Skip to main content

A Survey on Blaschke-Oscillatory Differential Equations, with Updates

  • Chapter
Blaschke Products and Their Applications

Part of the book series: Fields Institute Communications ((FIC,volume 65))

Abstract

In the celebrated 1949 paper due to Nehari, necessary and sufficient conditions are given for a locally univalent meromorphic function to be univalent in the unit disc \(\mathbb{D}\). The proof involves a second order differential equation of the form

$$ f''+A(z)f=0, $$
(†)

where A(z) is analytic in \(\mathbb{D}\). As an immediate consequence of the proof, it follows that if |A(z)|≤1/(1−|z|2)2 for every \(z\in\mathbb{D}\), then any non-trivial solution of () has at most one zero in \(\mathbb{D}\).

Since 1949 a number of papers provide with different types of growth conditions on the coefficient A(z) such that the solutions of () have at most finitely many zeros in \(\mathbb{D}\). If there exists at least one solution with infinitely many zeros in \(\mathbb{D}\), then () is oscillatory. If the zeros still satisfy the classical Blaschke condition, then () is called Blaschke-oscillatory. This concept was introduced by the author in 2005, but the topic was considered by Hartman and Wintner already in 1955 (Trans. Am. Math. Soc. 78:492–500). This semi-survey paper provides with a collection of results and tools dealing with Blaschke-oscillatory equations.

As for results, necessary and sufficient conditions are given, and notable effort has been put in dealing with prescribed zero sequences satisfying the Blaschke condition. The concept of Blaschke-oscillation also extends to differential equations of arbitrary order. Many of the results given in this paper have been published earlier in a weaker form. All questions regarding the zeros of solutions can be rephrased for the critical points of solutions. This gives rise to a new concept called Blaschke-critical equations. To intrigue the reader, several open problems are pointed out in the text.

Some classical tools and closely related topics that are often related to the finite oscillation case include the Schwarzian derivative, properties of univalent functions, Green’s identity, conformal mappings, and a certain Hardy-Littlewood inequality. The Blaschke-oscillatory case also makes use of interpolation theory, various growth estimates for logarithmic derivatives of Blaschke products, Bank-Laine functions and recently updated Wiman-Valiron theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This part of the proof can be done without appealing to the second fundamental theorem, see Sect. 4.2

  2. 2.

    Since W′(f,g)(z)≡0 by (1), we have W(f,g)(z)≡c. If c=0, then f′/f=g′/g, and hence f and g are linearly dependent.

References

  1. Aulaskari, R., Nowak, M., Zhao, R.: The nth derivative characterisation of Möbius invariant Dirichlet space. Bull. Aust. Math. Soc. 58(1), 43–56 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aulaskari, R., Xiao, J., Zhao, R.: On subspaces and subsets of BMOA and UBC. Analysis 15(2), 101–121 (1995)

    MathSciNet  MATH  Google Scholar 

  3. Bank, S.: A general theorem concerning the growth of solutions of first-order algebraic differential equations. Compos. Math. 25, 61–70 (1972)

    MathSciNet  MATH  Google Scholar 

  4. Bank, S., Laine, I.: On the oscillation theory of f″+Af=0 where A is entire. Trans. Am. Math. Soc. 273(1), 351–363 (1982)

    MathSciNet  MATH  Google Scholar 

  5. Buckley, S., Koskela, P., Vukotic, D.: Fractional integration, differentiation, and weighted Bergman spaces. Math. Proc. Camb. Philos. Soc. 126(2), 369–385 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carmona, J., Cufi, J., Pommerenke, Ch.: On the angular limits of Bloch functions. Publ. Mat. 32(2), 191–198 (1988)

