Skip to main content

Abstract

Relapsing fever spirochetosis is a neglected global disease primarily afflicting those in resource-poor countries (Fig. 9.1). Infection with the causative Borrelia spp. spirochetes can be either louse-borne (epidemic) or tick-borne (endemic). Signs and symptoms largely overlap, but vary between the two in important ways that affect their respective mortality. Where mortality with endemic RF is rare (<5 %), epidemic RF can reach up to 40 % mortality in an outbreak (Raoult and Roux 1999). The true global impact of this disease is masked by the non-specific symptoms caused by the spirochetal infection, such that it may be attributed to other pathogens that are prevalent in a population. For instance, in Sudan an outbreak of louse-borne relapsing fever affected 20,000 villagers with a 10 % mortality rate, yet was originally diagnosed as being caused by a hemorrhagic fever virus (Piesman and Schwan 2010). Further complicating our understanding of the potential significance of this disease is the geographical overlap of RF spirochetes with additional febrile episode-inducing illnesses (Fig. 9.1), with one study reporting that 18.2 % of RF borreliosis cases were misdiagnosed as malaria (Nordstrand et al. 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aher AR, Shah H, Rastogi V, Tukaram PK, Choudhury RC (2008) A case report of relapsing fever. Indian J Pathol Microbiol 51(2):292–293

    Article  PubMed  Google Scholar 

  • Alugupalli KR, Leong JM, Woodland RT, Muramatsu M, Honjo T, Gerstein RM (2004) B1b lymphocytes confer T cell-independent long-lasting immunity. Immunity 21(3):379–390

    Article  PubMed  CAS  Google Scholar 

  • Assous MV, Wilamowski A (2009) Relapsing fever borreliosis in Eurasia–forgotten, but certainly not gone! Clin Microbiol Infect 15(5):407–414

    Article  PubMed  CAS  Google Scholar 

  • Assous MV, Wilamowski A, Bercovier H, Marva E (2006) Molecular characterization of tickborne relapsing fever Borrelia, Israel. Emerg Infect Dis 12(11):1740–1743

    Article  PubMed  CAS  Google Scholar 

  • Balashov YS (1972) Bloodsucking ticks (Ixodoidea)- vectors of diseases of man and animals. Misc Publ Entomol Soc Am 8:161–376

    Google Scholar 

  • Barbour AG (1990) Antigenic variation of a relapsing fever Borrelia species. Annu Rev Microbiol 44:155–171

    Article  PubMed  CAS  Google Scholar 

  • Barbour AG, Burman N, Carter CJ, Kitten T, Bergström S (1991) Variable antigen genes of the relapsing fever agent Borrelia hermsii are activated by promoter addition. Mol Microbiol 5:489–493

    Article  PubMed  CAS  Google Scholar 

  • Barbour AG, Bundoc V (2001) In vitro and in vivo neutralization of the relapsing fever agent Borrelia hermsii with serotype-specific immunoglobulin M antibodies. Infect Immun 69(2): 1009–1015

    Article  PubMed  CAS  Google Scholar 

  • Barbour AG, Carter CJ, Sohaskey CD (2000) Surface protein variation by expression site switching in the relapsing fever agent Borrelia hermsii. Infect Immun 68(12):7114–7121

    Article  PubMed  CAS  Google Scholar 

  • Barbour AG, Dai Q, Restrepo BI, Stoenner HG, Frank SA (2006) Pathogen escape from host immunity by a genome program for antigenic variation. Proc Natl Acad Sci USA 103: 18290–18295

    Article  PubMed  CAS  Google Scholar 

  • Battisti JM, Raffel SJ, Schwan TG (2008) A system for site-specific genetic manipulation of the relapsing fever spirochete Borrelia hermsii. Methods Mol Biol 431:69–84

    PubMed  CAS  Google Scholar 

  • Breitschwerdt EB, Nicholson WL, Kiehl AR, Steers C, Meuten DJ, Levine JF (1994) Natural infections with Borrelia spirochetes in two dogs from Florida. J Clin Microbiol 32:352–357

