23(5):699–708

    Article  PubMed  Google Scholar 

  67. Heit A et al (2004) CpG-DNA aided cross-priming by cross-presenting B cells. J Immunol 172(3):1501–1507

    PubMed  CAS  Google Scholar 

  68. Jiang W et al (2011) Presentation of soluble antigens to CD8+ T cells by CpG oligodeoxynucleotide-primed human naive B cells. J Immunol 186(4):2080–2086

    Article  PubMed  CAS  Google Scholar 

  69. Asano MS, Ahmed R (1996) CD8 T cell memory in B cell-deficient mice. J Exp Med 183(5):2165–2174

    Article  PubMed  CAS  Google Scholar 

  70. Di Rosa F, Matzinger P (1996) Long-lasting CD8 T cell memory in the absence of CD4 T cells or B cells. J Exp Med 183(5):2153–2163

    Article  PubMed  Google Scholar 

  71. Britton S, Mitchison NA, Rajewsky K (1971) The carrier effect in the secondary response to hapten-protein conjugates. IV. Uptake of antigen in vitro and failure to obtain cooperative induction in vitro. Eur J Immunol 1(2):65–68

    Article  PubMed  CAS  Google Scholar 

  72. Mitchison NA (2004) T-cell-B-cell cooperation. Nat Rev Immunol 4(4):308–312

    Article  PubMed  CAS  Google Scholar 

  73. Lanzavecchia A (1985) Antigen-specific interaction between T and B cells. Nature 314(6011):537–539

    Article  PubMed  CAS  Google Scholar 

  74. Lanzavecchia A (1990) Receptor-mediated antigen uptake and its effect on antigen presentation to class II-restricted T lymphocytes. Annu Rev Immunol 8:773–793

    Article  PubMed  CAS  Google Scholar 

  75. Vascotto F et al (2007) Antigen presentation by B lymphocytes: how receptor signaling directs membrane trafficking. Curr Opin Immunol 19(1):93–98

    Article  PubMed  CAS  Google Scholar 

  76. Itano AA, Jenkins MK (2003) Antigen presentation to naive CD4 T cells in the lymph node. Nat Immunol 4(8):733–739

    Article  PubMed  CAS  Google Scholar 

  77. Cassell DJ, Schwartz RH (1994) A quantitative analysis of antigen-presenting cell function: activated B cells stimulate naive CD4 T cells but are inferior to dendritic cells in providing costimulation. J Exp Med 180(5):1829–1840

    Article  PubMed  CAS  Google Scholar 

  78. Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449(7161):419–426

    Article  PubMed  CAS  Google Scholar 

  79. Weber MS et al (2010) B-cell activation influences T-cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity. Ann Neurol 68(3):369–383

    Article  PubMed  CAS  Google Scholar 

  80. Liu Y et al (1995) Gene-targeted B-deficient mice reveal a critical role for B cells in the CD4 T cell response. Int Immunol 7(8):1353–1362

    Article  PubMed  CAS  Google Scholar 

  81. Kurt-Jones EA et al (1988) The role of antigen-presenting B cells in T cell priming in vivo. Studies of B cell-deficient mice. J Immunol 140(11):3773–3778

    PubMed  CAS  Google Scholar 

  82. Rodriguez-Pinto D, Moreno J (2005) B cells can prime naive CD4+ T cells in vivo in the absence of other professional antigen-presenting cells in a CD154-CD40-dependent manner. Eur J Immunol 35(4):1097–1105

    Article  PubMed  CAS  Google Scholar 

  83. Rodriguez-Pinto D (2005) B cells as antigen presenting cells. Cell Immunol 238(2):67–75

    Article  PubMed  CAS  Google Scholar 

  84. Catron DM et al (2004) Visualizing the first 50 hr of the primary immune response to a soluble antigen. Immunity 21(3):341–347

    Article  PubMed  CAS  Google Scholar 

  85. Pape KA et al (2007) The humoral immune response is initiated in lymph nodes by B cells that acquire soluble antigen directly in the follicles. Immunity 26(4):491–502

