Skip to main content

Fourier Transform Light Scattering of Tissues

  • Reference work entry
  • First Online:
Handbook of Coherent-Domain Optical Methods

Abstract

We review the basic principles of light-tissue interaction and common methods of investigation. The mathematical framework for describing weakly scattering regime (the Born approximation) as well as the strong scattering regime (the diffusion equation) are described. Traditional techniques based on polarization, time-resolved, single and multiple scattering are reviewed. We then introduce Fourier transform light scattering (FTLS), which is a recent development from our own laboratory. FTLS is the spatial analogue of Fourier transform spectroscopy, in the sense that it provides angular scattering (spatial frequency) data from phase and amplitude measurements in the spatial (image) domain. We show that FTLS can be used as a diagnostic tool by translating the quantitative phase information into data of clinical relevance. Further, FTLS allows us to extract scattering parameters of the tissue from imaging unlabeled, thin tissue slices, using a relationship which we call the scattering-phase theorem. Using these measurements, FTLS can predict the outcome of many other experiments, including time resolved and enhanced backscattering experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE Press, Bellingham, 2007)

    Google Scholar 

  2. A. Wax, V. Backman (eds.), Biomedical Applications of Light Scattering (McGraw-Hill, New York, 2010)

    Google Scholar 

  3. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  4. H.C. van de Hulst, Light Scattering by Small Particles (Dover Publications, New York, 1981)

    Google Scholar 

  5. A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice Hall, Englewood Cliffs, 1991)

    Google Scholar 

  6. B.J. Berne, R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology and Physics (Wiley, New York, 1976)

    Google Scholar 

  7. Milestones in light microscopy. Nat. Cell Biol. 11, 1165 (2009)

    Google Scholar 

  8. B. Alberts, Essential Cell Biology: An Introduction to the Molecular Biology of the Cell (Garland, New York, 2004)

    Google Scholar 

  9. S.J. Singer, G.L. Nicolson, Fluid mosaic model of structure of cell-membranes. Science 175, 720 (1972)

    Article  ADS  Google Scholar 

  10. A. Dunn, R. Richards-Kortum, Three-dimensional computation of light scattering from cells. IEEE J. Sel. Topics Quant. Electron. 2, 898–905 (1996)

    Article  Google Scholar 

  11. J.R. Mourant, J.P. Freyer, A.H. Hielscher, A.A. Eick, D. Shen, T.M. Johnson, Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics. Appl. Opt. 37, 3586–3593 (1998)

    Article  ADS  Google Scholar 

  12. G.M. Hale, M.R. Querry, Optical-constants of water in 200-nm to 200-μm wavelength region. Appl. Opt. 12, 555–563 (1973)

    Article  ADS  Google Scholar 

  13. S. Takatani, M.D. Graham, Theoretical-analysis of diffuse reflectance from a 2-layer tissue model. IEEE Trans. Biomed. Eng. 26, 656–664 (1979)

    Article  Google Scholar 

  14. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge/New York, 1999)

    Google Scholar 

  15. R.N. Bracewell, The Fourier Transform and Its Applications (McGraw Hill, Boston, 2000)

    Google Scholar 

  16. E. Wolf, in Advances in Imaging and Electron Physics, ed. by P.W.E. Hawkes (Academic, San Diego, 2011)

    Google Scholar 

  17. S.G. Demos, R.R. Alfano, Temporal gating in highly scattering media by the degree of optical polarization. Opt. Lett. 21, 161–163 (1996)

    Article  ADS  Google Scholar 

  18. S.G. Demos, H. Savage, A.S. Heerdt, S. Schantz, R.R. Alfano, Time resolved degree of polarization for human breast tissue. Opt. Commun. 124, 439–442 (1996)

    Article  ADS  Google Scholar 

  19. K.M. Yoo, R.R. Alfano, Time resolved depolarization of multiple backscattered light from random-media. Phys. Lett. A 142, 531–536 (1989)