    PubMed  CAS  Google Scholar 

  • Brown RN, Lane RS (1994) Natural and experimental Borrelia burgdorferi infections in woodrats and deer mice from California. J Wildl Dis 30(3):389–398

    PubMed  CAS  Google Scholar 

  • Brown RN, Peot MA, Lane RS (2006) Sylvatic maintenance of Borrelia burgdorferi (Spirochaetales) in Northern California: untangling the web of transmission. J Med Entomol 43(4):743–751

    Article  PubMed  CAS  Google Scholar 

  • Bryceson AD, Parry EH, Perine PL, Warrell DA, Vukotich D, Leithead CS (1970) Louse-borne relapsing fever. Q J Med 39(153):129–170

    PubMed  CAS  Google Scholar 

  • Burman N, Shamaei-Tousi A, Bergström S (1998) The spirochete Borrelia crocidurae causes erythrocyte rosetting during relapsing fever. Infect Immun 66:815–819

    PubMed  CAS  Google Scholar 

  • Cadavid D, Bundoc V, Barbour AG (1993) Experimental infection of the mouse brain by a relapsing fever Borrelia species: a molecular analysis. J Infect Dis 168:143–151

    Article  PubMed  CAS  Google Scholar 

  • Cadavid D, Pennington PM, Kerentseva TA, Bergström S, Barbour AG (1997) Immunologic and genetic analyses of VmpA of a neurotropic strain of Borrelia turicatae. Infect Immun 65: 3352–3360

    PubMed  CAS  Google Scholar 

  • Cadavid D, Thomas DD, Crawley R, Barbour AG (1994) Variability of a bacterial surface protein and disease expression in a possible mouse model of systemic Lyme borreliosis. J Exp Med 179:631–642

    Article  PubMed  CAS  Google Scholar 

  • Cadavid D, Barbour AG (1998) Neuroborreliosis during relapsing fever: review of the clinical manifestations, pathology, and treatment of infections in humans and experimental animals. Clin Infect Dis 26(1):151–164

    Article  PubMed  CAS  Google Scholar 

  • Coffey EM, Eveland WC (1967) Experimental relapsing fever initiated by Borrelia hermsi. II. Sequential appearance of major serotypes in the rat. J Infect Dis 117:29–34

    Article  PubMed  CAS  Google Scholar 

  • Connolly SE, Benach JL (2001) Cutting edge: the spirochetemia of murine relapsing fever is cleared by complement-independent bactericidal antibodies. J Immunol 167(6):3029–3032

    PubMed  CAS  Google Scholar 

  • Cooley RA, Kohls GM: The Agarasidae of North America, Central America, and Cuba, Monography No. 1 edn; 1944.

    Google Scholar 

  • Cutler SJ (2006) Possibilities for relapsing fever reemergence. Emerg Infect Dis 12(3):369–374

    Article  PubMed  Google Scholar 

  • Dai Q, Restrepo BI, Porcella SF, Raffel SJ, Schwan TG, Barbour AG (2006) Antigenic variation by Borrelia hermsii occurs through recombination between extragenic repetitive elements on linear plasmids. Mol Microbiol 60:1329–1343

    Article  PubMed  CAS  Google Scholar 

  • Davis H, Vincent JM, Lynch J (2002) Tick-borne relapsing fever caused by Borrelia turicatae. Pediatr Infect Dis J 21(7):703–705

    Article  PubMed  Google Scholar 

  • Davis GE (1956) A relapsing fever spirochete, Borrelia mazzottii (sp. nov.) from Ornithodoros talaje from Mexico. Am J Hyg 63(1):13–17

    PubMed  CAS  Google Scholar 

  • Dunham-Ems SM, Caimano MJ, Pal U, Wolgemuth CW, Eggers CH, Balic A, Radolf JD (2009) Live imaging reveals a biphasic mode of dissemination of Borrelia burgdorferi within ticks. J Clin Invest 119(12):3652–3665

