Skip to main content

Myocardial Ischemia and Infarction

  • Chapter
  • First Online:
Coronary Vasculature

Abstract

When a coronary artery is occluded, the reduction of blood flow results in (1) tissue hypoxia, (2) an accumulation of metabolic products, and (3) failure in substrate delivery. Therefore, ischemia has a greater impact on the tissue supplied by the occluded artery than does hypoxia in the absence of ischemia. The magnitude of tissue injury depends on both the degree and the duration of the ischemia. Using electron microscopy and measurements of regional myocardial perfusion, my colleagues and I correlated cardiomyocyte changes (reversible vs. irreversible) with the magnitude of the perfusion decrement [1]. Other investigators have determined that in canine hearts subjected to a <10 % reduction in blood flow, cardiomyocyte death first appears after about 20 min [2, 3]. This topic is discussed in a subsequent section of this chapter. Clinically, ischemic myocardial injury is manifested by (1) cardiomyocyte death, (2) contractile dysfunction, (3) arrhythmias, and (4) microvascular dysfunction [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CFI:

Collateral flow index

EC:

Endothelial cell

FGF:

Fibroblast growth factor

HIF:

Hypoxia-inducible factor

IPC:

Ischemic preconditioning

IPost:

Ischemic postconditioning

IR:

Ischemia/reperfusion

MCVR:

Minimal coronary vascular resistance

MI:

Myocardial infarction

ROS:

Reactive oxygen species

VEGF:

Vascular endothelial growth factor

VSMC:

Vascular smooth muscle cell

References

  1. Tomanek RJ, Grimes JC, Diana JN. Relationship between the magnitude of myocardial ischemia and ultrastructural alterations. Exp Mol Pathol. 1981;35:65–83.

    PubMed  CAS  Google Scholar 

  2. Reimer KA, Jennings RB. The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest. 1979;40:633–44.

    PubMed  CAS  Google Scholar 

  3. Jennings RB, Reimer KA. Factors involved in salvaging ischemic myocardium: effect of reperfusion of arterial blood. Circulation. 1983;68:I25–36.

    PubMed  CAS  Google Scholar 

  4. Kharbanda RK. Cardiac conditioning: a review of evolving strategies to reduce ischaemia-reperfusion injury. Heart. 2010;96:1179–86.

    PubMed  CAS  Google Scholar 

  5. Stern MD, Silverman HS, Houser SR, Josephson RA, Capogrossi MC, Nichols CG, et al. Anoxic contractile failure in rat heart myocytes is caused by failure of intracellular calcium release due to alteration of the action potential. Proc Natl Acad Sci USA. 1988;85:6954–8.

    PubMed  CAS  Google Scholar 

  6. Bing OH, Brooks WW, Messer JV. Heart muscle viability following hypoxia: protective effect of acidosis. Science. 1973;180:1297–8.

    PubMed  CAS  Google Scholar 

  7. Schmidt-Ott SC, Bletz C, Vahl C, Saggau W, Hagl S, Ruegg JC. Inorganic phosphate inhibits contractility and ATPase activity in skinned fibers from human myocardium. Basic Res Cardiol. 1990;85:358–66.

    PubMed  CAS  Google Scholar 

  8. Canty Jr JM, Fallavollita JA. Hibernating myocardium. J Nucl Cardiol. 2005;12:104–19.

    PubMed  Google Scholar 

  9. Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF. Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest. 1975;56:978–85.

    PubMed  CAS  Google Scholar 

  10. Schulz R, Rose J, Post H, Heusch G. Involvement of endogenous adenosine in ischaemic preconditioning in swine. Pflugers Arch. 1995;430:273–82.

    PubMed  CAS  Google Scholar 

  11. Fallavollita JA, Logue M, Canty Jr JM. Stability of hibernating myocardium in pigs with a chronic left anterior descending coronary artery stenosis: absence of progressive fibrosis in the setting of stable reductions in flow, function and coronary flow reserve. J Am Coll Cardiol. 2001;37:1989–95.

    PubMed  CAS  Google Scholar 

  12. Depre C, Vatner SF. Cardioprotection in stunned and hibernating myocardium. Heart Fail Rev. 2007;12:307–17.

    PubMed  CAS  Google Scholar 

  13. Sayen JJ, Sheldon WF, Peirce G, Kuo PT. Polarographic oxygen, the epicardial electrocardiogram and muscle contraction in experimental acute regional ischemia of the left ventricle. Circ Res. 1958;6:779–98.

    PubMed  CAS  Google Scholar 

  14. Jennings RB, Kaltenbach JP, Sommers HM, Bahr GF, Wartman WB. Studies of the dying. The etiology of myocardial infarction. Boston: Little and Brown; 1963. p. 189–205.

    Google Scholar 

  15. Jennings RB, Reimer KA. The cell biology of acute myocardial ischemia. Annu Rev Med. 1991;42:225–46.

    PubMed  CAS  Google Scholar 

  16. Jennings RB, Steenbergen Jr C, Reimer KA. Myocardial ischemia and reperfusion. Monogr Pathol. 1995;37:47–80.

    PubMed  CAS  Google Scholar 

  17. Larsen BT, Gutterman DD. Hypoxia, coronary dilation, and the pentose phosphate pathway. Am J Physiol Heart Circ Physiol. 2006;290:H2169–71.

    PubMed  CAS  Google Scholar 

  18. Close LA, Bowman PS, Paul RJ. Reoxygenation-induced relaxation of coronary arteries. A novel endothelium-dependent mechanism. Circ Res. 1994;74:870–81.

    PubMed  CAS  Google Scholar 

  19. Lee YH, Kim JT, Kang BS. Mechanisms of relaxation of coronary artery by hypoxia. Yonsei Med J. 1998;39:252–60.

    PubMed  CAS  Google Scholar 

  20. Gupte SA, Wolin MS. Hypoxia promotes relaxation of bovine coronary arteries through lowering cytosolic NADPH. Am J Physiol Heart Circ Physiol. 2006;290:H2228–38.

    PubMed  CAS  Google Scholar 

  21. Frobert O, Haink G, Simonsen U, Gravholt CH, Levin M, Deussen A. Adenosine concentration in the porcine coronary artery wall and A2A receptor involvement in hypoxia-induced vasodilatation. J Physiol. 2006;570:375–84.

    PubMed  Google Scholar 

  22. Wolin MS, Burke-Wolin TM, Mohazzab HK. Roles for NAD(P)H oxidases and reactive oxygen species in vascular oxygen sensing mechanisms. Respir Physiol. 1999;115:229–38.