    Article  PubMed  CAS  Google Scholar 

  86. Helgeby A et al (2006) The combined CTA1-DD/ISCOM adjuvant vector promotes priming of mucosal and systemic immunity to incorporated antigens by specific targeting of B cells. J Immunol 176(6):3697–3706

    PubMed  CAS  Google Scholar 

  87. Hon H et al (2005) B lymphocytes participate in cross-presentation of antigen following gene gun vaccination. J Immunol 174(9):5233–5242

    PubMed  CAS  Google Scholar 

  88. Andersen CS et al (2007) The combined CTA1-DD/ISCOMs vector is an effective intranasal adjuvant for boosting prior Mycobacterium bovis BCG immunity to Mycobacterium tuberculosis. Infect Immun 75(1):408–416

    Article  PubMed  CAS  Google Scholar 

  89. McClellan KB et al (2006) Antibody-independent control of gamma-herpesvirus latency via B cell induction of anti-viral T cell responses. PLoS Pathog 2(6):e58

    Article  PubMed  CAS  Google Scholar 

  90. Schultze JL, Grabbe S, von Bergwelt-Baildon MS (2004) DCs and CD40-activated B cells: current and future avenues to cellular cancer immunotherapy. Trends Immunol 25(12):659–664

    Article  PubMed  CAS  Google Scholar 

  91. Chan OT et al (1999) A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J Exp Med 189(10):1639–1648

    Article  PubMed  CAS  Google Scholar 

  92. Chen X, Jensen PE (2007) Cutting edge: primary B lymphocytes preferentially expand allogeneic FoxP3 + CD4 T cells. J Immunol 179(4):2046–2050

    PubMed  CAS  Google Scholar 

  93. Tsitoura DC et al (2002) Critical role of B cells in the development of T cell tolerance to aeroallergens. Int Immunol 14(6):659–667

    Article  PubMed  CAS  Google Scholar 

  94. Hackett CJ et al (2007) Immunology research: challenges and opportunities in a time of budgetary constraint. Nat Immunol 8(2):114–117

    Article  PubMed  CAS  Google Scholar 

  95. Pepper M, Jenkins MK (2011) Origins of CD4(+) effector and central memory T cells. Nat Immunol 12(6):467–471

    Article  PubMed  CAS  Google Scholar 

  96. Liu Y (1992) Janeway CA Jr (1992) Cells that present both specific ligand and costimulatory activity are the most efficient inducers of clonal expansion of normal CD4 T cells. Proc Natl Acad Sci U S A 89(9):3845–3849

    Article  PubMed  CAS  Google Scholar 

  97. Janeway CA Jr (2002) A trip through my life with an immunological theme. Annu Rev Immunol 20:1–28

    Article  PubMed  CAS  Google Scholar 

  98. Sharpe AH, Freeman GJ (2002) The B7-CD28 superfamily. Nat Rev Immunol 2(2):116–126

    Article  PubMed  CAS  Google Scholar 

  99. Medzhitov R, Janeway CA Jr (2000) Innate immunity. N Engl J Med 343(5):338–344

    Article  PubMed  CAS  Google Scholar 

  100. Dhodapkar KM et al (2005) Selective blockade of inhibitory Fcgamma receptor enables human dendritic cell maturation with IL-12p70 production and immunity to antibody-coated tumor cells. Proc Natl Acad Sci U S A 102(8):2910–2915

    Article  PubMed  CAS  Google Scholar 

  101. Kalergis AM, Ravetch JV (2002) Inducing tumor immunity through the selective engagement of activating Fcgamma receptors on dendritic cells. J Exp Med 195(12):1653–1659

    Article  PubMed  CAS  Google Scholar 

  102. Mauri C et al (2003) Prevention of arthritis by interleukin 10-producing B cells. J Exp Med 197(4):489–501

    Article  PubMed  CAS  Google Scholar 

  103. Mizoguchi A et al (2007) Dependence of intestinal granuloma formation on unique myeloid DC-like cells. J Clin Investig 117(3):605–615