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich PH (1910) The experimental chemotherapy of Spirilloses. Julius Springer, Berlin

    Book  Google Scholar 

  • Felsenfeld O (1973) The problem of relapsing fever in the Americas. IMS Ind Med Surg 42(3):7–10

    PubMed  CAS  Google Scholar 

  • Fine LM, Earnhart CG, Marconi RT (2011) Genetic transformation of the relapsing fever spirochete Borrelia hermsii: stable integration and expression of green fluorescent protein from linear plasmid 200. J Bacteriol 193(13):3241–3245

    Article  PubMed  CAS  Google Scholar 

  • Francis E (1938) Longevity of the tick Ornithodoros turicata and of Spirochaeta recurrentis with this tick. Publ Hlth Rep 53:2220–2241

    Article  Google Scholar 

  • Francischetti IM, Mather TN, Ribeiro JM (2003) Cloning of a salivary gland metalloprotease and characterization of gelatinase and fibrin(ogen)lytic activities in the saliva of the Lyme disease tick vector Ixodes scapularis. Biochem Biophys Res Commun 305(4):869–875

    Article  PubMed  CAS  Google Scholar 

  • Fritze D (2004) Taxonomy of the genus bacillus and related genera: the aerobic endospore-forming bacteria. Phytopathology 94(11):1245–1248

    Article  PubMed  Google Scholar 

  • Grosskinsky S, Schott M, Brenner C, Cutler SJ, Kraiczy P, Zipfel PF, Simon MM, Wallich R (2009) Borrelia recurrentis employs a novel multifunctional surface protein with anti-complement, anti-opsonic and invasive potential to escape innate immunity. PLoS One 4(3):e4858

    Article  PubMed  Google Scholar 

  • Guo BP, Teneberg S, Munch R, Terunuma D, Hatano K, Matsuoka K, Angstrom J, Boren T, Bergstrom S (2009) Relapsing fever Borrelia binds to neolacto glycans and mediates rosetting of human erythrocytes. Proc Natl Acad Sci USA 106(46):19280–19285

    Article  PubMed  CAS  Google Scholar 

  • Guyard C, Battisti JM, Raffel SJ, Schrumpf ME, Whitney AR, Krum JG, Porcella SF, Rosa PA, DeLeo FR, Schwan TG (2006) Relapsing fever spirochetes produce a serine protease that provides resistance to oxidative stress and killing by neutrophils. Mol Microbiol 60(3): 710–722

    Article  PubMed  CAS  Google Scholar 

  • Houhamdi L, Raoult D (2005) Excretion of living Borrelia recurrentis in feces of infected human body lice. J Infect Dis 191(11):1898–1906

    Article  PubMed  Google Scholar 

  • Hovis KM, Freedman JC, Zhang H, Forbes JL, Marconi RT (2008) Identification of an anti-parallel coiled-coil/loop domain required for ligand binding by the Borrelia hermsii FhbA protein: additional evidence for the role of FhbA in the host-pathogen interaction. Infect Immun 76(5):2113–2122

    Article  PubMed  CAS  Google Scholar 

  • Hovis KM, Jones JP, Sadlon T, Raval G, Gordon DL, Marconi RT (2006) Molecular analyses of the interaction of Borrelia hermsii FhbA with the complement regulatory proteins Factor H and Factor H-like protein 1. Infect Immun 74:2007–2014

    Article  PubMed  CAS  Google Scholar 

  • Hovis KM, McDowell JV, Griffin L, Marconi RT (2004) Identification and characterization of a linear-plasmid-encoded Factor H-binding protein (FhbA) of the relapsing fever spirochete Borrelia hermsii. J Bacteriol 186:2612–2618

    Google Scholar 

  • Jongen VH, van Roosmalen J, Tiems J, Van Holten J, Wetsteyn JC (1997) Tick-borne relapsing fever and pregnancy outcome in rural Tanzania. Acta Obstet Gynecol Scand 76(9):834–838