    PubMed  CAS  Google Scholar 

  23. Mohazzab KM, Kaminski PM, Wolin MS. NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium. Am J Physiol. 1994;266:H2568–72.

    PubMed  CAS  Google Scholar 

  24. Mohazzab HK, Kaminski PM, Fayngersh RP, Wolin MS. Oxygen-elicited responses in calf coronary arteries: role of H2O2 production via NADH-derived superoxide. Am J Physiol. 1996;270:H1044–53.

    Google Scholar 

  25. von Beckerath N, Cyrys S, Dischner A, Daut J. Hypoxic vasodilatation in isolated, perfused guinea-pig heart: an analysis of the underlying mechanisms. J Physiol. 1991;442:297–319.

    Google Scholar 

  26. Selwyn AP, Forse G, Fox K, Jonathan A, Steiner R. Patterns of disturbed myocardial perfusion in patients with coronary artery disease. Regional myocardial perfusion in angina pectoris. Circulation. 1981;64:83–90.

    PubMed  CAS  Google Scholar 

  27. Sambuceti G, Marzilli M, Fedele S, Marini C, L’Abbate A. Paradoxical increase in microvascular resistance during tachycardia downstream from a severe stenosis in patients with coronary artery disease: reversal by angioplasty. Circulation. 2001;103:2352–60.

    PubMed  CAS  Google Scholar 

  28. Metais C, Bianchi C, Li J, Simons M, Sellke FW. Serotonin-induced human coronary microvascular contraction during acute myocardial ischemia is blocked by COX-2 inhibition. Basic Res Cardiol. 2001;96:59–67.

    PubMed  CAS  Google Scholar 

  29. Kusmic C, Lazzerini G, Coceani F, Barsacchi R, L’Abbate A, Sambuceti G. Paradoxical coronary microcirculatory constriction during ischemia: a synergic function for nitric oxide and endothelin. Am J Physiol Heart Circ Physiol. 2006;291:H1814–21.

    PubMed  CAS  Google Scholar 

  30. Duncker DJ, Bache RJ. Regulation of coronary vasomotor tone under normal conditions and during acute myocardial hypoperfusion. Pharmacol Ther. 2000;86:87–110.

    PubMed  CAS  Google Scholar 

  31. Martinez-Lemus LA, Hill MA, Meininger GA. The plastic nature of the vascular wall: a continuum of remodeling events contributing to control of arteriolar diameter and structure. Physiology (Bethesda). 2009;24:45–57.

    Google Scholar 

  32. Mills I, Fallon JT, Wrenn D, Sasken H, Gray W, Bier J, et al. Adaptive responses of coronary circulation and myocardium to chronic reduction in perfusion pressure and flow. Am J Physiol. 1994;266:H447–57.

    PubMed  CAS  Google Scholar 

  33. Pistea A, Bakker EN, Spaan JA, VanBavel E. Flow inhibits inward remodeling in cannulated porcine small coronary arteries. Am J Physiol Heart Circ Physiol. 2005;289:H2632–40.

    PubMed  CAS  Google Scholar 

  34. Hong H, Aksenov S, Guan X, Fallon JT, Waters D, Chen C. Remodeling of small intramyocardial coronary arteries distal to a severe epicardial coronary artery stenosis. Arterioscler Thromb Vasc Biol. 2002;22:2059–65.

    PubMed  CAS  Google Scholar 

  35. Sorop O, Merkus D, de Beer VJ, Houweling B, Pistea A, McFalls EO, et al. Functional and structural adaptations of coronary microvessels distal to a chronic coronary artery stenosis. Circ Res. 2008;102:795–803.

    PubMed  CAS  Google Scholar 

  36. Chamuleau SA, Siebes M, Meuwissen M, Koch KT, Spaan JA, Piek JJ. Association between coronary lesion severity and distal microvascular resistance in patients with coronary artery disease. Am J Physiol Heart Circ Physiol. 2003;285:H2194–200.

    PubMed  CAS  Google Scholar 

  37. Fearon WF, Aarnoudse W, Pijls NH, De Bruyne B, Balsam LB, Cooke DT, et al. Microvascular resistance is not influenced by epicardial coronary artery stenosis severity: experimental validation. Circulation. 2004;109:2269–72.

    PubMed  Google Scholar 

  38. Ku DD. Coronary vascular reactivity after acute myocardial ischemia. Science. 1982;218:576–8.

    PubMed  CAS  Google Scholar 

  39. Luo Y, Cha DG, Liu YL, Zhou SF. Coronary microcirculation changes during myocardial stunning in dogs. Cardiology. 2010;117:68–74.

    PubMed  CAS  Google Scholar 

  40. Saito T, Fushimi E, Abe T, Kimura Y, Takahashi K, Kudo Y, et al. Augmented contractile response to endothelin and blunted endothelium-dependent relaxation in post-ischemic reperfused coronary arteries. Jpn Circ J. 1992;56:657–70.

    PubMed  CAS  Google Scholar 

  41. Coughlan MG, Kenny D, Kampine JP, Bosnjak ZJ, Warltier DC. Differential sensitivity of proximal and distal coronary arteries to a nitric oxide donor following reperfusion injury or inhibition of nitric oxide synthesis. Cardiovasc Res. 1993;27:1444–8.

    PubMed  CAS  Google Scholar 

  42. Symons JD, Schaefer S. Na(+)/H(+) exchange subtype 1 inhibition reduces endothelial dysfunction in vessels from stunned myocardium. Am J Physiol Heart Circ Physiol. 2001;281:H1575–82.

    PubMed  CAS  Google Scholar 

  43. Wang QD, Uriuda Y, Pernow J, Hemsen A, Sjoquist PO, Ryden L. Myocardial release of endothelin (ET) and enhanced ET(A) receptor-mediated coronary vasoconstriction after coronary thrombosis and thrombolysis in pigs. J Cardiovasc Pharmacol. 1995;26:770–6.

    PubMed  CAS  Google Scholar 

  44. Tsao PS, Aoki N, Lefer DJ, Johnson 3rd G, Lefer AM. Time course of endothelial dysfunction and myocardial injury during myocardial ischemia and reperfusion in the cat. Circulation. 1990;82:1402–12.

    PubMed  CAS  Google Scholar 

  45. Fernandez N, Martinez MA, Climent B, Garcia-Villalon AL, Monge L, Sanz E, et al. Coronary reactivity to endothelin-1 during partial ischemia and reperfusion in anesthetized goats. Role of nitric oxide and prostanoids. Eur J Pharmacol. 2002;457:161–8.

