Skip to main content

Laser Speckle Imaging of Cerebral Blood Flow

  • Chapter
  • First Online:
Optical Methods and Instrumentation in Brain Imaging and Therapy

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 3))

Abstract

Laser speckle contrast imaging (LSCI) has emerged as a powerful and widely used tool for real-time imaging of blood flow dynamics in a variety of animal models and recently in the clinical environment. LSCI has been rapidly adopted for studying physiological changes due to its simple instrumentation and its ability to quantify blood flow changes with excellent spatial and temporal resolution. Because measurements are limited to superficial tissues, LSCI is an ideal imaging method for intraoperative applications and can provide surgeons with immediate physiological information without extending the procedure time significantly. This chapter reviews the physics of LSCI and illustrates in vivo applications of imaging blood flow in the brain with an emphasis on clinical translation of the technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barrow DL, Boyer KL, Joseph GJ (1992) Intraoperative angiography in the management of neurovascular disorders. Neurosurgery 30(2):153–159

    Article  Google Scholar 

  2. Vitaz TW, Gaskill-Shipley M, Tomsick T, Tew JM Jr (1999) Utility, safety, and accuracy of intraoperative angiography in the surgical treatment of aneurysms and arteriovenous malformations. AJNR Am J Neuroradiol 20(8):1457–1461

    Google Scholar 

  3. Chiang VL, Gailloud P, Murphy KJ, Rigamonti D, Tamargo RJ (2002) Routine intraoperative angiography during aneurysm surgery. J Neurosurg 96(6):988–992. doi:10.3171/jns.2002.96.6.0988

    Article  Google Scholar 

  4. Tang G, Cawley CM, Dion JE, Barrow DL (2002) Intraoperative angiography during aneurysm surgery: a prospective evaluation of efficacy. J Neurosurg 96(6):993–999. doi:10.3171/jns.2002.96.6.0993

    Article  Google Scholar 

  5. Symon L, Wang AD, Silva IECE, Gentili F (1984) Perioperative use of somatosensory evoked-responses in aneurysm surgery. J Neurosurg 60(2):269–275. doi:10.3171/jns.1984.60.2.0269

    Article  Google Scholar 

  6. Little JR, Lesser RP, Luders H (1987) Electrophysiological monitoring during basilar aneurysm operation. Neurosurgery 20(3):421–427

    Article  Google Scholar 

  7. Lopez JR, Chang SD, Steinberg GK (1999) The use of electrophysiological monitoring in the intraoperative management of intracranial aneurysms. J Neurol Neurosurg Psychiatry 66(2):189–196. doi:10.1136/jnnp. 66.2.189

    Article  Google Scholar 

  8. Kalavakonda C, Sekhar LN, Ramachandran P, Hechl P (2002) Endoscope-assisted microsurgery for intracranial aneurysms. Neurosurgery 51(5):1119–1126; discussion 1117–1126. doi:10.1227/01.NEU.0000031750.58301.67

    Google Scholar 

  9. Wang E, Yong NP, Ng I (2003) Endoscopic assisted microneurosurgery for cerebral aneurysms. J Clin Neurosci 10(2):174–176. doi:10.1016/S0967-5868(02)00320-X

    Article  Google Scholar 

  10. Kinouchi H, Yanagisawa T, Suzuki A, Ohta T, Hirano Y, Sugawara T, Sasajima T, Mizoi K (2004) Simultaneous microscopic and endoscopic monitoring during surgery for internal carotid artery aneurysms. J Neurosurg 101(6):989–995. doi:10.3171/jns.2004.101.6.0989

    Article  Google Scholar 

  11. Stendel R, Pietila T, Al Hassan AA, Schilling A, Brock M (2000) Intraoperative microvascular Doppler ultrasonography in cerebral aneurysm surgery. J Neurol Neurosurg Psychiatry 68(1):29–35. doi:10.1136/jnnp. 68.1.29

    Article  Google Scholar 

  12. Marchese E, Albanese A, Denaro L, Vignati A, Fernandez E, Maira G (2005) Intraoperative microvascular Doppler in intracranial aneurysm surgery. Surg Neurol 63(4):336–342; discussion 342. doi:10.1016/j.surneu.2004.05.031

    Google Scholar 

  13. Kapsalaki EZ, Lee GP, Robinson JS III, Grigorian AA, Fountas KN (2008) The role of intraoperative micro-Doppler ultrasound in verifying proper clip placement in intracranial aneurysm surgery. J Clin Neurosci 15(2):153–157. doi:10.1016/j.jocn.2006.11.006

    Article  Google Scholar 

  14. Raabe A, Beck J, Seifert V (2005) Technique and image quality of intraoperative indocyanine green angiography during aneurysm surgery using surgical microscope integrated near-infrared video technology. Zentralbl Neurochir 66(1):1–6; discussion 7–8. doi:10.1055/s-2004-836223