    Article  PubMed  CAS  Google Scholar 

  • Kitten T, Barbour AG (1990) Juxtaposition of expressed variable antigen genes with a conserved telomere in the bacterium Borrelia hermsii. Proc Natl Acad Sci USA 87:6077–6081

    Google Scholar 

  • Lawson CL, Yung BH, Barbour AG, Zuckert WR (2006) Crystal structure of neurotropism-associated variable surface protein 1 (Vsp1) of Borrelia turicatae. J Bacteriol 188(12):4522–4530

    Article  PubMed  CAS  Google Scholar 

  • Lapierre J, Hien TV, Roose A (1971) HT, Roose A: Action de la cephaloridine dans les fievres recurrentes experimentales a Borrelia duttoni chez la souris. C R Seances Soc Biol Fil 165:282–284

    PubMed  CAS  Google Scholar 

  • Lopez JE, McCoy BN, Krajacich BJ, Schwan TG (2011) Acquisition and subsequent transmission of Borrelia hermsii by the soft tick Ornithodoros hermsi. J Med Entomol 48(4):891–895

    Article  PubMed  Google Scholar 

  • Lane RS, Brown RN (1991) Wood rats and kangaroo rats: potential reservoirs of the Lyme disease spirochete in California. J Med Entomol 28(3):299–302

    Google Scholar 

  • Lin T, Oliver JH Jr, Gao L, Kollars TM Jr (2001) Clark KL: Genetic heterogeneity of Borrelia burgdorferi sensu lato in the southern United States based on restriction fragment length polymorphism and sequence analysis. J Clin Microbiol 39(7):2500–2507

    Article  PubMed  CAS  Google Scholar 

  • Larsson C, Andersson M, Pelkonen J, Guo BP, Nordstrand A, Bergstrom S (2006) Persistent brain infection and disease reactivation in relapsing fever borreliosis. Microbes Infect 8(8): 2213–2219

    Article  PubMed  CAS  Google Scholar 

  • Leboeuf A, Gambier A (1918) Sur deux cas de spirochetose humaine a Brazzaville (Moyen Congo). Bull Soc Pathol Exot 11:359–364

    Google Scholar 

  • Larsson C, Andersson M, Bergstrom S (2009) Current issues in relapsing fever. Curr Opin Infect Dis 22(5):443–449

    Article  PubMed  Google Scholar 

  • Lopez JE, Porcella SF, Schrumpf ME, Raffel SJ, Hammer CH, Zhao M, Robinson MA, Schwan TG (2009) Identification of conserved antigens for early serodiagnosis of relapsing fever Borrelia. Microbiology 155(Pt 8):2641–2651

    Google Scholar 

  • Lopez JE, Schrumpf ME, Nagarajan V, Raffel SJ, McCoy BN, Schwan TG (2010) A novel surface antigen of relapsing fever spirochetes can discriminate between relapsing fever and Lyme borreliosis. Clinical Vaccine Immunol 17(4):564–571

    Article  CAS  Google Scholar 

  • Magnarelli LA, Anderson JF, Johnson RC (1987) Cross-reactivity in serological tests for Lyme disease and other spirochetal infections. J Infect Dis 156:183–187

    Article  PubMed  CAS  Google Scholar 

  • Malkiel S, Kuhlow CJ, Mena P, Benach JL (2009) The loss and gain of marginal zone and peritoneal B cells is different in response to relapsing fever and Lyme disease Borrelia. J Immunol 182(1):498–506

    PubMed  CAS  Google Scholar 

  • Masoumi Asl H, Goya MM, Vatandoost H, Zahraei SM, Mafi M, Asmar M, Piazak N, Aghighi Z (2009) The epidemiology of tick-borne relapsing fever in Iran during 1997–2006. Travel Med Infect Dis 7(3):160–164