    PubMed  CAS  Google Scholar 

  46. Heusch G, Deussen A, Thamer V. Cardiac sympathetic nerve activity and progressive vasoconstriction distal to coronary stenoses: feed-back aggravation of myocardial ischemia. J Auton Nerv Syst. 1985;13:311–26.

    PubMed  CAS  Google Scholar 

  47. Aversano T, Klocke FJ, Mates RE, Canty JM Jr. Preload-induced alterations in capacitance-free diastolic pressure-flow relationship. Am J physiol. 1984;246(3Pt2):H410–17.

    PubMed  CAS  Google Scholar 

  48. Lefer AM, Lefer DJ. The role of nitric oxide and cell adhesion molecules on the microcirculation in ischaemia-reperfusion. Cardiovasc Res. 1996;32:743–51.

    PubMed  CAS  Google Scholar 

  49. Lefer AM, Campbell B, Scalia R, Lefer DJ. Synergism between platelets and neutrophils in provoking cardiac dysfunction after ischemia and reperfusion: role of selectins. Circulation. 1998;98:1322–8.

    PubMed  CAS  Google Scholar 

  50. Pagliaro P, Chiribiri A, Mancardi D, Rastaldo R, Gattullo D, Losano G. Coronary endothelial dysfunction after ischemia and reperfusion and its prevention by ischemic preconditioning. Ital Heart J. 2003;4:383–94.

    PubMed  Google Scholar 

  51. Kadletz M, Dignan RJ, Loesser KE, Hess ML, Wechsler AS. Ischemia and activated neutrophils alter coronary microvascular but not epicardial coronary artery reactivity. J Thorac Cardiovasc Surg. 1994;108:648–57.

    PubMed  CAS  Google Scholar 

  52. Welbourn CR, Goldman G, Paterson IS, Valeri CR, Shepro D, Hechtman HB. Pathophysiology of ischaemia reperfusion injury: central role of the neutrophil. Br J Surg. 1991;78:651–5.

    PubMed  CAS  Google Scholar 

  53. Yang BC, Nicolini FA, Nichols WW, Mehta JL. Decreased endothelium-dependent vascular relaxation following subtotal coronary artery occlusion in dogs. Free Radic Biol Med. 1993;14:295–302.

    PubMed  CAS  Google Scholar 

  54. Sellke FW, Boyle Jr EM, Verrier ED. Endothelial cell injury in cardiovascular surgery: the pathophysiology of vasomotor dysfunction. Ann Thorac Surg. 1996;62:1222–8.

    PubMed  CAS  Google Scholar 

  55. Metais C, Li J, Simons M, Sellke FW. Serotonin-induced coronary contraction increases after blood cardioplegia-reperfusion: role of COX-2 expression. Circulation. 1999;100:II328–34.

    PubMed  CAS  Google Scholar 

  56. Kawata H, Sawatari K, Mayer Jr JE. Evidence for the role of neutrophils in reperfusion injury after cold cardioplegic ischemia in neonatal lambs. J Thorac Cardiovasc Surg. 1992;103:908–17. ­discussion 17–8.

    PubMed  CAS  Google Scholar 

  57. Sellke FW, Quillen JE. Altered effects of vasopressin on the coronary circulation after ischemia. J Thorac Cardiovasc Surg. 1992;104:357–63.

    PubMed  CAS  Google Scholar 

  58. Dagenais F, Cartier R, Hollmann C, Buluran J. Calcium-channel blockers preserve coronary endothelial reactivity after ischemia-reperfusion. Ann Thorac Surg. 1997;63:1050–6.

    PubMed  CAS  Google Scholar 

  59. Kikkawa K, Murata S, Nagao T. Endothelium-dependent calcium-induced relaxation in the presence of Ca2+-antagonists in canine depolarized coronary arteries. Br J Pharmacol. 1989;98:700–6.

    PubMed  CAS  Google Scholar 

  60. Jayakody RL, Kappagoda CT, Senaratne MP, Sreeharan N. Absence of effect of calcium antagonists on endothelium-dependent relaxation in rabbit aorta. Br J Pharmacol. 1987;91:155–64.

    PubMed  CAS  Google Scholar 

  61. Vanhoutte PM. Role of calcium and endothelium in hypertension, cardiovascular disease, and subsequent vascular events. J Cardiovasc Pharmacol. 1992;19 Suppl 3:S6–10.

    PubMed  CAS  Google Scholar 

  62. Karasawa A, Kubo K. Protection by benidipine hydrochloride (KW-3049), a calcium antagonist, of ischemic kidney in rats via inhibitions of Ca-overload, ATP-decline and lipid peroxidation. Jpn J Pharmacol. 1990;52:553–62.

    PubMed  CAS  Google Scholar 

  63. Clark RE, Magovern GJ, Christlieb IY, Boe S. Nifedipine cardioplegia experience: results of a 3-year cooperative clinical study. Ann Thorac Surg. 1983;36:654–63.

    PubMed  CAS  Google Scholar 

  64. Christakis GT, Fremes SE, Weisel RD, Tittley JG, Mickle DA, Ivanov J, et al. Diltiazem cardioplegia. A balance of risk and benefit. J Thorac Cardiovasc Surg. 1986;91:647–61.

    PubMed  CAS  Google Scholar 

  65. Kunsch C, Medford RM. Oxidative stress as a regulator of gene expression in the vasculature. Circ Res. 1999;85:753–66.

    PubMed  CAS  Google Scholar 

  66. Miura H, Bosnjak JJ, Ning G, Saito T, Miura M, Gutterman DD. Role for hydrogen peroxide in flow-induced dilation of human coronary arterioles. Circ Res. 2003;92:e31–40.

    PubMed  CAS  Google Scholar 

  67. Barlow RS, White RE. Hydrogen peroxide relaxes porcine coronary arteries by stimulating BKCa channel activity. Am J Physiol. 1998;275:H1283–9.

    PubMed  CAS  Google Scholar 

  68. Liu Y, Bubolz AH, Mendoza S, Zhang DX, Gutterman DD. H2O2 is the transferrable factor mediating flow-induced dilation in human coronary arterioles. Circ Res. 2011;108:566–73.

    PubMed  CAS  Google Scholar 

  69. Yada T, Shimokawa H, Hiramatsu O, Haruna Y, Morita Y, Kashihara N, et al. Cardioprotective role of endogenous hydrogen peroxide during ischemia-reperfusion injury in canine coronary microcirculation in vivo. Am J Physiol Heart Circ Physiol. 2006;291:H1138–46.

    PubMed  CAS  Google Scholar 

  70. Feng J, Damrauer SM, Lee M, Sellke FW, Ferran C, Abid MR. Endothelium-dependent coronary vasodilatation requires NADPH oxidase-derived reactive oxygen species. Arterioscler Thromb Vasc Biol. 2010;30:1703–10.

