Skip to main content

Visual Mental Imagery

  • Chapter
  • First Online:
Multisensory Imagery

Abstract

Visual mental imagery is an important aspect of our mental life. Without it, we would be unable to reactivate and transform visual representations of objects and events that are not unfolding in front of us. Until recently, the investigation of visual mental imagery relied on subjective and behavioral paradigms. These paradigms typically only enabled us to examine the end product of visual mental imagery processes, making it impossible to resolve empirical questions such as which representations are shared by visual perception and imagery. This chapter illustrates how the conceptual and methodological frameworks introduced by cognitive neuroscience in the last three decades have enabled researchers to address these kinds of questions by leveraging our knowledge about the neuroscience of the primate visual system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson JR (1978) Arguments concerning representations for mental imagery. Psychol Rev 85:249–277

    Article  Google Scholar 

  • Barbay S, Plautz EJ, Friel KM, Frost SB, Dancause N, Stowe AM, Nudo RJ (2006) Behavioral and neurophysiological effects of delayed training following a small ischemic infarct in primary motor cortex of squirrel monkeys. Exp Brain Res 169(1):106–116

    Article  PubMed  Google Scholar 

  • Barone P, Batardiere A, Knoblauch K, Kennedy H (2000) Laminar distribution of neurons in extrastriate areas projecting to visual areas V1 and V4 correlates with the hierarchical rank and indicates the operation of a distance rule. J Neurosci 20(9):3263–3281

    PubMed  CAS  Google Scholar 

  • Bartolomeo P (2002) The relationship between visual perception and visual mental imagery: a reappraisal of the neuropsychological evidence. Cortex 38(3):357–378

    Article  PubMed  Google Scholar 

  • Bartolomeo P, Bachoud-Levi AC, De Gelder B, Denes G, Dalla Barba G, Brugieres P, Degos JD (1998) Multiple-domain dissociation between impaired visual perception and preserved mental imagery in a patient with bilateral extrastriate lesions. Neuropsychologia 36(3):239–249

    Article  PubMed  CAS  Google Scholar 

  • Behrmann M, Moscovitch M, Winocur G (1994) Intact visual imagery and impaired visual perception in a patient with visual agnosia. J Exp Psychol Hum Percept Perform 20(5):1068–1087

    Article  PubMed  CAS  Google Scholar 

  • Blajenkova O, Kozhevnikov M, Motes MA (2006) Object and spatial imagery: distinctions between members of different professions. Cogn Process 7(Suppl 1):20–21

    Article  Google Scholar 

  • Budd JM (1998) Extrastriate feedback to primary visual cortex in primates: a quantitative analysis of connectivity. Proc Biol Sci 265(1400):1037–1044

    Article  PubMed  CAS  Google Scholar 

  • Butter CM, Kosslyn SM, Mijovic-Prelec D, Riffle A (1997) Field-specific deficits in visual imagery following hemianopia due to unilateral occipital infarcts. Brain Cogn 120:217–228

    Google Scholar 

  • Chatterjee A, Southwood MH (1995) Cortical blindness and visual imagery. Neurology 45(12):2189–2195

    Article  PubMed  CAS  Google Scholar 

  • Chiang TC, Walsh V, Lavidor M (2004) The cortical representation of foveal stimuli: evidence from quadrantanopia and TMS-induced suppression. Brain Res Cogn Brain Res 21(3):309–316

    Article  PubMed  Google Scholar 

  • Dancause N, Barbay S, Frost SB, Plautz EJ, Chen D, Zoubina EV, Nudo RJ (2005) Extensive cortical rewiring after brain injury. J Neurosci 25(44):10167–10179

    Article  PubMed  CAS  Google Scholar 

  • Desimone R, Ungerleider LG (1989) Neural mechanisms of visual processing in monkeys. In: Boller F, Grafman J (eds) Handbook of Neuropsychology (pp. 267–299). Elsevier, Amsterdam

    Google Scholar 

  • Downing PE, Chan AW, Peelen MV, Dodds CM, Kanwisher N (2006) Domain specificity in visual cortex. Cereb Cortex 16(10):1453–1461