    Article  PubMed  CAS  Google Scholar 

  • McCoy BN, Raffel SJ, Lopez JE, Schwan TG (2010) Bloodmeal size and spirochete acquisition of Ornithodoros hermsi (Acari: Argasidae) during feeding. J Med Entomol 47(6):1164–1172

    Article  PubMed  Google Scholar 

  • McDowell JV, Tran E, Hamilton D, Wolfgang J, Miller K, Marconi RT (2003) Analysis of the ability of spirochete species associated with relapsing fever, avian borreliosis, and epizootic bovine abortion to bind factor H and cleave C3b. J Clin Microbiol 41:3905–3910

    Google Scholar 

  • Meier JT, Simon MI, Barbour AG (1985) Antigenic variation is associated with DNA rearrangements in a relapsing fever Borrelia. Cell 41:403–409

    Article  PubMed  CAS  Google Scholar 

  • Melkert PW (1988) Relapsing fever in pregnancy: analysis of high-risk factors. Br J Obstet Gynaecol 95(10):1070–1072

    Article  PubMed  CAS  Google Scholar 

  • Melkert PW, Stel HV (1991) Neonatal Borrelia infections (relapsing fever): report of 5 cases and review of the literature. East Afr Med J 68(12):999–1005

    PubMed  CAS  Google Scholar 

  • Melkert PW (1991) Mortality in high risk patients with tick-borne relapsing fever analysed by the Borrelia-index. East Afr Med J 68(11):875–879

    PubMed  CAS  Google Scholar 

  • Moemenbellah-Fard MD, Benafshi O, Rafinejad J, Ashraf H (2009) Tick-borne relapsing fever in a new highland endemic focus of western Iran. Ann Trop Med Parasitol 103(6):529–537

    Article  PubMed  CAS  Google Scholar 

  • Mooser H (1958) Erythrocyte adhesion and hemagglomeration by relapsing fever spirochetes. Z Tropenmed Parasitol 9(2):93–111

    PubMed  CAS  Google Scholar 

  • Newman K, Johnson RC (1984) T-cell-independent elimination of Borrelia turicatae. Infect Immun 45(3):572–576

    PubMed  Google Scholar 

  • Nicholson WL (2002) Roles of Bacillus endospores in the environment. Cell Mol Life Sci 59(3):410–416

    Article  PubMed  CAS  Google Scholar 

  • Nordstrand A, Bunikis I, Larsson C, Tsogbe K, Schwan TG, Nilsson M, Bergström S (2007) Tickborne relapsing fever diagnosis obscured by malaria, Togo. Emerg Infect Dis 13(1):117–123

    Article  PubMed  Google Scholar 

  • Oliver JH Jr, Lin T, Gao L, Clark KL, Banks CW, Durden LA, James AM, Chandler FW Jr (2003) An enzootic transmission cycle of Lyme borreliosis spirochetes in the southeastern United States. Proc Natl Acad Sci USA 100(20):11642–11645

    Article  PubMed  CAS  Google Scholar 

  • Pallen MJ, Wren BW (1997) The HtrA family of serine proteases. Mol Microbiol 26(2):209–221

    Article  PubMed  CAS  Google Scholar 

  • Parola P, Raoult D (2001) Ticks and tickborne bacterial diseases in humans: an emerging infectious threat. Clin Infect Dis 32(6):897–928

    Article  PubMed  CAS  Google Scholar 

  • Pennington PM, Allred CD, West CS, Alvarez R, Barbour AG (1997) Arthritis severity and spirochete burden are determined by serotype in the Borrelia turicatae-mouse model of Lyme disease. Infect Immun 65(1):285–292

    PubMed  CAS  Google Scholar 

  • Pennington PM, Cadavid D, Bunikis J, Norris SJ, Barbour AG (1999a) Extensive interplasmidic duplications change the virulence phenotype of the relapsing fever agent Borrelia turicatae. Mol Microbiol 34(5):1120–1132