    Article  PubMed  CAS  Google Scholar 

  104. Rafiq K, Bergtold A, Clynes R (2002) Immune complex-mediated antigen presentation induces tumor immunity. J Clin Investig 110(1):71–79

    PubMed  CAS  Google Scholar 

  105. Sugimoto K et al (2007) Inducible IL-12-producing B cells regulate Th2-mediated intestinal inflammation. Gastroenterology 133(1):124–136

    Article  PubMed  CAS  Google Scholar 

  106. Bayry J et al (2004) Natural antibodies sustain differentiation and maturation of human dendritic cells. Proc Natl Acad Sci U S A 101(39):14210–14215

    Article  PubMed  CAS  Google Scholar 

  107. Bayry J et al (2005) Modulation of dendritic cell maturation and function by B lymphocytes. J Immunol 175(1):15–20

    PubMed  CAS  Google Scholar 

  108. Harris DP et al (2000) Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat Immunol 1(6):475–482

    Article  PubMed  CAS  Google Scholar 

  109. Moulin V et al (2000) B lymphocytes regulate dendritic cell (DC) function in vivo: increased interleukin 12 production by DCs from B cell-deficient mice results in T helper cell type 1 deviation. J Exp Med 192(4):475–482

    Article  PubMed  CAS  Google Scholar 

  110. Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol 28:445–489

    Article  PubMed  CAS  Google Scholar 

  111. Lund FE (2008) Cytokine-producing B lymphocytes-key regulators of immunity. Curr Opin Immunol 20(3):332–338

    Article  PubMed  CAS  Google Scholar 

  112. Lund FE et al (2005) Regulatory roles for cytokine-producing B cells in infection and autoimmune disease. Curr Dir Autoimmun 8:25–54

    Article  PubMed  CAS  Google Scholar 

  113. Mosmann T (2000) Complexity or coherence? Cytokine secretion by B cells. Nat Immunol 1(6):465–466

    Article  PubMed  CAS  Google Scholar 

  114. Mauri C, Bosma A (2012) Immune regulatory function of B cells. Annu Rev Immunol 30:221–241

    Article  PubMed  CAS  Google Scholar 

  115. Harris DP et al (2005) Regulation of IFN-gamma production by B effector 1 cells: essential roles for T-bet and the IFN-gamma receptor. J Immunol 174(11):6781–6790

    PubMed  CAS  Google Scholar 

  116. Wagner M et al (2004) IL-12p70-dependent Th1 induction by human B cells requires combined activation with CD40 ligand and CpG DNA. J Immunol 172(2):954–963

    PubMed  CAS  Google Scholar 

  117. Johansson-Lindbom B, Ingvarsson S, Borrebaeck CA (2003) Germinal centers regulate human Th2 development. J Immunol 171(4):1657–1666

    PubMed  CAS  Google Scholar 

  118. DiLillo DJ, Matsushita T, Tedder TF (2010) B10 cells and regulatory B cells balance immune responses during inflammation, autoimmunity, and cancer. Ann N Y Acad Sci 1183:38–57

    Article  PubMed  CAS  Google Scholar 

  119. Amigorena S, Bonnerot C (1999) Fc receptors for IgG and antigen presentation on MHC class I and class II molecules. Semin Immunol 11(6):385–390

    Article  PubMed  CAS  Google Scholar 

  120. Nimmerjahn F, Ravetch JV (2006) Fcgamma receptors: old friends and new family members. Immunity 24(1):19–28

    Article  PubMed  CAS  Google Scholar 

  121. Ravetch JV, Bolland S (2001) IgG Fc receptors. Annu Rev Immunol 19:275–290

    Article  PubMed  CAS  Google Scholar 

  122. Desai DD et al (2007) Fc gamma receptor IIB on dendritic cells enforces peripheral tolerance by inhibiting effector T cell responses. J Immunol 178(10):6217–6226