    PubMed  CAS  Google Scholar 

  71. Li J, De Leon H, Ueno T, Cui J, Coussement PK, King 3rd SB, et al. Vasomotor function of pig coronary arteries after chronic coronary occlusion. J Cardiovasc Pharmacol. 2003;41:600–8.

    PubMed  CAS  Google Scholar 

  72. Li G, Xiao Y, Estrella JL, Ducsay CA, Gilbert RD, Zhang L. Effect of fetal hypoxia on heart susceptibility to ischemia and reperfusion injury in the adult rat. J Soc Gynecol Investig. 2003;10:265–74.

    PubMed  CAS  Google Scholar 

  73. Quillen JE, Sellke FW, Brooks LA, Harrison DG. Ischemia-reperfusion impairs endothelium-dependent relaxation of coronary microvessels but does not affect large arteries. Circulation. 1990;82:586–94.

    PubMed  CAS  Google Scholar 

  74. Cannon 3rd RO, Camici PG, Epstein SE. Pathophysiological dilemma of syndrome X. Circulation. 1992;85:883–92.

    PubMed  Google Scholar 

  75. Buffon A, Rigattieri S, Santini SA, Ramazzotti V, Crea F, Giardina B, et al. Myocardial ischemia-reperfusion damage after pacing-induced tachycardia in patients with cardiac syndrome X. Am J Physiol Heart Circ Physiol. 2000;279:H2627–33.

    PubMed  CAS  Google Scholar 

  76. Chauhan A, Mullins PA, Taylor G, Petch MC, Schofield PM. Both endothelium-dependent and endothelium-independent function is impaired in patients with angina pectoris and normal coronary angiograms. Eur Heart J. 1997;18:60–8.

    PubMed  CAS  Google Scholar 

  77. Maseri A, Crea F, Kaski JC, Crake T. Mechanisms of angina pectoris in syndrome X. J Am Coll Cardiol. 1991;17:499–506.

    PubMed  CAS  Google Scholar 

  78. Konidala S, Gutterman DD. Coronary vasospasm and the regulation of coronary blood flow. Prog Cardiovasc Dis. 2004;46:349–73.

    PubMed  Google Scholar 

  79. Tun A, Khan IA. Myocardial infarction with normal coronary arteries: the pathologic and clinical perspectives. Angiology. 2001;52:299–304.

    PubMed  CAS  Google Scholar 

  80. Masumoto A, Mohri M, Takeshita A. Three-year follow-up of the Japanese patients with microvascular angina attributable to coronary microvascular spasm. Int J Cardiol. 2001;81:151–6.

    PubMed  CAS  Google Scholar 

  81. Saitoh S, Onogi F, Aikawa K, Mutor M, Saito T, Maehara K, Maruyama Y, Multiple endothelial injury in epicardial coronary artery induces downstresm microvascular spasm as well as remodeling partly via thromboxane A2. J Am Coll Cardiol. 2001;37:308–15.

    PubMed  CAS  Google Scholar 

  82. VanBenthuysen KM, McMurtry IF, Horwitz LD. Reperfusion after acute coronary occlusion in dogs impairs endothelium-dependent relaxation to acetylcholine and augments contractile reactivity in vitro. J Clin Invest. 1987;79:265–74.

    PubMed  CAS  Google Scholar 

  83. Lee SH, Wolf PL, Escudero R, Deutsch R, Jamieson SW, Thistlethwaite PA. Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N Engl J Med. 2000;342:626–33.

    PubMed  CAS  Google Scholar 

  84. Yamakawa M, Liu LX, Date T, Belanger AJ, Vincent KA, Akita GY, et al. Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ Res. 2003;93:664–73.

    PubMed  CAS  Google Scholar 

  85. Kido M, Du L, Sullivan CC, Li X, Deutsch R, Jamieson SW, et al. Hypoxia-inducible factor 1-alpha reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse. J Am Coll Cardiol. 2005;46:2116–24.

    PubMed  CAS  Google Scholar 

  86. Shyu KG, Wang MT, Wang BW, Chang CC, Leu JG, Kuan P, et al. Intramyocardial injection of naked DNA encoding HIF-1alpha/VP16 hybrid to enhance angiogenesis in an acute myocardial infarction model in the rat. Cardiovasc Res. 2002;54:576–83.

    PubMed  CAS  Google Scholar 

  87. Takeda K, Cowan A, Fong GH. Essential role for prolyl hydroxylase domain protein 2 in oxygen homeostasis of the adult vascular system. Circulation. 2007;116:774–81.

    PubMed  CAS  Google Scholar 

  88. Jingjing L, Srinivasan B, Bian X, Downey HF, Roque RS. Vascular endothelial growth factor is increased following coronary artery occlusion in the dog heart. Mol Cell Biochem. 2000;214:23–30.

    PubMed  CAS  Google Scholar 

  89. Li J, Brown LF, Hibberd MG, Grossman JD, Morgan JP, Simons M. VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis. Am J Physiol. 1996;270:H1803–11.

    PubMed  CAS  Google Scholar 

  90. Heba G, Krzeminski T, Porc M, Grzyb J, Ratajska A, Dembinska-Kiec A. The time course of tumor necrosis factor-alpha, inducible nitric oxide synthase and vascular endothelial growth factor expression in an experimental model of chronic myocardial infarction in rats. J Vasc Res. 2001;38:288–300.

    PubMed  CAS  Google Scholar 

  91. Schaper W. Collateral circulation: past and present. Basic Res Cardiol. 2009;104:5–21.

    PubMed  CAS  Google Scholar 

  92. Berry C, Balachandran KP, L’Allier PL, Lesperance J, Bonan R, Oldroyd KG. Importance of collateral circulation in coronary heart disease. Eur Heart J. 2007;28:278–91.

    PubMed  Google Scholar 

  93. Seiler C. The human coronary collateral circulation. Eur J Clin Invest. 2010;40:465–76.

    PubMed  Google Scholar 

  94. Traupe T, Gloekler S, de Marchi SF, Werner GS, Seiler C. Assessment of the human coronary collateral circulation. Circulation. 2010;122:1210–20.

    PubMed  Google Scholar 

  95. Fujita M, Tambara K. Recent insights into human coronary collateral development. Heart. 2004;90:246–50.

    PubMed  CAS  Google Scholar 

  96. Meier P, Gloekler S, Zbinden R, Beckh S, de Marchi SF, Zbinden S, et al. Beneficial effect of recruitable collaterals: a 10-year follow-up study in patients with stable coronary artery disease undergoing quantitative collateral measurements. Circulation. 2007;116:975–83.