    Google Scholar 

  • Pennington PM, Cadavid D, Barbour AG (1999b) Characterization of VspB of Borrelia turicatae, a major outer membrane protein expressed in blood and tissues of mice. Infect Immun 67(9):4637–4645

    PubMed  CAS  Google Scholar 

  • Plasterk RHA, Simon MI, Barbour AG (1985) Transposition of structural genes to an expression sequence on a linear plasmid causes antigenic variation in the bacterium Borrelia hermsii. Nature 318:257–263

    Google Scholar 

  • Piesman J, Mather TN, Sinsky RJ, Spielman A (1987) Duration of tick attachment and Borrelia burgdorferi transmission. J Clin Microbiol 25:557–558

    Google Scholar 

  • Piesman J, Schneider BS, Zeidner NS (2001) Use of quantitative PCR to measure density of Borrelia burgdorferi in the midgut and salivary glands of feeding tick vectors. J Clin Microbiol 39(11):4145–4148

    Google Scholar 

  • Piesman J, Schwan TG (2010) Ecology of Borreliae and Their Arthropod Vectors. Caister Academic Press, Norfolk, UK

    Google Scholar 

  • Pospelova-Shtrom MV (1962) Ornithodoros ticks and their epidemiological significance. Joint Publications Research Service, DC, Washington

    Google Scholar 

  • Porcella SF, Raffel SJ, Schrumpf ME, Schriefer ME, Dennis DT, Schwan TG (2000) Serodiagnosis of louse-borne relapsing fever with glycerophosphodiester phosphodiesterase (GlpQ) from Borrelia recurrentis. J Clin Microbiol 38:3561–3571

    PubMed  CAS  Google Scholar 

  • Ramos JM, Malmierca E, Reyes F, Tesfamariam A (2008) Results of a 10-year survey of louse-borne relapsing fever in southern Ethiopia: a decline in endemicity. Ann Trop Med Parasitol 102(5):467–469

    Article  PubMed  CAS  Google Scholar 

  • Raoult D, Roux V (1999) The Body Louse as a Vector of Reemerging Human Diseases. Clin Infect Dis 29(4):888–911

    Article  PubMed  CAS  Google Scholar 

  • Rawlings JA (1995) An overview of tick-borne relapsing fever with emphasis on outbreaks in Texas. Tex Med 91:56–59

    Google Scholar 

  • Restrepo BI, Kitten T, Carter CJ, Infante D, Barbour AG (1992) Subtelomeric expression regions of Borrelia hermsii linear plasmids are highly polymorphic. Mol Microbiol 6:3299–3311

    Article  PubMed  CAS  Google Scholar 

  • Restrepo BI, Carter CJ, Barbour AG (1994) Activation of a vmp pseudogene in Borrelia hermsii: an alternate mechanism of antigenic variation during relapsing fever. Mol Microbiol 13:287–299

    Article  PubMed  CAS  Google Scholar 

  • Restrepo BI, Barbour AG (1994) Antigen diversity in the bacterium B. hermsii through “somatic” mutations in rearranged vmp genes. Cell 78:867–876

    Article  PubMed  CAS  Google Scholar 

  • Ruddy S, Austen KF (1969) C3 inactivator of man. I. Hemolytic measurement by the inactivation of cell-bound C3. J Immunol 102(3):533–543

    Google Scholar 

  • Ruddy S, Austen KF (1971) C3b inactivator of man. II. Fragments produced by C3b inactivator cleavage of cell-bound or fluid phase C3b. J Immunol 107(3):742–750

    PubMed  CAS  Google Scholar 

  • Sarih M, Garnier M, Boudebouch N, Bouattour A, Rihani A, Hassar M, Gern L, Postic D, Cornet M (2009) Borrelia hispanica relapsing fever, Morocco. Emerg Infect Dis 15(10):1626–1629

    Article  PubMed  CAS  Google Scholar 

  • Schwan TG, Policastro PF, Miller Z, Thompson RL, Damrow T, Keirans JE (2003) Tick-borne relapsing fever caused by Borrelia hermsii, Montana. Emerg Infect Dis 9:1151–1154