  15. Raabe A, Nakaji P, Beck J, Kim LJ, Hsu FP, Kamerman JD, Seifert V, Spetzler RF (2005) Prospective evaluation of surgical microscope-integrated intraoperative near-infrared indocyanine green videoangiography during aneurysm surgery. J Neurosurg 103(6):982–989. doi:10.3171/jns.2005.103.6.0982

    Article  Google Scholar 

  16. de Oliveira JG, Beck J, Seifert V, Teixeira MJ, Raabe A (2007) Assessment of flow in perforating arteries during intracranial aneurysm surgery using intraoperative near-infrared indocyanine green videoangiography. Neurosurgery 61(3 suppl):63–72; discussion 63–72. doi:10.1227/01.neu.0000289715.18297.08

    Google Scholar 

  17. Hanggi D, Etminan N, Steiger HJ (2010) The impact of microscope-integrated intraoperative near-infrared indocyanine green videoangiography on surgery of arteriovenous malformations and dural arteriovenous fistulae. Neurosurgery 67(4):1094–1103; discussion 1094–1103. doi:10.1227/NEU.0b013e3181eb5049

    Google Scholar 

  18. Gruber A, Dorfer C, Standhardt H, Bavinzski G, Knosp E (2011) Prospective comparison of intraoperative vascular monitoring technologies during cerebral aneurysm surgery. Neurosurgery 68(3):657–673; discussion 673. doi:10.1227/NEU.0b013e31820777ee

    Google Scholar 

  19. Raabe A, Beck J, Gerlach R, Zimmermann M, Seifert V (2003) Near-infrared indocyanine green video angiography: a new method for intraoperative assessment of vascular flow. Neurosurgery 52(1):132–139; discussion 139. doi:10.1097/00006123-200301000-00017

    Google Scholar 

  20. Dashti R, Laakso A, Niemela M, Porras M, Hernesniemi J (2009) Microscope-integrated near-infrared indocyanine green videoangiography during surgery of intracranial aneurysms: the Helsinki experience. Surg Neurol 71(5):543–550; discussion 550. doi:10.1016/j.surneu.2009.01.027

    Google Scholar 

  21. Khurana VG, Seow K, Duke D (2010) Intuitiveness, quality and utility of intraoperative fluorescence videoangiography: Australian Neurosurgical Experience. Br J Neurosurg 24(2):163–172. doi:10.3109/02688690903518247

    Article  Google Scholar 

  22. Owens SL (1996) Indocyanine green angiography. Br J Ophthalmol 80(3):263–266. doi:10.1136/bjo.80.3.263

    Article  Google Scholar 

  23. Briers JD (2001) Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging. Physiol Meas 22(4):R35–R66. doi:10.1088/0967-3334/22/4/201

    Article  Google Scholar 

  24. Wardell K, Jakobsson A, Nilsson GE (1993) Laser Doppler perfusion imaging by dynamic light scattering. IEEE Trans Biomed Eng 40(4):309–316. doi:10.1109/10.222322

    Article  Google Scholar 

  25. Nielsen AN, Fabricius M, Lauritzen M (2000) Scanning laser-Doppler flowmetry of rat cerebral circulation during cortical spreading depression. J Vasc Res 37(6):513–522. doi:10.1159/000054084

    Article  Google Scholar 

  26. Nakase H, Kaido T, Okuno S, Hoshida T, Sakaki T (2002) Novel intraoperative cerebral blood flow monitoring by laser-Doppler scanner. Neurol Med Chir (Tokyo) 42(1):1–4. doi:10.2176/nmc.42.1

    Article  Google Scholar 

  27. Serov A, Steinacher B, Lasser T (2005) Full-field laser Doppler perfusion imaging and monitoring with an intelligent CMOS camera. Opt Express 13(10):3681–3689. doi:10.1364/OPEX.13.003681

    Article  ADS  Google Scholar 

  28. Leutenegger M, Martin-Williams E, Harbi P, Thacher T, Raffoul W, Andre M, Lopez A, Lasser P, Lasser T (2011) Real-time full field laser Doppler imaging. Biomed Opt Express 2(6):1470–1477. doi:10.1364/BOE.2.001470

    Article  Google Scholar 

  29. Raabe A, Van De Ville D, Leutenegger M, Szelenyi A, Hattingen E, Gerlach R, Seifert V, Hauger C, Lopez A, Leitgeb R, Unser M, Martin-Williams EJ, Lasser T (2009) Laser Doppler imaging for intraoperative human brain mapping. Neuroimage 44(4):1284–1289. doi:10.1016/j.neuroimage.2008.10.049