    PubMed  CAS  Google Scholar 

  123. Bandukwala HS et al (2007) Signaling through Fc gamma RIII is required for optimal T helper type (Th)2 responses and Th2-mediated airway inflammation. J Exp Med 204(8):1875–1889

    Article  PubMed  CAS  Google Scholar 

  124. Nimmerjahn F, Ravetch JV (2005) Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310(5753):1510–1512

    Article  PubMed  CAS  Google Scholar 

  125. Shi J, McIntosh RS, Pleass RJ (2006) Antibody- and Fc-receptor-based therapeutics for malaria. Clin Sci (Lond) 110(1):11–19

    Article  CAS  Google Scholar 

  126. Park-Min KH et al (2007) FcgammaRIII-dependent inhibition of interferon-gamma responses mediates suppressive effects of intravenous immune globulin. Immunity 26(1):67–78

    Article  PubMed  CAS  Google Scholar 

  127. Moore T et al (2003) Fc receptor-mediated antibody regulation of T cell immunity against intracellular pathogens. J Infect Dis 188(4):617–624

    Article  PubMed  CAS  Google Scholar 

  128. Huber VC et al (2001) Fc receptor-mediated phagocytosis makes a significant contribution to clearance of influenza virus infections. J Immunol 166(12):7381–7388

    PubMed  CAS  Google Scholar 

  129. Kima PE et al (2000) Internalization of Leishmania mexicana complex amastigotes via the Fc receptor is required to sustain infection in murine cutaneous leishmaniasis. J Exp Med 191(6):1063–1068

    Article  PubMed  CAS  Google Scholar 

  130. Menager N et al (2007) Fcgamma receptors are crucial for the expression of acquired resistance to virulent Salmonella enterica serovar Typhimurium in vivo but are not required for the induction of humoral or T-cell-mediated immunity. Immunology 120(3):424–432

    Article  PubMed  CAS  Google Scholar 

  131. Uppington H et al (2006) Effect of immune serum and role of individual Fcgamma receptors on the intracellular distribution and survival of Salmonella enterica serovar Typhimurium in murine macrophages. Immunology 119(2):147–158

    Article  PubMed  CAS  Google Scholar 

  132. Yoneto T et al (2001) A critical role of Fc receptor-mediated antibody-dependent phagocytosis in the host resistance to blood-stage Plasmodium berghei XAT infection. J Immunol 166(10):6236–6241

    PubMed  CAS  Google Scholar 

  133. Yuan R et al (1998) Antibody-mediated modulation of Cryptococcus neoformans infection is dependent on distinct Fc receptor functions and IgG subclasses. J Exp Med 187(4):641–648

    Article  PubMed  CAS  Google Scholar 

  134. Maglione PJ et al (2008) Fc gamma receptors regulate immune activation and susceptibility during Mycobacterium tuberculosis infection. J Immunol 180(5):3329–3338

    PubMed  CAS  Google Scholar 

  135. Klimstra WB et al (2005) Targeting Sindbis virus-based vectors to Fc receptor-positive cell types. Virology 338(1):9–21

    Article  PubMed  CAS  Google Scholar 

  136. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5(12):953–964

    Article  PubMed  CAS  Google Scholar 

  137. Martinez FO et al (2008) Macrophage activation and polarization. Front Biosci 13:453–461

    Article  PubMed  CAS  Google Scholar 

  138. Benoit M, Desnues B, Mege JL (2008) Macrophage polarization in bacterial infections. J Immunol 181(6):3733–3739

    PubMed  CAS  Google Scholar 

  139. Mantovani A et al (2008) Cancer-related inflammation. Nature 454(7203):436–444

    Article  PubMed  CAS  Google Scholar 

  140. Pollard JW (2009) Trophic macrophages in development and disease. Nat Rev Immunol 9(4):259–270

    Article  PubMed  CAS  Google Scholar 

  141. Wong SC et al (2010) Macrophage polarization to a unique phenotype driven by B cells. Eur J Immunol 40(8):2296–2307

    Article  PubMed  CAS  Google Scholar 

  142. Tsai MC et al (2006) Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension. Cell Microbiol 8(2):218–232

    Article  PubMed  CAS  Google Scholar 

  143. Halstead SB et al (2010) Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes. Lancet Infect Dis 10(10):712–722

    Article  PubMed  CAS  Google Scholar 

  144. Halstead SB, Chow JS, Marchette NJ (1973) Immunological enhancement of dengue virus replication. Nat New Biol 243(122):24–26