    Article  PubMed  Google Scholar 

  • Schwan TG, Raffel SJ, Schrumpf ME, Porcella SF (2007) Diversity and distribution of Borrelia hermsii. Emerg Infect Dis 13:436–442

    Article  PubMed  CAS  Google Scholar 

  • Schwan TG, Gage KL, Hinnebusch BJ (1995) Analysis of relapsing fever spirochetes from the western United States. J Spirochetal Tick-Borne Dis 2:3–8

    Google Scholar 

  • Schwan TG, Schrumpf ME, Hinnebusch BJ, Anderson DE, Konkel ME (1996) GlpQ: an antigen for serological discrimination between relapsing fever and Lyme borreliosis. J Clin Microbiol 34:2483–2492

    PubMed  CAS  Google Scholar 

  • Schwan TG (1996) Ticks and Borrelia: model systems for investigating pathogen-arthropod interactions. Infect Agents Dis 5(3):167–181

    PubMed  CAS  Google Scholar 

  • Schwan TG, Hinnebusch BJ (1998) Bloodstream- versus tick-associated variants of a relapsing fever bacterium. Science 280:1938–1940

    Article  PubMed  CAS  Google Scholar 

  • Schwan TG, Raffel SJ, Schrumpf ME, Policastro PF, Rawlings JA, Lane RS, Breitschwerdt EB, Porcella SF (2005) Phylogenetic analysis of the spirochetes Borrelia parkeri and Borrelia turicatae and the potential for tick-borne relapsing fever in Florida. J Clin Microbiol 43: 3851–3859

    Article  PubMed  CAS  Google Scholar 

  • Schwan TG, Raffel SJ, Schrumpf ME, Webster LS, Marques AR, Spano R, Rood M, Burns J, Hu R (2009) Tick-borne relapsing fever and Borrelia hermsii, Los Angeles County, California, USA. Emerg Infect Dis 15(7):1026–1031

    Article  PubMed  Google Scholar 

  • Shamaei-Tousi A, Martin P, Bergh A, Burman N, Brannstrom T, Bergstrom S (1999) Erythrocyte-aggregating relapsing fever spirochete Borrelia crocidurae induces formation of microemboli. J Infect Dis 180(6):1929–1938

    Article  PubMed  CAS  Google Scholar 

  • Shamaei-Tousi A, Collin O, Bergh A, Bergstrom S (2001) Testicular damage by microcirculatory disruption and colonization of an immune-privileged site during Borrelia crocidurae infection. J Exp Med 193(9):995–1004

    Article  PubMed  CAS  Google Scholar 

  • Stoenner HG, Dodd T, Larsen C (1982) Antigenic variation of Borrelia hermsii. J Exp Med 156:1297–1311

    Article  PubMed  CAS  Google Scholar 

  • Sidi G, Davidovitch N, Balicer RD, Anis E, Grotto I, Schwartz E (2005) Tickborne relapsing fever in Israel. Emerg Infect Dis 11(11):1784–1786

    Google Scholar 

  • Sundnes KO, Haimanot AT (1993) Epidemic of louse-borne relapsing fever in Ethiopia. Lancet 342(8881):1213–1215

    Article  PubMed  CAS  Google Scholar 

  • Tabuchi N, Mitani H, Seino S, Fukunaga M (2002) The 44-kb linear plasmid molecule in the relapsing fever agent Borrelia duttonii strain Ly serve as a preservation of vmp genes. Microbiol Immunol 46(3):159–165

    Google Scholar 

  • Talbert A, Nyange A, Molteni F (1998) Spraying tick-infested houses with lambda-cyhalothrin reduces the incidence of tick-borne relapsing fever in children under five years old. Trans R Soc Trop Med Hyg 92(3):251–253

    Article  PubMed  CAS  Google Scholar 

  • Trape JF, Duplantier JM, Bouganali H, Godeluck B, Legros F, Cornet JP, Camicas JL (1991) Tick-borne borreliosis in west Africa. Lancet 337(8739):473–475