    MathSciNet  MATH  Google Scholar 

  7. Chuaqui, M., Duren, P., Osgood, B.: Schwarzian derivatives of convex mappings. Ann. Acad. Sci. Fenn. Math. 36, 449–460 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chuaqui, M., Duren, P., Osgood, B., Stowe, D.: Oscillation of solutions of linear differential equations. Bull. Aust. Math. Soc. 79(1), 161–169 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chuaqui, M., Stowe, D.: Valence and oscillation of functions in the unit disk. Ann. Acad. Sci. Fenn. Math. 33(2), 561–584 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Chyzhykov, I., Gundersen, G.G., Heittokangas, J.: Linear differential equations and logarithmic derivative estimates. Proc. Lond. Math. Soc. 86(3), 735–754 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chyzhykov, I., Heittokangas, J., Rättyä, J.: Finiteness of φ-order of solutions of linear differential equations in the unit disc. J. Anal. Math. 109(1), 163–198 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cima, J., Colwell, P.: Blaschke quotients and normality. Proc. Am. Math. Soc. 19, 796–798 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cima, J., Pfaltzgraff, J.: Oscillatory behavior of u″(z)+h(z)u(z)=0 for univalent h(z). J. Anal. Math. 25, 311–322 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  14. Clunie, J.: The derivative of a meromorphic function. Proc. Am. Math. Soc. 7, 227–229 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  15. Duren, P.: Theory of H p Spaces. Academic Press, New York (1970)

    MATH  Google Scholar 

  16. Duren, P., Romberg, B., Shields, A.: Linear functionals on H p spaces with 0<p<1. J. Reine Angew. Math. 238, 32–60 (1969)

    MathSciNet  MATH  Google Scholar 

  17. Duren, P., Schuster, A.: Bergman Spaces. Mathematical Surveys and Monographs, vol. 100. Am. Math. Soc., Providence (2004)

    MATH  Google Scholar 

  18. Essén, M., Xiao, J.: Some results on Q p spaces, 0<p<1. J. Reine Angew. Math. 485, 173–195 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Fenton, P., Rossi, J.: ODEs and Wiman-Valiron theory in the unit disc. J. Math. Anal. Appl. 367(1), 137–145 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fricain, E., Mashreghi, J.: Exceptional sets for the derivatives of Blaschke products. In: Proceedings of the St. Petersburg Mathematical Society. Vol. XIII. Amer. Math. Soc. Transl. Ser. 2, vol. 222, pp. 163–170. Am. Math. Soc., Providence (2008)

    Google Scholar 

  21. Fricain, E., Mashreghi, J.: Integral means of the derivatives of Blaschke products. Glasg. Math. J. 50(2), 233–249 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Girela, D., Peláez, J., Pérez-González, F., Rättyä, J.: Carleson measures for the Bloch space. Integral Equ. Oper. Theory 61(4), 511–547 (2008)

    Article  MATH  Google Scholar 

  23. Girela, D., Peláez, J., Vukotic’, D.: Integrability of the derivative of a Blaschke product. Proc. Edinb. Math. Soc. (2) 50(3), 673–687 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Girela, D., Peláez, J., Vukotic’, D.: Uniformly discrete sequences in regions with tangential approach to the unit circle. Complex Var. Elliptic Equ. 52(2–3), 161–173 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Gnuschke-Hauschild, D., Pommerenke, Ch.: On Bloch functions and gap series. J. Reine Angew. Math. 367, 172–186 (1986)

    MathSciNet  MATH  Google Scholar 

  26. Gotoh, Y.: On integral means of the derivatives of Blaschke products. Kodai Math. J. 30(1), 147–155 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gröhn, J., Heittokangas, J.: New findings on Bank-Sauer approach in oscillation theory. Constr. Approx. 35, 345–361 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hartman, P., Wintner, A.: On linear second order differential equations in the unit circle. Trans. Am. Math. Soc. 78, 492–500 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hayman, W.K.: Meromorphic Functions. Oxford Mathematical Monographs. Clarendon Press, Oxford (1964)

    MATH  Google Scholar 

  30. Hayman, W.K.: On the characteristic of functions meromorphic in the unit disk and of their integrals. Acta Math. 112, 181–214 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hayman, W.K.: Multivalent Functions, 2nd edn. Cambridge Tracts in Mathematics, vol. 110. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  32. Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Graduate Texts in Mathematics, vol. 199. Springer, New York (2000)

    Book  MATH  Google Scholar 

  33. Heittokangas, J.: On complex differential equations in the unit disc. Ann. Acad. Sci. Fenn. Math. Diss. 122, 1–54 (2000)