    PubMed  CAS  Google Scholar 

  145. Mahalingam S, Lidbury BA (2002) Suppression of lipopolysaccharide-induced antiviral transcription factor (STAT-1 and NF-kappa B) complexes by antibody-dependent enhancement of macrophage infection by Ross River virus. Proc Natl Acad Sci U S A 99(21):13819–13824

    Article  PubMed  CAS  Google Scholar 

  146. Teitelbaum R et al (1998) A mAb recognizing a surface antigen of Mycobacterium tuberculosis enhances host survival. Proc Natl Acad Sci U S A 95(26):15688–15693

    Article  PubMed  CAS  Google Scholar 

  147. Calmette A (ed) (1923) Tubercle bacillus infection and tuberculosis in man and animals. The Williams & Wilkins Co., Baltimore, pp 603–623

    Google Scholar 

  148. Porter R (ed) (1997) The greatest benefit to mankind: a medical history of hummanity. WW Norton & Company, New York

    Google Scholar 

  149. Glatman-Freedman A (2006) The role of antibody-mediated immunity in defense against Mycobacterium tuberculosis: advances toward a novel vaccine strategy. Tuberculosis 86(3–4):191–197

    Article  PubMed  CAS  Google Scholar 

  150. Hamasur B et al (2004) A mycobacterial lipoarabinomannan specific monoclonal antibody and its F(ab’) fragment prolong survival of mice infected with Mycobacterium tuberculosis. Clin Exp Immunol 138(1):30–38

    Article  PubMed  CAS  Google Scholar 

  151. Pethe K et al (2001) The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature 412(6843):190–194

    Article  PubMed  CAS  Google Scholar 

  152. Reljic R et al (2006) Intranasal IFNgamma extends passive IgA antibody protection of mice against Mycobacterium tuberculosis lung infection. Clin Exp Immunol 143(3):467–473

    Article  PubMed  CAS  Google Scholar 

  153. Williams A et al (2004) Passive protection with immunoglobulin A antibodies against tuberculous early infection of the lungs. Immunology 111(3):328–333

    Article  PubMed  CAS  Google Scholar 

  154. Guirado E et al (2006) Passive serum therapy with polyclonal antibodies against Mycobacterium tuberculosis protects against post-chemotherapy relapse of tuberculosis infection in SCID mice. Microbes Infect 8(5):1252–1259

    Article  PubMed  CAS  Google Scholar 

  155. Roy E et al (2005) Therapeutic efficacy of high-dose intravenous immunoglobulin in Mycobacterium tuberculosis infection in mice. Infect Immun 73(9):6101–6109

    Article  PubMed  CAS  Google Scholar 

  156. Hamasur B et al (2003) Mycobacterium tuberculosis arabinomannan-protein conjugates protect against tuberculosis. Vaccine 21(25–26):4081–4093

    Article  PubMed  CAS  Google Scholar 

  157. Flynn JL (2006) Lessons from experimental Mycobacterium tuberculosis infections. Microbes Infect/Institut Pasteur 8(4):1179–1188

    Article  CAS  Google Scholar 

  158. Young D (2009) Animal models of tuberculosis. Eur J Immunol 39(8):2011–2014

    Article  PubMed  CAS  Google Scholar 

  159. Boes M (2000) Role of natural and immune IgM antibodies in immune responses. Mol Immunol 37(18):1141–1149

    Article  PubMed  CAS  Google Scholar 

  160. Ehrenstein MR, Notley CA (2010) The importance of natural IgM: scavenger, protector and regulator. Nat Rev Immunol 10(11):778–786