    PubMed  Google Scholar 

  97. Cohen M, Rentrop KP. Limitation of myocardial ischemia by collateral circulation during sudden controlled coronary artery occlusion in human subjects: a prospective study. Circulation. 1986;74:469–76.

    PubMed  CAS  Google Scholar 

  98. Cribier A, Korsatz L, Koning R, Rath P, Gamra H, Stix G, et al. Improved myocardial ischemic response and enhanced collateral circulation with long repetitive coronary occlusion during angioplasty: a prospective study. J Am Coll Cardiol. 1992;20:578–86.

    PubMed  CAS  Google Scholar 

  99. Ohno A, Fujita M, Miwa K, Ejiri M, Asanoi H, Sasayama S. Importance of coronary collateral circulation for increased treadmill exercise capacity by nitrates in patients with stable effort angina pectoris. Cardiology. 1991;78:323–8.

    PubMed  CAS  Google Scholar 

  100. Tanaka T, Fujita M, Nakae I, Tamaki S, Hasegawa K, Kihara Y, et al. Improvement of exercise capacity by sarpogrelate as a result of augmented collateral circulation in patients with effort angina. J Am Coll Cardiol. 1998;32:1982–6.

    PubMed  CAS  Google Scholar 

  101. Fujita M, Yamanishi K, Inoko M, Miwa K. Preferential dilation of recipient coronary arteries of the collateral circulation by intracoronary administration of nitroglycerin. J Am Coll Cardiol. 1994;24:631–5.

    PubMed  CAS  Google Scholar 

  102. Wustmann K, Zbinden S, Windecker S, Meier B, Seiler C. Is there functional collateral flow during vascular occlusion in angiographically normal coronary arteries? Circulation 2003;107:2213–20.

    PubMed  CAS  Google Scholar 

  103. de Marchi SF, Gloekler S, Meier P, Traupe T, Steck H, Cook S, et al. Determinants of preformed collateral vessels in the human heart without coronary artery disease. Cardiology. 2011;118:198–206.

    PubMed  Google Scholar 

  104. Schaper J, Mulch J, Winkler B, Schaper W. Ultrastructural, functional, and biochemical criteria for estimation of reversibility of ischemic injury: a study on the effects of global ischemia on the isolated dog heart. J Mol Cell Cardiol. 1979;11:521–41.

    PubMed  CAS  Google Scholar 

  105. Fujita M, Ohno A, Wada O, Miwa K, Nozawa T, Yamanishi K, et al. Collateral circulation as a marker of the presence of viable myocardium in patients with recent myocardial infarction. Am Heart J. 1991;122:409–14.

    PubMed  CAS  Google Scholar 

  106. Bexell D, Setser RM, Schoenhagen P, Lieber ML, Brener SJ, Ivanc TB, et al. Influence of coronary artery stenosis severity and coronary collateralization on extent of chronic myocardial scar: insights from quantitative coronary angiography and delayed-enhancement MRI. Open Cardiovasc Med J. 2008;2:79–86.

    PubMed  Google Scholar 

  107. Habib GB, Heibig J, Forman SA, Brown BG, Roberts R, Terrin ML, et al. Influence of coronary collateral vessels on myocardial infarct size in humans. Results of phase I thrombolysis in myocardial infarction (TIMI) trial. The TIMI Investigators. Circulation. 1991;83:739–46.

    PubMed  CAS  Google Scholar 

  108. Sheehan FH, Braunwald E, Canner P, Dodge HT, Gore J, Van Natta P, et al. The effect of intravenous thrombolytic therapy on left ventricular function: a report on tissue-type plasminogen activator and streptokinase from the Thrombolysis in Myocardial Infarction (TIMI Phase I) trial. Circulation. 1987;75:817–29.

    PubMed  CAS  Google Scholar 

  109. Pohl T, Seiler C, Billinger M, Herren E, Wustmann K, Mehta H, et al. Frequency distribution of collateral flow and factors influencing collateral channel development. Functional collateral channel measurement in 450 patients with coronary artery disease. J Am Coll Cardiol. 2001;38:1872–8.

    PubMed  CAS  Google Scholar 

  110. Ha JW, Cho SY, Jang YS, Chung N, Shim WH, Kim SS. Collateral circulation in total occlusion of the left anterior descending or right coronary artery. Yonsei Med J. 1994;35:132–41.

    PubMed  CAS  Google Scholar 

  111. Werner GS, Surber R, Ferrari M, Fritzenwanger M, Figulla HR. The functional reserve of collaterals supplying long-term chronic total coronary occlusions in patients without prior myocardial infarction. Eur Heart J. 2006;27:2406–12.

    PubMed  Google Scholar 

  112. Demirbag R, Gur M, Yilmaz R, Kunt AS, Erel O, Andac MH. Influence of oxidative stress on the development of collateral circulation in total coronary occlusions. Int J Cardiol. 2007;116:14–9.

    PubMed  Google Scholar 

  113. Sahinarslan A, Kocaman SA, Topal S, Ercin U, Bukan N, Yalcin R, et al. Relation between serum monocyte chemoattractant protein-1 and coronary collateral development. Coron Artery Dis. 2010;21:455–9.

    PubMed  Google Scholar 

  114. Lv S, Cheng G, Xu Y, Wang Y, Xu G. Relationship between serum thymosin beta4 levels and coronary collateral development. Coron Artery Dis. 2011;22:401–4.

    PubMed  Google Scholar 

  115. Schaper W, Jageneau A, Xhonneux R. The development of collateral circulation in the pig and dog heart. Cardiologia. 1967;51:321–35.

    PubMed  CAS  Google Scholar 

  116. Toyota E, Warltier DC, Brock T, Ritman E, Kolz C, O’Malley P, et al. Vascular endothelial growth factor is required for coronary collateral growth in the rat. Circulation. 2005;112:2108–13.

    PubMed  CAS  Google Scholar 

  117. Carrao AC, Chilian WM, Yun J, Kolz C, Rocic P, Lehmann K, et al. Stimulation of coronary collateral growth by granulocyte stimulating factor: role of reactive oxygen species. Arterioscler Thromb Vasc Biol. 2009;29:1817–22.

    PubMed  CAS  Google Scholar 

  118. Maxwell MP, Hearse DJ, Yellon DM. Species variation in the coronary collateral circulation during regional myocardial ischaemia: a critical determinant of the rate of evolution and extent of myocardial infarction. Cardiovasc Res. 1987;21:737–46.