    Article  PubMed  CAS  Google Scholar 

  • Trape JF, Godeluck B, Diatta G, Rogier C, Legros F, Albergel J, Pepin Y, Duplantier JM (1996a) The spread of tick-borne borreliosis in West Africa and its relationship to sub-Saharan drought. Am J Trop Med Hyg 54(3):289–293

    PubMed  CAS  Google Scholar 

  • Trape JF, Godeluck B, Diatta G, Rogier C, Legros F, Albergel J, Pepin Y, Duplantier JM (1996b) Tick-borne borreliosis in west Africa: recent epidemiological studies. Rocz Akad Med Bialymst 41(1):136–141

    PubMed  CAS  Google Scholar 

  • van Dam AP, van Gool T, Wetsteyn JCFM, Dankert J (1999) Tick-borne relapsing fever imported from West Africa: diagnosis by quantitative buffy coat analysis and in vitro culture of Borrelia crocidurae. J Clin Microbiol 37:2027–2030

    PubMed  Google Scholar 

  • Varma MGR (1962) Transmission of relapsing fever spirochetes by ticks. In: Symposia of the Zoological Society of London: 1962; Regent’s Park, London: The Zoological Society of London, 61–82

    Google Scholar 

  • Vaughan AT, Roghanian A, Cragg MS (2011) B cells—Masters of the immunoverse. Int J Biochem 43(3):280–285

    Article  CAS  Google Scholar 

  • Vial L, Diatta G, Tall A, Ba el H, Bouganali H, Durand P, Sokhna C, Rogier C, Renaud F, Trape JF (2006) Incidence of tick-borne relapsing fever in west Africa: longitudinal study. Lancet 368(9529):37–43

    Article  PubMed  Google Scholar 

  • Vidal V, Scragg IG, Cutler SJ, Rockett KA, Fekade D, Warrell DA, Wright DJ, Kwiatkowski D (1998) Variable major lipoprotein is a principal TNF-inducing factor of louse-borne relapsing fever. Nat Med 4(12):1416–1420

    Article  PubMed  CAS  Google Scholar 

  • Walker RL, Read DH, Hayes DC, Nordhausen RW (2002) Equine abortion associated with the Borrelia parkeri-B. turicatae tick-borne relapsing fever spirochete group. J Clin Microbiol 40:1558–1562

    Google Scholar 

  • Wang G, Ojaimi C, Wu H, Saksenberg V, Iyer R, Liveris D, McClain SA, Wormser GP, Schwartz I (2002) Disease severity in a murine model of lyme borreliosis is associated with the genotype of the infecting Borrelia burgdorferi sensu stricto strain. J Infect Dis 186(6):782–791

    Article  PubMed  CAS  Google Scholar 

  • Whitney MS, Schwan TG, Sultemeier KB, McDonald PS, Brillhart MN (2007) Spirochetemia caused by Borrelia turicatae infection in 3 dogs in Texas. Vet Clin Pathol 36(2):212–216

    Article  PubMed  Google Scholar 

  • Yang L, Weis JH, Eichwald E, Kolbert CP, Persing DH, Weis JJ (1994) Heritable susceptibility to severe Borrelia burgdorferi-induced arthritis is dominant and is associated with persistence of large numbers of spirochetes in tissues. Infect Immun 62(2):492–500

    PubMed  CAS  Google Scholar 

  • Zingg BC, Brown RN, Lane RS, LeFebvre RB (1993) Genetic diversity among Borrelia burgdorferi isolates from wood rats and kangaroo rats in California. J Clin Microbiol 31(12):3109–3114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Embers, M.E., Lopez, J.E. (2012). Immune Resistance by Relapsing Fever Spirochetes. In: Embers, M. (eds) The Pathogenic Spirochetes: strategies for evasion of host immunity and persistence. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5404-5_9

Download citation

Publish with us

Policies and ethics