    Article  ADS  Google Scholar 

  20. R.R. Anderson, Polarized-light examination and photography of the skin. Arch. Dermatol. 127, 1000–1005 (1991)

    Article  Google Scholar 

  21. S.G. Demos, R.R. Alfano, Optical polarization imaging. Appl. Opt. 36, 150–155 (1997)

    Article  ADS  Google Scholar 

  22. V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R.R. Dasari, L.T. Perelman, M.S. Feld, Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ. IEEE J. Sel. Topics Quant. Electron. 5, 1019–1026 (1999)

    Article  Google Scholar 

  23. I. Georgakoudi, B.C. Jacobson, J. Van Dam, V. Backman, M.B. Wallace, M.G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G.A. Thomas, L.T. Perelman, M.S. Feld, Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus. Gastroenterology 120, 1620–1629 (2001)

    Article  Google Scholar 

  24. R.S. Gurjar, V. Backman, L.T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R.R. Dasari, M.S. Feld, Imaging human epithelial properties with polarized light-scattering spectroscopy. Nat. Med. 7, 1245–1248 (2001)

    Article  Google Scholar 

  25. M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C.W. Boone, A. Wax, G. Venkatesh, K. Badizadegan, G.D. Stoner, M.S. Feld, Tissue self-affinity and light scattering in the born approximation: a new model for precancer diagnosis. Phys. Rev. Lett. 97, 138102 (2006)

    Article  ADS  Google Scholar 

  26. A. Amelink, M.P.L. Bard, S.A. Burgers, H.J.C.M. Sterenborg, Single-scattering spectroscopy for the endoscopic analysis of particle size in superficial layers of turbid media. Appl. Opt. 42, 4095–4101 (2003)

    Article  ADS  Google Scholar 

  27. A. Wax, C.H. Yang, J.A. Izatt, Fourier-domain low-coherence interferometry for light-scattering spectroscopy. Opt. Lett. 28, 1230–1232 (2003)

    Article  ADS  Google Scholar 

  28. T.H. Foster, J.D. Wilson, Characterization of lysosomal contribution to whole-cell light scattering by organelle ablation. J. Biomed. Opt. 12, 030503 (2007)

    Article  Google Scholar 

  29. J.R. Mourant, J.P. Freyer, A.H. Hielscher, A.A. Eick, D. Shen, T.M. Johnson, Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics. Appl. Opt. 37, 3586–3593 (1998)

    Article  ADS  Google Scholar 

  30. V. Backman, M.B. Wallace, L.T. Perelman, J.T. Arendt, R. Gurjar, M.G. Muller, Q. Zhang, G. Zonios, E. Kline, J.A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J.M. Crawford, M. Fitzmaurice, S. Kabani, H.S. Levin, M. Seiler, R.R. Dasari, I. Itzkan, J. Van Dam, M.S. Feld, Detection of preinvasive cancer cells. Nature 406, 35–36 (2000)

    Article  ADS  Google Scholar 

  31. L.T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J.M. Crawford, M.S. Feld, Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution. Phys. Rev. Lett. 80, 627–630 (1998)

    Article  ADS  Google Scholar 

  32. C. Lau, O. Scepanovic, J. Mirkovic, S. McGee, C.-C. Yu, J. Stephen Fulghum, M. Wallace, J. Tunnell, K. Bechtel, M. Feld, Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy. J. Biomed. Opt. 14, 024031 (2009)

    Article  ADS  Google Scholar 

  33. P.-E. Wolf, G. Maret, Weak localization and coherent backscattering of photons in disordered media. Phys. Rev. Lett. 55, 2696 (1985)

    Article  ADS  Google Scholar 

  34. E. Akkermans, P.E. Wolf, R. Maynard, Coherent backscattering of light by disordered media – analysis of the peak line-shape. Phys. Rev. Lett. 56, 1471–1474 (1986)

    Article  ADS  Google Scholar 

  35. F.C. Mackintosh, S. John, Coherent backscattering of light in the presence of time-reversal-noninvariant and parity-nonconserving media. Phys. Rev. B 37, 1884–1897 (1988)