    PubMed  CAS  Google Scholar 

  119. Cohen MV, Downey JM, Sonnenblick EH, Kirk ES. The effects of nitroglycerin on coronary collaterals and myocardial contractility. J Clin Invest. 1973;52:2836–47.

    PubMed  CAS  Google Scholar 

  120. Jugdutt BI, Becker LC, Hutchins GM, Bulkley BH, Reid PR, Kallman CH. Effect of intravenous nitroglycerin on collateral blood flow and infarct size in the conscious dog. Circulation. 1981;63:17–28.

    PubMed  CAS  Google Scholar 

  121. Fujita M, McKown DP, McKown MD, Franklin D. Opening of coronary collaterals by repeated brief coronary occlusions in conscious dogs. Angiology. 1988;39:973–80.

    PubMed  CAS  Google Scholar 

  122. Brazzamano S, Mays AE, Rembert JC, Greenfield Jr JC. Increase in collateral blood flow following repeated coronary artery occlusion and nitroglycerin administration. Circ Res. 1984;54:204–7.

    PubMed  CAS  Google Scholar 

  123. Lohr NL, Warltier DC, Chilian WM, Weihrauch D. Haptoglobin expression and activity during coronary collateralization. Am J Physiol Heart Circ Physiol. 2005;288:H1389–95.

    PubMed  CAS  Google Scholar 

  124. Yamamoto H, Tomoike H, Shimokawa H, Nabeyama S, Nakamura M. Development of collateral function with repetitive coronary occlusion in a canine model reduces myocardial reactive hyperemia in the absence of significant coronary stenosis. Circ Res. 1984;55:623–32.

    PubMed  CAS  Google Scholar 

  125. Yamanishi K, Fujita M, Ohno A, Sasayama S. Importance of myocardial ischaemia for recruitment of coronary collateral circulation in dogs. Cardiovasc Res. 1990;24:271–7.

    PubMed  CAS  Google Scholar 

  126. Schaper W, De Brabander M, Lewi P. DNA synthesis and mitoses in coronary collateral vessels of the dog. Circ Res. 1971;28:671–9.

    PubMed  CAS  Google Scholar 

  127. Scheel KW, Galindez TA, Cook B, Rodriguez RJ, Ingram LA. Changes in coronary and collateral flows and adequacy of perfusion in the dog following one and three months of circumflex occlusion. Circ Res. 1976;39:654–8.

    PubMed  CAS  Google Scholar 

  128. Scheel KW, Rodriguez RJ, Ingram LA. Directional coronary collateral growth with chronic circumflex occlusion in the dog. Circ Res. 1977;40:384–90.

    PubMed  CAS  Google Scholar 

  129. Tomoike H, Inou T, Watanabe K, Mizukami M, Kikuchi Y, Nakamura M. Functional significance of collaterals during ameroid-induced coronary stenosis in conscious dogs. Interrelationships among regional shortening, regional flow and grade of coronary stenosis. Circulation. 1983;67:1001–8.

    PubMed  CAS  Google Scholar 

  130. Gorge G, Schmidt T, Ito BR, Pantely GA, Schaper W. Microvascular and collateral adaptation in swine hearts following progressive coronary artery stenosis. Basic Res Cardiol. 1989;84:524–35.

    PubMed  CAS  Google Scholar 

  131. Seko Y, Takahashi N, Shibuya M, Yazaki Y. Pulsatile stretch stimulates vascular endothelial growth factor (VEGF) secretion by cultured rat cardiac myocytes. Biochem Biophys Res Commun. 1999;254:462–5.

    PubMed  CAS  Google Scholar 

  132. Zheng W, Seftor EA, Meininger CJ, Hendrix MJ, Tomanek RJ. Mechanisms of coronary angiogenesis in response to stretch: role of VEGF and TGF-beta. Am J Physiol Heart Circ Physiol. 2001;280:H909–17.

    PubMed  CAS  Google Scholar 

  133. Zheng W, Christensen LP, Tomanek RJ. Stretch induces upregulation of key tyrosine kinase receptors in microvascular endothelial cells. Am J Physiol Heart Circ Physiol. 2004;287:H2739–45.

    PubMed  CAS  Google Scholar 

  134. Lei L, Zhou R, Zheng W, Christensen LP, Weiss RM, Tomanek RJ. Bradycardia induces angiogenesis, increases coronary reserve, and preserves function of the postinfarcted heart. Circulation. 2004;110:796–802.

    PubMed  Google Scholar 

  135. Lamping KG, Zheng W, Xing D, Christensen LP, Martins J, Tomanek RJ. Bradycardia stimulates vascular growth during gradual coronary occlusion. Arterioscler Thromb Vasc Biol. 2005;25:2122–7.

    PubMed  CAS  Google Scholar 

  136. Ito WD, Arras M, Scholz D, Winkler B, Htun P, Schaper W. Angiogenesis but not collateral growth is associated with ischemia after femoral artery occlusion. Am J Physiol. 1997;273:H1255–65.

    PubMed  CAS  Google Scholar 

  137. Pipp F, Boehm S, Cai WJ, Adili F, Ziegler B, Karanovic G, et al. Elevated fluid shear stress enhances postocclusive collateral artery growth and gene expression in the pig hind limb. Arterioscler Thromb Vasc Biol. 2004;24:1664–8.

    PubMed  CAS  Google Scholar 

  138. Schaper W, Pipp F, Scholz D, Boehm S, Deindl E, Barancik M, et al. Physical forces and their translation into molecular mechanisms. Arteriogenesis. Boston: Kluwer Academic Publishing; 2004. p. 73–114.

    Google Scholar 

  139. Heil M, Schaper W. Influence of mechanical, cellular, and molecular factors on collateral artery growth (arteriogenesis). Circ Res. 2004;95:449–58.

    PubMed  CAS  Google Scholar 

  140. Schaper W, Scholz D. Factors regulating arteriogenesis. Arterioscler Thromb Vasc Biol. 2003;23:1143–51.

    PubMed  CAS  Google Scholar 

  141. Chilian WM, Mass HJ, Williams SE, Layne SM, Smith EE, Scheel KW. Microvascular occlusions promote coronary collateral growth. Am J Physiol. 1990;258:H1103–11.

    PubMed  CAS  Google Scholar 

  142. Kersten JR, Pagel PS, Chilian WM, Warltier DC. Multifactorial basis for coronary collateralization: a complex adaptive response to ischemia. Cardiovasc Res. 1999;43:44–57.

    PubMed  CAS  Google Scholar 

  143. van den Wijngaard JP, Schulten H, van Horssen P, Ter Wee RD, Siebes M, Post MJ, et al. Porcine coronary collateral formation in the absence of a pressure gradient remote of the ischemic border zone. Am J Physiol Heart Circ Physiol. 2011;300:H1930–7.