    Article  PubMed  CAS  Google Scholar 

  • Elkin-Frankston S, Fried P, Rushmore RJ, Valero-Cabre A (2011) From qualia to quantia: a system to document and quantify phosphene percepts elicited by non-invasive neurostimulation of the human occipital cortex. J Neurosci Methods 198(2):149–157

    Article  PubMed  CAS  Google Scholar 

  • Farah MJ (1984) The neurological basis of mental imagery: a componential analysis. Cognition 18(1–3):245–272

    Article  PubMed  CAS  Google Scholar 

  • Farah MJ, Soso MJ, Dasheiff RM (1992) Visual angle of the mind’s eye before and after unilateral occipital lobectomy. J Exp Psychol Hum Percept Perform 18:241–246

    Article  PubMed  CAS  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1(1):1–47

    Article  PubMed  CAS  Google Scholar 

  • Finke RA, Pinker S, Farah MJ (1989) Reinterpreting visual patterns in mental imagery. Cogn Sci 13:62–78

    Google Scholar 

  • Fox PT, Mintun MA, Raichle ME, Miezin FM, Allman JM, Van Essen DC (1986) Mapping human visual cortex with positron emission tomography. Nature 323(6091):806–809

    Article  PubMed  CAS  Google Scholar 

  • Fujita I, Tanaka K, Ito M, Cheng K (1992) Columns for visual features of objects in monkey inferotemporal cortex. Nature 360(6402):343–346

    Article  PubMed  CAS  Google Scholar 

  • Ganis G, Thompson WL, Kosslyn SM (2004) Brain areas underlying visual mental imagery and visual perception: an fMRI study. Brain Res Cogn Brain Res 20(2):226–241

    Article  PubMed  Google Scholar 

  • Ganis G, Thompson WL, Kosslyn SM (2005) Understanding the effects of task-specific practice in the brain: insights from individual-differences analyses. Cogn Affect Behav Neurosci 5(2):235–245

    Article  PubMed  Google Scholar 

  • Ganis G, Thompson WL, Mast FW, Kosslyn SM (2003) Visual imagery in cerebral visual dysfunction. Neurol Clin 21(3):631–646

    Article  PubMed  Google Scholar 

  • Goldenberg G (1993) The neural basis of mental imagery. Baillieres Clin Neurol 2(2):265–286

    PubMed  CAS  Google Scholar 

  • Goldenberg G, Mullbacher W, Nowak A (1995) Imagery without perception—a case study of anosognosia for cortical blindness. Neuropsychologia 33(11):1373–1382

    Article  PubMed  CAS  Google Scholar 

  • Goodale MA, Westwood DA, Milner AD (2004) Two distinct modes of control for object-directed action. Prog Brain Res 144:131–144

    Article  PubMed  Google Scholar 

  • Hasson U, Harel M, Levy I, Malach R (2003) Large-scale mirror-symmetry organization of human occipito-temporal object areas. Neuron 37(6):1027–1041

    Article  PubMed  CAS  Google Scholar 

  • Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293(5539):2425–2430

    Article  PubMed  CAS  Google Scholar 

  • Haxby JV, Grady CL, Horwitz B, Ungerleider LG, Mishkin M, Carson RE, Rapoport SI (1991) Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proc Natl Acad Sci USA 88(5):1621–1625

    Article  PubMed  CAS  Google Scholar 

  • Heeger DJ (1999) Linking visual perception with human brain activity. Curr Opin Neurobiol 9(4):474–479

    Article  PubMed  CAS  Google Scholar 

  • Ishai A, Haxby JV, Ungerleider LG (2002) Visual imagery of famous faces: effects of memory and attention revealed by fMRI. Neuroimage 17(4):1729–1741

    Article  PubMed  Google Scholar 

  • Ishai A, Ungerleider LG, Haxby JV (2000) Distributed neural systems for the generation of visual images. Neuron 28(3):979–990

    Article  PubMed  CAS  Google Scholar 

  • James KH, Gauthier I (2006) Letter processing automatically recruits a sensory-motor brain network. Neuropsychologia 44(14):2937–2949

    Article  PubMed  Google Scholar 

  • Kammer T, Puls K, Erb M, Grodd W (2005a) Transcranial magnetic stimulation in the visual system. II. Characterization of induced phosphenes and scotomas. Exp Brain Res 160(1):129–140