    Article  ADS  Google Scholar 

  36. Y.L. Kim, Y. Liu, R.K. Wali, H.K. Roy, V. Backman, Low-coherent backscattering spectroscopy for tissue characterization. Appl. Opt. 44, 366–377 (2005)

    Article  ADS  Google Scholar 

  37. F. Bevilacqua, C. Depeursinge, Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path. J. Opt. Soc. Am. 16, 2935–2945 (1999)

    Article  ADS  Google Scholar 

  38. G. Zonios, L.T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, M.S. Feld, Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo. Appl. Opt. 38, 6628–6637 (1999)

    Article  ADS  Google Scholar 

  39. N. Subhash, J.R. Mallia, S.S. Thomas, A. Mathews, P. Sebastian, Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands. J. Biomed. Opt. 11, 014018 (2006)

    Article  ADS  Google Scholar 

  40. C.F. Zhu, G.M. Palmer, T.M. Breslin, J. Harter, N. Ramanujam, Diagnosis of breast cancer using diffuse reflectance spectroscopy: comparison of a Monte Carlo versus partial least squares analysis based feature extraction technique. Lasers Surg. Med. 38, 714–724 (2006)

    Article  Google Scholar 

  41. Z. Volynskaya, A.S. Haka, K.L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R.R. Dasari, M.S. Feld, Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy. J. Biomed. Opt. 13, 024012 (2008)

    Article  ADS  Google Scholar 

  42. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography. Science 254, 1178–1181 (1991)

    Article  ADS  Google Scholar 

  43. G. Popescu, A. Dogariu, Optical path-length spectroscopy of wave propagation in random media. Opt. Lett. 24, 442–444 (1999)

    Article  ADS  Google Scholar 

  44. M.S. Patterson, B. Chance, B.C. Wilson, Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical-properties. Appl. Opt. 28, 2331–2336 (1989)

    Article  ADS  Google Scholar 

  45. N. Lue, J. Bewersdorf, M.D. Lessard, K. Badizadegan, K. Dasari, M.S. Feld, G. Popescu, Tissue refractometry using Hilbert phase microscopy. Opt. Lett. 32, 3522 (2007)

    Article  ADS  Google Scholar 

  46. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, P.J. Magistretti, Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy. Opt. Express 13, 9361–9373 (2005)

    Article  ADS  Google Scholar 

  47. Y.K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M.S. Feld, S. Suresh, Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc. Natl. Acad. Sci. U.S.A. 105, 13730 (2008)

    Article  ADS  Google Scholar 

  48. H. Ding, F. Nguyen, S.A. Boppart, G. Popescu, Optical properties of tissues quantified by Fourier transform light scattering. Opt. Lett. 34, 1372 (2009)

    Article  ADS  Google Scholar 

  49. N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R.R. Dasari, M.S. Feld, Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy. J. Phys. Chem. A 113, 13327–13330 (2009)

    Article  Google Scholar 

  50. H.F. Ding, Z. Wang, F. Nguyen, S.A. Boppart, G. Popescu, Fourier transform light scattering of inhomogeneous and dynamic structures. Phys. Rev. Lett. 101, 238102 (2008)

    Article  ADS  Google Scholar 

  51. G. Popescu, in Methods in Cell Biology, ed. by B.P. Jena (Academic, San Diego, 2008), pp. 87–115

    Google Scholar 

  52. G. Popescu, Quantitative phase imaging of cells and tissues (McGraw-Hill, New York, 2011)

    Google Scholar 

  53. D. Zicha, G.A. Dunn, An image-processing system for cell behavior studies in subconfluent cultures. J. Microsc. 179, 11–21 (1995)

    Article  Google Scholar 

  54. G.A. Dunn, D. Zicha, in Cell Biology: A Laboratory Handbook, ed. by J.E. Celis (Academic, San Diego, 1998)

    Google Scholar 

  55. G.A. Dunn, D. Zicha, P.E. Fraylich, Rapid, microtubule-dependent fluctuations of the cell margin. J. Cell Sci. 110, 3091–3098 (1997)