    PubMed  Google Scholar 

  144. Lu H, Xu X, Zhang M, Cao R, Brakenhielm E, Li C, et al. Combinatorial protein therapy of angiogenic and arteriogenic factors remarkably improves collaterogenesis and cardiac function in pigs. Proc Natl Acad Sci USA. 2007;104:12140–5.

    PubMed  CAS  Google Scholar 

  145. Carroll SM, White FC, Roth DM, Bloor CM. Heparin accelerates coronary collateral development in a porcine model of coronary artery occlusion. Circulation. 1993;88:198–207.

    PubMed  CAS  Google Scholar 

  146. Herbert JM, Laplace MC, Maffrand JP. Effect of heparin on the angiogenic potency of basic and acidic fibroblast growth factors in the rabbit cornea assay. Int J Tissue React. 1988;10:133–9.

    PubMed  CAS  Google Scholar 

  147. Bashkin P, Doctrow S, Klagsbrun M, Svahn CM, Folkman J, Vlodavsky I. Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry. 1989;28:1737–43.

    PubMed  CAS  Google Scholar 

  148. Gospodarowicz D, Cheng J. Heparin protects basic and acidic FGF from inactivation. J Cell Physiol. 1986;128:475–84.

    PubMed  CAS  Google Scholar 

  149. Bombardini T, Picano E. The coronary angiogenetic effect of heparin: experimental basis and clinical evidence. Angiology. 1997;48:969–76.

    PubMed  CAS  Google Scholar 

  150. Lazarous DF, Scheinowitz M, Shou M, Hodge E, Rajanayagam S, Hunsberger S, et al. Effects of chronic systemic administration of basic fibroblast growth factor on collateral development in the canine heart. Circulation. 1995;91:145–53.

    PubMed  CAS  Google Scholar 

  151. Lazarous DF, Shou M, Scheinowitz M, Hodge E, Thirumurti V, Kitsiou AN, et al. Comparative effects of basic fibroblast growth factor and vascular endothelial growth factor on coronary collateral development and the arterial response to injury. Circulation. 1996;94:1074–82.

    PubMed  CAS  Google Scholar 

  152. Rajanayagam MA, Shou M, Thirumurti V, Lazarous DF, Quyyumi AA, Goncalves L, et al. Intracoronary basic fibroblast growth factor enhances myocardial collateral perfusion in dogs. J Am Coll Cardiol. 2000;35:519–26.

    PubMed  CAS  Google Scholar 

  153. Poling J, Szibor M, Schimanski S, Ingelmann ME, Rees W, Gajawada P, et al. Induction of smooth muscle cell migration during arteriogenesis is mediated by Rap2. Arterioscler Thromb Vasc Biol. 2011;31:2297–305.

    PubMed  Google Scholar 

  154. Resnick N, Yahav H, Shay-Salit A, Shushy M, Schubert S, Zilberman LC, et al. Fluid shear stress and the vascular endothelium: for better and for worse. Prog Biophys Mol Biol. 2003;81:177–99.

    PubMed  Google Scholar 

  155. Schierling W, Troidl K, Troidl C, Schmitz-Rixen T, Schaper W, Eitenmuller IK. The role of angiogenic growth factors in arteriogenesis. J Vasc Res. 2009;46:365–74.

    PubMed  CAS  Google Scholar 

  156. Wu S, Wu X, Zhu W, Cai WJ, Schaper J, Schaper W. Immunohistochemical study of the growth factors, aFGF, bFGF, PDGF-AB, VEGF-A and its receptor (Flk-1) during arteriogenesis. Mol Cell Biochem. 2010;343:223–9.

    PubMed  CAS  Google Scholar 

  157. Patila T, Ikonen T, Rutanen J, Ahonen A, Lommi J, Lappalainen K, et al. Vascular endothelial growth factor C-induced collateral formation in a model of myocardial ischemia. J Heart Lung Transplant. 2006;25:206–13.

    PubMed  Google Scholar 

  158. Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med. 2001;7:575–83.

    PubMed  CAS  Google Scholar 

  159. Pipp F, Heil M, Issbrucker K, Ziegelhoeffer T, Martin S, van den Heuvel J, et al. VEGFR-1-selective VEGF homologue PlGF is arteriogenic: evidence for a monocyte-mediated mechanism. Circ Res. 2003;92:378–85.

    PubMed  CAS  Google Scholar 

  160. Jennings RB, Baum JH, Herdson PB. Fine structural changes in myocardial ischemic injury. Arch Pathol. 1965;79:135–43.

    PubMed  CAS  Google Scholar 

  161. Buja LM, Weerasinghe P. Unresolved issues in myocardial reperfusion injury. Cardiovasc Pathol. 2010;19:29–35.

    PubMed  Google Scholar 

  162. Buja LM, Vela D. Cardiomyocyte death and renewal in the normal and diseased heart. Cardiovasc Pathol. 2008;17:349–74.

    PubMed  Google Scholar 

  163. Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction. Cardiovasc Res. 2002;53:31–47.

    PubMed  CAS  Google Scholar 

  164. Bolli R, Dawn B, Tang XL, Qiu Y, Ping P, Xuan YT, et al. The nitric oxide hypothesis of late preconditioning. Basic Res Cardiol. 1998;93:325–38.

    PubMed  CAS  Google Scholar 

  165. Bolli R, Marban E. Molecular and cellular mechanisms of myocardial stunning. Physiol Rev. 1999;79:609–34.

    PubMed  CAS  Google Scholar 

  166. Kloner RA, Jennings RB. Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 1. Circulation. 2001;104:2981–9.

    PubMed  CAS  Google Scholar 

  167. Kloner RA, Jennings RB. Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 2. Circulation. 2001;104:3158–67.

    PubMed  CAS  Google Scholar 

  168. Cantin M, Leone A. Morphology of myocardial infarction. Methods Achiev Exp Pathol. 1981;10:244–84.

    PubMed  CAS  Google Scholar 

  169. Jennings RB, Ganote CE. Structural changes in myocardium during acute ischemia. Circ Res. 1974;35 Suppl 3:156–72.

    PubMed  Google Scholar 

  170. Herdson PB, Sommers HM, Jennings RB. A comparative study of the fine structure of normal and ischemic dog myocardium with special reference to early changes following temporary occlusion of a coronary artery. Am J Pathol. 1965;46:367–86.