    MathSciNet  Google Scholar 

  34. Heittokangas, J.: Solutions of f″+A(z)f=0 in the unit disc having Blaschke sequences as the zeros. Comput. Methods Funct. Theory 5(1), 49–63 (2005)

    MathSciNet  MATH  Google Scholar 

  35. Heittokangas, J.: Blaschke-oscillatory equations of the form f″+A(z)f=0. J. Math. Anal. Appl. 318(1), 120–133 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Heittokangas, J.: Growth estimates for logarithmic derivatives of Blaschke products and of functions in the Nevanlinna class. Kodai Math. J. 30, 263–279 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Heittokangas, J.: On interpolating Blaschke products and Blaschke-oscillatory equations. Constr. Approx. 34(1), 1–21 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Heittokangas, J., Korhonen, R., Rättyä, J.: Growth estimates for solutions of linear complex differential equations. Ann. Acad. Sci. Fenn. 29(1), 233–246 (2004)

    MathSciNet  MATH  Google Scholar 

  39. Heittokangas, J., Korhonen, R., Rättyä, J.: Linear differential equations with solutions in the Dirichlet type subspace of the Hardy space. Nagoya Math. J. 187, 91–113 (2007)

    MathSciNet  MATH  Google Scholar 

  40. Heittokangas, J., Korhonen, R., Rättyä, J.: Linear differential equations with coefficients in weighted Bergman and Hardy spaces. Trans. Am. Math. Soc. 360(2), 1035–1055 (2008)

    Article  MATH  Google Scholar 

  41. Heittokangas, J., Korhonen, R., Rättyä, J.: Growth estimates for solutions of nonhomogeneous linear differential equations. Ann. Acad. Sci. Fenn. 34(1), 145–156 (2009)

    MathSciNet  MATH  Google Scholar 

  42. Heittokangas, J., Laine, I.: Solutions of f″+A(z)f=0 with prescribed sequences of zeros. Acta Math. Univ. Comen. 124(2), 287–307 (2005)

    MathSciNet  Google Scholar 

  43. Heittokangas, J., Rättyä, J.: Zero distribution of solutions of complex linear differential equations determines growth of coefficients. Math. Nachr. 284(4), 412–420 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Heittokangas, J., Tohge, K.: A unit disc analogue of the Bank-Laine conjecture does not hold. Ann. Acad. Sci. Fenn. 36(1), 341–351 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Herold, H.: Nichteuklidischer Nullstellenabstand der Lösungen von w″+p(z)w=0. Math. Ann. 287, 637–642 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  46. Hille, E.: Remarks on a paper by Zeev Nehari. Bull. Am. Math. Soc. 55, 552–553 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  47. Horowitz, C.: Factorization theorems for functions in the Bergman spaces. Duke Math. J. 44(1), 201–213 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ince, E.: Ordinary Differential Equations. Dover, New York (1956)

    Google Scholar 

  49. Juneja, O., Kapoor, G.: Analytic Functions—Growth Aspects. Research Notes in Mathematics, vol. 104. Pitman Adv. Publ. Prog., Boston (1985)

    MATH  Google Scholar 

  50. Kim, H.: Derivatives of Blaschke products. Pac. J. Math. 114(1), 175–190 (1984)

    MATH  Google Scholar 

  51. Kim, W.: The Schwarzian derivative and multivalence. Pac. J. Math. 31, 717–724 (1969)

    MATH  Google Scholar 

  52. Korenblum, B.: An extension of the Nevanlinna theory. Acta Math. 135(3–4), 187–219 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  53. Korhonen, R., Rättyä, J.: Finite order solutions of linear differential equations in the unit disc. J. Math. Anal. Appl. 349(1), 43–54 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  54. Laine, I.: Nevanlinna Theory and Complex Differential Equations. de Gruyter, Berlin (1993)

    Book  Google Scholar 

  55. Laine, I.: Complex differential equations. In: Handbook of Differential Equations: Ordinary Differential Equations. Vol. IV. Handb. Differ. Equ., pp. 269–363. Elsevier/North-Holland, Amsterdam (2008) (English summary)