    Article  PubMed  Google Scholar 

  • Kammer T, Puls K, Strasburger H, Hill NJ, Wichmann FA (2005b) Transcranial magnetic stimulation in the visual system. I. The psychophysics of visual suppression. Exp Brain Res 160(1):118–128

    Article  PubMed  Google Scholar 

  • Kanwisher N, Yovel G (2006) The fusiform face area: a cortical region specialized for the perception of faces. Philos Trans R Soc Lond B Biol Sci 361(1476):2109–2128

    Article  PubMed  Google Scholar 

  • Klein I, Dubois J, Mangin JF, Kherif F, Flandin G, Poline JB, Le Bihan D (2004) Retinotopic organization of visual mental images as revealed by functional magnetic resonance imaging. Brain Res Cogn Brain Res 22(1):26–31

    Article  PubMed  Google Scholar 

  • Kosslyn SM (1980) Image and Mind. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Kosslyn SM (1994) Image and Brain. MIT Press, Cambridge, MA

    Google Scholar 

  • Kosslyn SM, Alpert NM, Thompson WL, Maljkovic V, Weise SB, Chabris CF, Hamilton SE, Buonanno FS (1993) Visual mental imagery activates topographically organized visual cortex: PET investigations. J Cogn Neurosci 5:263–287

    Article  Google Scholar 

  • Kosslyn SM, Ganis G, Thompson WL (2001) Neural foundations of imagery. Nat Rev Neurosci 2(9):635–642

    Article  PubMed  CAS  Google Scholar 

  • Kosslyn SM, Pascual-Leone A, Felician O, Camposano S, Keenan JP, Thompson WL, Alpert NM (1999) The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science 284(5411):167–170

    Article  PubMed  CAS  Google Scholar 

  • Kosslyn SM, Thompson WL (2003) When is early visual cortex activated during visual mental imagery? Psychol Bull 129(5):723–746

    Article  PubMed  Google Scholar 

  • Kosslyn SM, Thompson WL, Ganis G (2006) The Case for Mental Imagery. Oxford University Press, New York

    Book  Google Scholar 

  • Kosslyn SM, Thompson WL, Kim IJ, Alpert NM (1995) Topographical representations of mental images in primary visual cortex. Nature 378(6556):496–498

    Article  PubMed  CAS  Google Scholar 

  • Kosslyn SM, Thompson WL, Kim IJ, Rauch SL (1996) Individual differences in cerebral blood flow in area 17 predict the time to evaluate visualized letters. J Cogn Neurosci 8:78–82

    Article  Google Scholar 

  • Kreiman G, Koch C, Fried I (2000) Imagery neurons in the human brain. Nature 408(6810):357–361

    Article  PubMed  CAS  Google Scholar 

  • Lehky SR, Kiani R, Esteky H, Tanaka K (2011) Statistics of visual responses in primate inferotemporal cortex to object stimuli. J Neurophysiol 106(3):1097–1117

    Article  PubMed  Google Scholar 

  • Levy I, Hasson U, Harel M, Malach R (2004) Functional analysis of the periphery effect in human building related areas. Hum Brain Mapp 22(1):15–26

    Article  PubMed  Google Scholar 

  • Mechelli A, Price CJ, Friston KJ, Ishai A (2004) Where bottom-up meets top-down: neuronal interactions during perception and imagery. Cereb Cortex 14(11):1256–1265

    Article  PubMed  Google Scholar 

  • Mishkin M, Ungerleider LG, Macko KA (1983) Object vision and spatial vision: two cortical pathways. Trends Neurosci 6:414–417

    Article  Google Scholar 

  • Miyashita Y, Chang HS (1988) Neuronal correlate of pictorial short-term memory in the primate temporal cortex. Nature 331(6151):68–70

    Article  Google Scholar 

  • Muellbacher W, Ziemann U, Boroojerdi B, Hallett M (2000) Effects of low-frequency transcranial magnetic stimulation on motor excitability and basic motor behavior. Clin Neurophysiol 111(6):1002–1007

    Article  PubMed  CAS  Google Scholar 

  • O’Craven KM, Kanwisher N (2000) Mental imagery of faces and places activates corresponding stimulus-specific brain regions. J Cogn Neurosci 12(6):1013–1023

    Article  PubMed  Google Scholar 

  • Pylyshyn ZW (1981) The imagery debate: analogue media versus tacit knowledge. Psychol Rev 88:16–45