    Article  PubMed  CAS  Google Scholar 

  161. Fagarasan S, Honjo T (2000) T-Independent immune response: new aspects of B cell biology. Science 290(5489):89–92

    Article  PubMed  CAS  Google Scholar 

  162. Lopes-Carvalho T, Foote J, Kearney JF (2005) Marginal zone B cells in lymphocyte activation and regulation. Curr Opin Immunol 17(3):244–250

    Article  PubMed  CAS  Google Scholar 

  163. Lopes-Carvalho T, Kearney JF (2004) Development and selection of marginal zone B cells. Immunol Rev 197:192–205

    Article  PubMed  Google Scholar 

  164. Weill JC, Weller S, Reynaud CA (2009) Human marginal zone B cells. Annu Rev Immunol 27:267–285

    Article  PubMed  CAS  Google Scholar 

  165. Aurora AB et al (2005) Immune complex-dependent remodeling of the airway vasculature in response to a chronic bacterial infection. J Immunol 175(10):6319–6326

    PubMed  CAS  Google Scholar 

  166. Maglione PJ, Xu J, Chan J (2007) B cells moderate inflammatory progression and enhance bacterial containment upon pulmonary challenge with Mycobacterium tuberculosis. J Immunol 178(11):7222–7234

    PubMed  CAS  Google Scholar 

  167. Clynes R (2007) Protective mechanisms of IVIG. Curr Opin Immunol 19(6):646–651

    Article  PubMed  CAS  Google Scholar 

  168. Fauci AS et al (2008) HIV vaccine research: the way forward. Science 321(5888):530–532

    Article  PubMed  CAS  Google Scholar 

  169. Junqueira-Kipnis AP et al (2005) Interleukin-10 production by lung macrophages in CBA xid mutant mice infected with Mycobacterium tuberculosis. Immunology 115(2):246–252

    Article  PubMed  CAS  Google Scholar 

  170. Moore KW et al (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765

    Article  PubMed  CAS  Google Scholar 

  171. Rutella S, Danese S, Leone G (2006) Tolerogenic dendritic cells: cytokine modulation comes of age. Blood 108(5):1435–1440

    Article  PubMed  CAS  Google Scholar 

  172. Mizoguchi A, Bhan AK (2006) A case for regulatory B cells. J Immunol 176(2):705–710

    PubMed  CAS  Google Scholar 

  173. Olson TS et al (2004) Expanded B cell population blocks regulatory T cells and exacerbates ileitis in a murine model of Crohn disease. J Clin Investig 114(3):389–398

    PubMed  CAS  Google Scholar 

  174. Redford PS, Murray PJ, O’Garra A (2011) The role of IL-10 in immune regulation during M. tuberculosis infection. Mucosal Immunol 4(3):261–270

    Article  PubMed  CAS  Google Scholar 

  175. Gallo P, Goncalves R, Mosser DM (2010) The influence of IgG density and macrophage Fc (gamma) receptor cross-linking on phagocytosis and IL-10 production. Immunol Lett 133(2):70–77

    Article  PubMed  CAS  Google Scholar 

  176. Flynn JL, Chan J, Lin PL (2011) Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal Immunol 4(3):271–278

    Article  PubMed  CAS  Google Scholar 

  177. Willcocks LC, Smith KG, Clatworthy MR (2009) Low-affinity Fcgamma receptors, autoimmunity and infection. Expert Rev Mol Med 11:e24

    Article  PubMed  Google Scholar 

  178. Boruchov AM et al (2005) Activating and inhibitory IgG Fc receptors on human DCs mediate opposing functions. J Clin Investig 115(10):2914–2923

    Article  PubMed  CAS  Google Scholar 

  179. Bosio CM, Gardner D, Elkins KL (2000) Infection of B cell-deficient mice with CDC 1551, a clinical isolate of Mycobacterium tuberculosis: delay in dissemination and development of lung pathology. J Immunol 164(12):6417–6425