    Google Scholar 

  56. D. Zicha, E. Genot, G.A. Dunn, I.M. Kramer, TGF beta 1 induces a cell-cycle-dependent increase in motility of epithelial cells. J. Cell Sci. 112, 447–454 (1999)

    Google Scholar 

  57. G.A. Dunn, D. Zicha, Dynamics of fibroblast spreading. J. Cell Sci. 108, 1239–1249 (1995)

    Google Scholar 

  58. T.E. Gureyev, A. Roberts, K.A. Nugent, Phase retrieval with the transport-of-intensity equation – matrix solution with use of Zernike polynomials. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 12, 1932–1941 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  59. T.E. Gureyev, A. Roberts, K.A. Nugent, Partially coherent fields, the transport-of-intensity equation, and phase uniqueness. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 12, 1942–1946 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  60. J.W. Goodman, R.W. Lawrence, Digital image formation from electronically detected holograms. Appl. Phys. Lett. 11, 77 (1967)

    Article  ADS  Google Scholar 

  61. D. Gabor, A new microscopic principle. Nature 161, 777 (1948)

    Article  ADS  Google Scholar 

  62. I. Yamaguchi, T. Zhang, Phase-shifting digital holography. Opt. Lett. 22, 1268–1270 (1997)

    Article  ADS  Google Scholar 

  63. C.J. Mann, L.F. Yu, C.M. Lo, M.K. Kim, High-resolution quantitative phase-contrast microscopy by digital holography. Opt. Express 13, 8693–8698 (2005)

    Article  ADS  Google Scholar 

  64. D. Carl, B. Kemper, G. Wernicke, G. von Bally, Parameter-optimized digital holographic microscope for high-resolution living-cell analysis. Appl. Opt. 43, 6536–6544 (2004)

    Article  ADS  Google Scholar 

  65. P. Marquet, B. Rappaz, P.J. Magistretti, E. Cuche, Y. Emery, T. Colomb, C. Depeursinge, Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett. 30, 468–470 (2005)

    Article  ADS  Google Scholar 

  66. N. Lue, W. Choi, G. Popescu, R.R. Dasari, K. Badizadegan, M.S. Feld, Quantitative phase imaging of live cells using fast Fourier phase microscopy. Appl. Opt. 46, 1836 (2007)

    Article  ADS  Google Scholar 

  67. G. Popescu, L.P. Deflores, J.C. Vaughan, K. Badizadegan, H. Iwai, R.R. Dasari, M.S. Feld, Fourier phase microscopy for investigation of biological structures and dynamics. Opt. Lett. 29, 2503–2505 (2004)

    Article  ADS  Google Scholar 

  68. G. Popescu, T. Ikeda, C.A. Best, K. Badizadegan, R.R. Dasari, M.S. Feld, Erythrocyte structure and dynamics quantified by Hilbert phase microscopy. J. Biomed. Opt. Lett. 10, 060503 (2005)

    Article  ADS  Google Scholar 

  69. T. Ikeda, G. Popescu, R.R. Dasari, M.S. Feld, Hilbert phase microscopy for investigating fast dynamics in transparent systems. Opt. Lett. 30, 1165–1168 (2005)

    Article  ADS  Google Scholar 

  70. Y.K. Park, G. Popescu, K. Badizadegan, R.R. Dasari, M.S. Feld, Diffraction phase and fluorescence microscopy. Opt. Express 14, 8263 (2006)

    Article  ADS  Google Scholar 

  71. G. Popescu, T. Ikeda, R.R. Dasari, M.S. Feld, Diffraction phase microscopy for quantifying cell structure and dynamics. Opt. Lett. 31, 775–777 (2006)

    Article  ADS  Google Scholar 

  72. M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S.G. Prasanth, G. Popescu, Measuring cell cycle-dependent mass growth. Proc. Natl. Acad. Sci. U.S.A. 108, 13124 (2011)

    Article  Google Scholar 

  73. R. Wang, Z. Wang, J. Leigh, N. Sobh, L. Millet, M.U. Gillette, A.J. Levine, G. Popescu, One-dimensional deterministic transport in neurons measured by dispersion-relation phase spectroscopy. J. Phys.: Cond. Matter 23, 374107 (2011)