    Article  Google Scholar 

  • Pylyshyn Z (2002). Mental imagery: in search of a theory. Behav Brain Sci 25(2):157–182

    Article  PubMed  Google Scholar 

  • Rensink RA (2002) Change detection. Annu Rev Psychol 53:245–277

    Article  PubMed  Google Scholar 

  • Rockland KS, Pandya DN (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:3–20

    Article  PubMed  CAS  Google Scholar 

  • Salin PA, Bullier J (1995) Corticocortical connections in the visual system: structure and function. Physiol Rev 75(1):107–154

    PubMed  CAS  Google Scholar 

  • Sartori G, Job R (1988) The oyster with four legs: a neuropsychological study on the interaction of visual and semantic information. Cogn Neuropsychol 5:105–132

    Article  Google Scholar 

  • Saygin AP, Sereno MI (2008) Retinotopy and attention in human occipital, temporal, parietal, and frontal cortex. Cereb Cortex 18(9):2158–2168

    Article  PubMed  Google Scholar 

  • Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268(5212):889–893

    Article  PubMed  CAS  Google Scholar 

  • Sereno MI, Pitzalis S, Martinez A (2001) Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294(5545):1350–1354

    Article  PubMed  CAS  Google Scholar 

  • Sereno MI, Tootell RBH (2005) From monkeys to humans: what do we now know about brain homologies? Curr Opin Neurobiol 15(2):135–144

    Article  PubMed  CAS  Google Scholar 

  • Servos P, Goodale MA (1995) Preserved visual imagery in visual form agnosia. Neuropsychologia 33(11):1383–1394

    Article  PubMed  CAS  Google Scholar 

  • Shepard RN, Cooper LA (1982) Mental Images and their Transformations. MIT Press, Cambridge, MA

    Google Scholar 

  • Shuttleworth EC Jr, Syring V, Allen N (1982) Further observations on the nature of prosopagnosia. Brain Cogn 1(3):307–322

    Article  PubMed  Google Scholar 

  • Siebner HR, Peller M, Willoch F, Minoshima S, Boecker H, Auer C, Bartenstein P (2000) Lasting cortical activation after repetitive TMS of the motor cortex: a glucose metabolic study. Neurology 54(4):956–963

    Article  PubMed  CAS  Google Scholar 

  • Siniatchkin M, Schlicke C, Stephani U (2011) Transcranial magnetic stimulation reveals high test–retest reliability for phosphenes but not for suppression of visual perception. Clin Neurophysiol 122(12):2475–2481

    Article  PubMed  Google Scholar 

  • Slotnick SD, Thompson WL, Kosslyn SM (2005) Visual mental imagery induces retinotopically organized activation of early visual areas. Cereb Cortex 15(10):1570–1583

    Article  PubMed  Google Scholar 

  • Tanaka K (1996) Inferotemporal cortex and object vision. Annu Rev Neurosci 19:109–139

    Article  Google Scholar 

  • Tanaka K, Saito H, Fukada Y, Moriya M (1991) Coding visual images of objects in the inferotemporal cortex of the macaque monkey. J Neurophysiol 66(1):170–189

    PubMed  CAS  Google Scholar 

  • Thirion B, Duchesnay E, Hubbard E, Dubois J, Poline JB, Lebihan D, Dehaene S (2006) Inverse retinotopy: inferring the visual content of images from brain activation patterns. Neuroimage 33(4):1104–1116

    Article  PubMed  Google Scholar 

  • Tootell RB, Hadjikhani NK, Mendola JD, Marrett S, Dale AM (1998) From retinotopy to recognition: fMRI in human visual cortex. Trends Cogn Sci 2(5):174–183

    Article  PubMed  CAS  Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of Visual Behavior (pp. 549–586). MIT Press, Cambridge, MA

    Google Scholar 

  • Young AW, Humphreys GW, Riddoch MJ, Hellawell DJ, de Haan EH (1994) Recognition impairments and face imagery. Neuropsychologia 32(6):693–702

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Ganis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ganis, G. (2013). Visual Mental Imagery. In: Lacey, S., Lawson, R. (eds) Multisensory Imagery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5879-1_2

Download citation

Publish with us

Policies and ethics