    PubMed  CAS  Google Scholar 

  180. Dheda K et al (2005) Lung remodeling in pulmonary tuberculosis. J Infect Dis 192(7):1201–1209

    Article  PubMed  CAS  Google Scholar 

  181. Ulrichs T et al (2004) Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defence in the lung. J Pathol 204(2):217–228

    Article  PubMed  Google Scholar 

  182. Moraes TJ, Zurawska JH, Downey GP (2006) Neutrophil granule contents in the pathogenesis of lung injury. Curr Opin Hematol 13(1):21–27

    Article  PubMed  CAS  Google Scholar 

  183. Eruslanov EB et al (2005) Neutrophil responses to Mycobacterium tuberculosis infection in genetically susceptible and resistant mice. Infect Immun 73(3):1744–1753

    Article  PubMed  CAS  Google Scholar 

  184. Gonzalez-Juarrero M et al (2001) Temporal and spatial arrangement of lymphocytes within lung granulomas induced by aerosol infection with Mycobacterium tuberculosis. Infect Immun 69(3):1722–1728

    Article  PubMed  CAS  Google Scholar 

  185. Turner J et al (2001) The progression of chronic tuberculosis in the mouse does not require the participation of B lymphocytes or interleukin-4. Exp Gerontol 36(3):537–545

    Article  PubMed  CAS  Google Scholar 

  186. Manzo A et al (2005) Systematic microanatomical analysis of CXCL13 and CCL21 in situ production and progressive lymphoid organization in rheumatoid synovitis. Eur J Immunol 35(5):1347–1359

    Article  PubMed  CAS  Google Scholar 

  187. Serafini B et al (2004) Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol 14(2):164–174

    Article  PubMed  Google Scholar 

  188. Moyron-Quiroz JE et al (2004) Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat Med 10(9):927–934

    Article  PubMed  CAS  Google Scholar 

  189. Shomer NH et al (2003) Helicobacter-induced chronic active lymphoid aggregates have characteristics of tertiary lymphoid tissue. Infect Immun 71(6):3572–3577

    Article  PubMed  CAS  Google Scholar 

  190. Bussiere FI et al (2006) Low multiplicity of infection of Helicobacter pylori suppresses apoptosis of B lymphocytes. Cancer Res 66(13):6834–6842

    Article  PubMed  CAS  Google Scholar 

  191. Spera JM et al (2006) A B lymphocyte mitogen is a Brucella abortus virulence factor required for persistent infection. Proc Natl Acad Sci U S A 103(44):16514–16519

    Article  PubMed  CAS  Google Scholar 

  192. Capuano SV 3rd et al (2003) Experimental Mycobacterium tuberculosis infection of cynomolgus macaques closely resembles the various manifestations of human M. tuberculosis infection. Infect Immun 71(10):5831–5844

    Article  PubMed  CAS  Google Scholar 

  193. Flynn JL et al (2003) Non-human primates: a model for tuberculosis research. Tuberculosis 83(1–3):116–118

    Article  PubMed  CAS  Google Scholar 

  194. Kahnert A et al (2007) Mycobacterium tuberculosis triggers formation of lymphoid structure in murine lungs. J Infect Dis 195(1):46–54

    Article  PubMed  CAS  Google Scholar 

  195. Moyron-Quiroz JE et al (2006) Persistence and responsiveness of immunologic memory in the absence of secondary lymphoid organs. Immunity 25(4):643–654

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH Grants R01 AI094745, R01 AI098925, R01 AI50732, R01 HL106804, P01 AI063537, P30 AI051519 (The Einstein/Montefiore Center for AIDS Research), and T32 AI070117 (The Einstein Geographic Medicine and Emerging Infections Training Grant) and the Bill and Melinda Gates Foundation. We thank the members of the Chan and Flynn laboratories for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kozakiewicz, L., Phuah, J., Flynn, J., Chan, J. (2013). The Role of B Cells and Humoral Immunity in Mycobacterium tuberculosis Infection. In: Divangahi, M. (eds) The New Paradigm of Immunity to Tuberculosis. Advances in Experimental Medicine and Biology, vol 783. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6111-1_12

Download citation

Publish with us

Policies and ethics