    Google Scholar 

  56. Linden, C.: H p-derivatives of Blaschke products. Mich. Math. J. 23, 43–51 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  57. London, D.: On the zeros of solutions of w″(z)+p(z)w(z)=0. Pac. J. Math. 12, 979–991 (1962)

    MathSciNet  MATH  Google Scholar 

  58. Mashreghi, J., Shabankhah, M.: Integral means of the logarithmic derivative of Blaschke products. Comput. Methods Funct. Theory 9(2), 421–433 (2009)

    MathSciNet  MATH  Google Scholar 

  59. Nehari, Z.: The Schwarzian derivative and Schlicht functions. Bull. Am. Math. Soc. 55, 545–551 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  60. Nehari, Z.: Conformal Mapping. Dover, New York (1975). Reprinting of the 1952 edn.

    Google Scholar 

  61. Nevanlinna, R.: Analytic Functions. Die Grundlehren der mathematischen Wissenschaften, vol. 162. Springer, New York (1970). Translated from the second German edn. by Phillip Emig

    MATH  Google Scholar 

  62. Nolder, C.: An L p definition of interpolating Blaschke products. Proc. Am. Math. Soc. 128(6), 1799–1806 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  63. Pascuas, D.: A note on interpolation by Bloch functions. Proc. Am. Math. Soc. 135(7), 2127–2130 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  64. Peláez, J.: Sharp results on the integrability of the derivative of an interpolating Blaschke product. Forum Math. 20(6), 1039–1054 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  65. Peláez, J., Rättyä, J.: Weighted Bergman spaces induced by rapidly increasing weights. Mem. Am. Math. Soc. (to appear)

    Google Scholar 

  66. Pommerenke, Ch.: Univalent Functions. Studia Mathematica/Mathematische Lehrbücher, vol. XXV. Vandenhoeck & Ruprecht, Göttingen (1975). With a chapter on quadratic differentials by Gerd Jensen

    MATH  Google Scholar 

  67. Pommerenke, Ch.: On the mean growth of the solutions of complex linear differential equations in the disk. Complex Var. Theory Appl. 1(1), 23–38 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  68. Protas, D.: Blaschke products with derivative in H p and B p. Mich. Math. J. 20, 393–396 (1973)

    MathSciNet  MATH  Google Scholar 

  69. Rättyä, J.: Linear differential equations with solutions in Hardy spaces. Complex Var. Elliptic Equ. 52(9), 785–795 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  70. Schwarz, B.: Complex nonoscillation theorems and criteria of univalence. Trans. Am. Math. Soc. 80, 159–186 (1955)

    Article  MATH  Google Scholar 

  71. Šeda, V.: A note to a paper by Clunie. Acta Fac. Nat. Univ. Comen. 4, 255–260 (1959)

    MATH  Google Scholar 

  72. Šeda, V.: On some properties of solutions of the differential equation y″=Q(z)y, where Q(z)≠0 is an entire function. Acta Fac. Nat. Univ. Comen. Math. 4, 223–253 (1959) (Slovak)

    MATH  Google Scholar 

  73. Shea, D., Sons, L.: Value distribution theory for meromorphic functions of slow growth in the disk. Houst. J. Math. 12(2), 249–266 (1986)

    MathSciNet  MATH  Google Scholar 

  74. Tse, K.-F.: Nontangential interpolating sequences and interpolation by normal functions. Proc. Am. Math. Soc. 29, 351–354 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  75. Tsuji, M.: Potential Theory in Modern Function Theory. Chelsea, New York (1975). Reprinting of the 1959 edn.

    MATH  Google Scholar 

  76. Yamashita, S.: Gap series and α-Bloch functions. Yokohama Math. J. 28, 31–36 (1980)

    MathSciNet  MATH  Google Scholar 

  77. Zabulionis, A.: Separation of points of the unit disc. Lith. Math. J. 23(3), 271–274 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janne Heittokangas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Heittokangas, J. (2013). A Survey on Blaschke-Oscillatory Differential Equations, with Updates. In: Mashreghi, J., Fricain, E. (eds) Blaschke Products and Their Applications. Fields Institute Communications, vol 65. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5341-3_3

Download citation

Publish with us

Policies and ethics