    Article  Google Scholar 

  74. Z. Wang, L. Millet, V. Chan, H. Ding, M.U. Gillette, R. Bashir, G. Popescu, Label-free intracellular transport measured by spatial light interference microscopy. J. Biomed. Opt. 16, 026019 (2011)

    Article  ADS  Google Scholar 

  75. Z. Wang, L.J. Millet, M. Mir, H. Ding, S. Unarunotai, J.A. Rogers, M.U. Gillette, G. Popescu, Spatial light interference microscopy (SLIM). Opt. Express 19, 1016 (2011)

    Article  Google Scholar 

  76. G. Popescu, T. Ikeda, R.R. Dasari, M.S. Feld, Diffraction phase microscopy for quantifying cell structure and dynamics. Opt. Lett. 31, 775–777 (2006)

    Article  ADS  Google Scholar 

  77. G. Popescu, K. Badizadegan, R.R. Dasari, M.S. Feld, Observation of dynamic subdomains in red blood cells. J. Biomed. Opt. Lett. 11, 040503 (2006)

    Article  ADS  Google Scholar 

  78. G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R.R. Dasari, M.S. Feld, K. Badizadegan, Optical imaging of cell mass and growth dynamics. Am. J. Physiol. Cell Physiol. 295, C538–C544 (2008)

    Article  Google Scholar 

  79. T. Ikeda, G. Popescu, R.R. Dasari, M.S. Feld, Hilbert phase microscopy for investigating fast dynamics in transparent systems. Opt. Lett. 30, 1165–1167 (2005)

    Article  ADS  Google Scholar 

  80. F. Zernike, Phase contrast, a new method for the microscopic observation of transparent objects, Part 1. Physica 9, 686–698 (1942)

    Article  ADS  Google Scholar 

  81. F. Zernike, Phase contrast, a new method for the microscopic observation of transparent objects, Part 2. Physica 9, 974–986 (1942)

    Article  ADS  Google Scholar 

  82. F. Zernike, How I discovered phase contrast. Science 121, 345 (1955)

    Article  ADS  Google Scholar 

  83. G. Popescu, Z. Wang, H.F. Ding, Scattering-phase theorem. Opt. Lett. 36, 1215–1217 (2011)

    Article  ADS  Google Scholar 

  84. R.N. Bracewell, The Fourier Transform and its Applications (McGraw Hill, Boston, 2000)

    Google Scholar 

  85. H.F. Ding, Z. Wang, F.T. Nguyen, S.A. Boppart, L.J. Millet, M.U. Gillette, J.M. Liu, M.D. Boppart, G. Popescu, Fourier transform light scattering (FTLS) of cells and tissues. J. Comput. Theor. Nanosci. 7, 2501–2511 (2010)

    Article  Google Scholar 

  86. H.F. Ding, E. Berl, Z. Wang, L.J. Millet, M.U. Gillette, J.M. Liu, M. Boppart, G. Popescu, Fourier transform light scattering of biological structure and dynamics. IEEE J. Sel. Topics Quant. Electron. 16, 909–918 (2010)

    Article  Google Scholar 

  87. H. Ding, L.J. Millet, M.U. Gillette, G. Popescu, Actin-driven cell dynamics probed by Fourier transform light scattering. Biomed. Opt. Express 1, 260 (2010)

    Article  Google Scholar 

  88. Z. Wang, H. Ding, G. Popescu, Scattering-phase theorem. Opt. Lett. 36, 1215 (2011)

    Article  ADS  Google Scholar 

  89. H. Ding, Z. Wang, X. Liang, S.A. Boppart, G. Popescu, Measuring the scattering parameters of tissues from quantitative phase imaging of thin slices. Opt. Lett. 36, 2281 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Popescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Kim, T., Sridharan, S., Popescu, G. (2013). Fourier Transform Light Scattering of Tissues. In: Tuchin, V. (eds) Handbook of Coherent-Domain Optical Methods. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5176-1_7

Download citation

Publish with us

Policies and ethics