    Article  Google Scholar 

  30. Tom WJ, Ponticorvo A, Dunn AK (2008) Efficient processing of laser speckle contrast images. IEEE Trans Med Imaging 27(12):1728–1738. doi:10.1109/TMI.2008.925081

    Article  Google Scholar 

  31. Hecht N, Woitzik J, Dreier JP, Vajkoczy P (2009) Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis. Neurosurg Focus 27(4):E11. doi:10.3171/2009.8.FOCUS09148

    Article  Google Scholar 

  32. Parthasarathy AB, Weber EL, Richards LM, Fox DJ, Dunn AK (2010) Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study. J Biomed Opt 15(6):066030. doi:10.1117/1.3526368

    Article  Google Scholar 

  33. Richards LM, Weber EL, Parthasarathy AB, Kappeler KL, Fox DJ, Dunn AK (2012) Intraoperative laser speckle contrast imaging for monitoring cerebral blood flow: results from a 10-patient pilot study. Proc SPIE 8207:82074L. doi:10.1117/12.909078

    Article  ADS  Google Scholar 

  34. Briers JD, Webster S (1996) Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow. J Biomed Opt 1(2):174–179. doi:10.1117/12.231359

    Article  Google Scholar 

  35. Kirkpatrick SJ, Duncan DD, Wells-Gray EM (2008) Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging. Opt Lett 33(24):2886–2888. doi:10.1364/OL.33.002886

    Article  ADS  Google Scholar 

  36. Duncan DD, Kirkpatrick SJ (2008) Can laser speckle flowmetry be made a quantitative tool? J Opt Soc Am A 25(8):2088–2094. doi:10.1364/JOSAA.25.002088

    Article  ADS  Google Scholar 

  37. Berne BJ, Pecora R (2000) Dynamic light scattering: with applications to chemistry, biology, and physics, Doverth edn. Dover Publications, Mineola, NY

    Google Scholar 

  38. Fercher AF, Briers JD (1981) Flow visualization by means of single-exposure speckle photography. Opt Commun 37(5):326–330. doi:10.1016/0030-4018(81)90428-4

    Article  ADS  Google Scholar 

  39. Bandyopadhyay R, Gittings AS, Suh SS, Dixon PK, Durian DJ (2005) Speckle-visibility spectroscopy: a tool to study time-varying dynamics. Rev Sci Instrum 76(9). doi:doi:10.1063/1.2037987

  40. Bonner R, Nossal R (1981) Model for laser Doppler measurements of blood flow in tissue. Appl Opt 20(12):2097–2107. doi:10.1364/AO.20.002097

    Article  ADS  Google Scholar 

  41. Dunn AK, Bolay H, Moskowitz MA, Boas DA (2001) Dynamic imaging of cerebral blood flow using laser speckle. J Cereb Blood Flow Metab 21(3):195–201. doi:10.1097/00004647-200103000-00002

    Article  Google Scholar 

  42. Boas DA, Dunn AK (2010) Laser speckle contrast imaging in biomedical optics. J Biomed Opt 15(1):011109. doi:10.1117/1.3285504

    Article  Google Scholar 

  43. Draijer M, Hondebrink E, Van Leeuwen T, Steenbergen W (2009) Review of laser speckle contrast techniques for visualizing tissue perfusion. Lasers Med Sci 24(4):639–651. doi:10.1007/s10103-008-0626-3

    Article  Google Scholar 

  44. American National Standard for the Safe Use of Lasers (2007). ANSI Z136.1-2007. Laser Institute of America

    Google Scholar 

  45. Deckers RH, van Gelderen P, Ries M, Barret O, Duyn JH, Ikonomidou VN, Fukunaga M, Glover GH, de Zwart JA (2006) An adaptive filter for suppression of cardiac and respiratory noise in MRI time series data. Neuroimage 33(4):1072–1081. doi:10.1016/j.neuroimage.2006.08.006

    Article  Google Scholar 

  46. Klein S, Staring M, Murphy K, Viergever MA, Pluim JP (2010) elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29(1):196–205. doi:10.1109/TMI.2009.2035616

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the surgical staff at St. David’s Hospital for their help during the intraoperative experiments. This work was supported by the Coulter Foundation, the National Science Foundation (CBET/0737731), the American Heart Association (0735136N), and the Consortium Research Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew K. Dunn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Richards, L.M., Towle, E.L., Fox, D.J., Dunn, A.K. (2013). Laser Speckle Imaging of Cerebral Blood Flow. In: Madsen, S. (eds) Optical Methods and Instrumentation in Brain Imaging and Therapy. Bioanalysis, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4978-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4978-2_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4977-5

  • Online ISBN: 978-1-4614-4978-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics