Skip to main content

Solving Spatial Constraints with Generalized Distance Geometry

  • Chapter
  • First Online:
Distance Geometry

Abstract

This is a short survey about how to use a generalization of distance geometry to solve spatial constraints. Described first are definitions and some basic theorems in the generalized distance geometry, and a systematic approach for the solution of spatial constraints follows, making use of results of the previous section. An intrinsic coordinate system based on geometric invariants, named distance coordinate system, is established for simplification and algorithmization to the process of constraint solving. A short program is proposed, which implements the algorithm producing automatically a complete set of constraint equations for a given point-plane configuration, and the point-line-plane configurations are converted into point-plane ones beforehand. The so-called nontypical constraint problem is considered in the last section and illustrated by an example, which the previous method seems unable to help.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blumenthal, L.M.: Theory and Applications of Distance Geometry, 2nd edn. Chelsea, New York (1970)

    Google Scholar 

  2. Bottema, O., Veldkamp, G.R.: On the lines in space with equal distances to n given points. Geometriae Dedicata 6, 121–129 (1977)

    Google Scholar 

  3. Cox, D.A., Little, J.B., O’Shea, D.: Ideals, varieties, and algorithms: An introduction to computational algebraic geometry and commutative algebra. Springer (1997)

    Google Scholar 

  4. Crippen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation. Wiley, New York (1988)

    Google Scholar 

  5. Dong, Q., Wu, Z.: A geometric build-up algorithm for solving the molecular distance geometry problem with sparse distance data. J. Global. Optim. 26, 321–333 (2003)

    Google Scholar 

  6. Gao, X.S., Hoffmann, C.M., Yang, W.Q.: Solving spatial basic geometric constraint configurations with locus intersection. Comput. Aided. Des. 36(2), 111–122 (2004)

    Google Scholar 

  7. Gonzalez, O., Maddocks, J.H., Smutny, J.: Curves, circles, and spheres. Contemp. Math. (AMS) 304, 195–215 (2002)

    Google Scholar 

  8. Gröbner, W.: Matrizenrechnung, Bibliographisches Institut AG, Mannh-eim, F.R.G., 119–126 (1966)

    Google Scholar 

  9. Hodge, W.V., Pedoe, D.: Methods of Algebraic Geometry, vol. 1. Cambridge Univ Press, Cambridge (1953)

    Google Scholar 

  10. Hoffmann, C.M., Yuan, B.: On spatial constraint approaches. In: Richter-Gebert, J., Wang, D. (eds.) Automated Deduction in Geometry 2000, LNAI 2061, Springer, 1–15 (2001)

    Google Scholar 

  11. Jeong, J.W., Kim, S.H., Kwak, Y.K.: Kinematics and workspace analysis of a parallel wire mechanism for measuring a robot pose. Mech. Mach. Theor. 34(6), 825–841 (1999)

    Google Scholar 

  12. Larman, D.: Problem posed in the Problem Session of the DIMACS Workshop on Arrangements. Rutgers University, New Brunswick (1990)

    Google Scholar 

  13. Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular distance geometry methods: from continuous to discrete. Int. Trans. Oper. Res. 18, 33–51 (2011)

    Google Scholar 

  14. Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. arXiv:1205.0349v1 (2012)

    Google Scholar 

  15. Lisoněk, P., Israel, R.B.: Metric invariants of tetrahedra via polynomial elimination. In: ACM Conference Proceedings, 2000 International Symposium on Symbolic and Algebraic Computation (ISSAC 2000), New York, 217–219 (2000)

    Google Scholar 

  16. Macdonald, I.G., Pach, J., Theobald, T.: Common tangents to four unit balls in \(\mathrm{{R}}^{3}\). Discrete Comput. Geom. 26(1), 1–17 (2001)

    Google Scholar 

  17. Mazur, M.: Problem 10717. The Am. Math. Mon. 106(2), 167 (1999)

    Google Scholar 

  18. Michelucci, D., Foufou, S.: Using Cayley-Menger determinants for geometric constraint solving. In: ACM Symposium on Solid Modelling and Applications (2004)

    Google Scholar 

  19. Muir, T.: A treatise on the theory of determinants, revised by W.H. Metzler, Longmans, Green, New York, 166–170 (1933)

    Google Scholar 

  20. Porta, J.M., Ros, L., Thomas, F., Torras, C.: A Branch-and-Prune solver for distance constraints. IEEE Trans. Robot. 21(2), 176–187 (2005)

    Google Scholar 

  21. Sippl, M.J., Scheraga, H.A.: Cayley-Menger coordinates. In: Proceedings of the National Academy of Sciences of the USA, vol. 83, pp. 2283–2287 (1986)

    Google Scholar 

  22. Sottile, F.: An excursion from enumerative geometry to solving systems of polynomial equations with Macaulay 2. In: Eisenbud, D. (eds.) Computations in Algebraic Geometry with Macaulay 2, pp. 101–129, Springer (2001)

    Google Scholar 

  23. Thomas, F., Ottaviano, E., Ros, L., Ceccarelli, M.: Coordinate-free formulation of a 3-2-1 wire-based tracking device using Cayley-Menger determinants. IEEE International Conference on Robotics and Automation (ICRA03), 355–561 (2003)

    Google Scholar 

  24. Yang, L., Zhang, J.Z. : The concept of the rank of an abstract distance space (in Chinese). J. China Univ. Sci. Tech. 10(4), 52–65, MR 84j:52019 (1980)

    Google Scholar 

  25. Yang, L., Zhang, J.Z.: A class of geometric inequalities on finite points (in Chinese). Acta Math. Sin. 23(5), 740–749, MR 83f:51027 (1980)

    Google Scholar 

  26. Yang, L., Zhang, J.Z.: Metric equations in geometry and their applications. Research Report IC/89/281. International Centre for Theoretical Physics, Trieste (1989)

    Google Scholar 

  27. Yang, L.: Distance coordinates used in geometric constraint solving. In: Winkler, F. (ed.) “Automated Deduction in Geometry 2002”, LNAI 2930, Springer, 216–229 (2004)

    Google Scholar 

  28. Yang, L., Zeng, Z.B.: An open problem on metric invariants of tetrahedra. In: ACM Conference Proceedings, ISSAC 2005, New York, 362–364 (2005)

    Google Scholar 

  29. Yang, L.: Solving spatial constraints with global distance coordinate system. Int. J. Comput. Geom. Appl. 16(5–6), 533–548 (2006)

    Google Scholar 

  30. Yang, L., Zeng, Z.B.: Constructing a tetrahedron with prescribed heights and widths. Automated Deduction in Geometry 2006, LNAI 4869, pp. 203–211, Springer (2007)

    Google Scholar 

  31. Zhang, J.Z., Yang, L., Yang, X.C.: The realization of elementary configurations in Euclidean space. Science China A37(1), 15–26 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yang, L. (2013). Solving Spatial Constraints with Generalized Distance Geometry. In: Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds) Distance Geometry. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5128-0_6

Download citation

Publish with us

Policies and ethics