    PubMed  CAS  Google Scholar 

  171. Decker RS, Wildenthal K. Influence of methylprednisolone on ultrastructural and cytochemical changes during myocardial ischemia. Selective effects on various cell inclusions and organelles including lysosomes. Am J Pathol. 1978;92:1–22.

    PubMed  CAS  Google Scholar 

  172. Rivas F, Cobb FR, Bache RJ, Greenfield Jr JC. Relationship between blood flow to ischemic regions and extent of myocardial infarction. Serial measurement of blood flow to ischemic regions in dogs. Circ Res. 1976;38:439–47.

    PubMed  CAS  Google Scholar 

  173. Marcus ML, Tomanek RJ, Ehrhardt JC, Kerber RE, Brown DD, Abboud FM. Relationships between myocardial perfusion, myocardial necrosis, and technetium-99 m pyrophosphate uptake in dogs subjected to sudden coronary occlusion. Circulation. 1976;54:647–53.

    PubMed  CAS  Google Scholar 

  174. Downey JM, Yoshida S, Harpen MD. A functional estimate of overlap between adjacent coronary circulations in the dog. Basic Res Cardiol. 1986;81:336–41.

    PubMed  CAS  Google Scholar 

  175. Christensen LP, Zhang RL, Zheng W, Campanelli JJ, Dedkov EI, Weiss RM, et al. Postmyocardial infarction remodeling and coronary reserve: effects of ivabradine and beta blockade therapy. Am J Physiol Heart Circ Physiol. 2009;297:H322–30.

    PubMed  CAS  Google Scholar 

  176. Zhang RL, Christensen LP, Tomanek RJ. Chronic heart rate reduction facilitates cardiomyocyte survival after myocardial infarction. Anat Rec (Hoboken). 2010;293:839–48.

    Google Scholar 

  177. Anversa P, Olivetti G, Capasso JM. Cellular basis of ventricular remodeling after myocardial infarction. Am J Cardiol. 1991;68:7D–16.

    PubMed  CAS  Google Scholar 

  178. Lambert JM, Lopez EF, Lindsey ML. Macrophage roles following myocardial infarction. Int J Cardiol. 2008;130:147–58.

    PubMed  Google Scholar 

  179. Dedkov EI, Zheng W, Christensen LP, Weiss RM, Mahlberg-Gaudin F, Tomanek RJ. Preservation of coronary reserve by ivabradine-induced reduction in heart rate in infarcted rats is associated with decrease in perivascular collagen. Am J Physiol Heart Circ Physiol. 2007;293:H590–8.

    PubMed  CAS  Google Scholar 

  180. Kalkman EA, Bilgin YM, van Haren P, van Suylen RJ, Saxena PR, Schoemaker RG. Determinants of coronary reserve in rats subjected to coronary artery ligation or aortic banding. Cardiovasc Res. 1996;32:1088–95.

    PubMed  CAS  Google Scholar 

  181. Merkus D, Haitsma DB, Sorop O, Boomsma F, de Beer VJ, Lamers JM, et al. Coronary vasoconstrictor influence of angiotensin II is reduced in remodeled myocardium after myocardial infarction. Am J Physiol Heart Circ Physiol. 2006;291:H2082–9.

    PubMed  CAS  Google Scholar 

  182. de Beer VJ, Sorop O, Pijnappels DA, Dekkers DH, Boomsma F, Lamers JM, et al. Integrative control of coronary resistance vessel tone by endothelin and angiotensin II is altered in swine with a recent myocardial infarction. Am J Physiol Heart Circ Physiol. 2008;294:H2069–77.

    PubMed  Google Scholar 

  183. Jugdutt BI, Menon V, Kumar D, Idikio H. Vascular remodeling during healing after myocardial infarction in the dog model: effects of reperfusion, amlodipine and enalapril. J Am Coll Cardiol. 2002;39:1538–45.

    PubMed  Google Scholar 

  184. Kloner RA, Rude RE, Carlson N, Maroko PR, DeBoer LW, Braunwald E. Ultrastructural evidence of microvascular damage and myocardial cell injury after coronary artery occlusion: which comes first? Circulation. 1980;62:945–52.

    PubMed  CAS  Google Scholar 

  185. Kloner RA, Ganote CE, Jennings RB. The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest. 1974;54:1496–508.

    PubMed  CAS  Google Scholar 

  186. Nelissen-Vrancken HJ, Debets JJ, Snoeckx LH, Daemen MJ, Smits JF. Time-related normalization of maximal coronary flow in isolated perfused hearts of rats with myocardial infarction. Circulation. 1996;93:349–55.

    PubMed  CAS  Google Scholar 

  187. Dedkov EI, Zheng W, Tomanek RJ. Compensatory growth of coronary arterioles in postinfarcted heart: regional differences in DNA synthesis and growth factor/receptor expression patterns. Am J Physiol Heart Circ Physiol. 2006;291:H1686–93.

    PubMed  CAS  Google Scholar 

  188. Sandmann S, Bohle RM, Dreyer T, Unger T. The T-type calcium channel blocker mibefradil reduced interstitial and perivascular fibrosis and improved hemodynamic parameters in myocardial infarction-induced cardiac failure in rats. Virchows Arch. 2000;436:147–57.

    PubMed  CAS  Google Scholar 

  189. Lahteenvuo JE, Lahteenvuo MT, Kivela A, Rosenlew C, Falkevall A, Klar J, et al. Vascular endothelial growth factor-B induces myocardium-specific angiogenesis and arteriogenesis via vascular endothelial growth factor receptor-1- and neuropilin receptor-1-dependent mechanisms. Circulation. 2009;119:845–56.

    PubMed  Google Scholar 

  190. Siddiqui AJ, Fischer H, Widegren U, Grinnemo KH, Hao X, Mansson-Broberg A, et al. Depressed expression of angiogenic growth factors in the subacute phase of myocardial ischemia: a mechanism behind the remodeling plateau? Coronary artery disease. 2010;21:65–71.

    PubMed  Google Scholar 

  191. Zentilin L, Puligadda U, Lionetti V, Zacchigna S, Collesi C, Pattarini L, et al. Cardiomyocyte VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction. FASEB J. 2010;24:1467–78.

    PubMed  CAS  Google Scholar 

  192. Hashimoto E, Ogita T, Nakaoka T, Matsuoka R, Takao A, Kira Y. Rapid induction of vascular endothelial growth factor expression by transient ischemia in rat heart. Am J Physiol. 1994;267:H1948–54.

    PubMed  CAS  Google Scholar 

  193. Li X, Tjwa M, Van Hove I, Enholm B, Neven E, Paavonen K, et al. Reevaluation of the role of VEGF-B suggests a restricted role in the revascularization of the ischemic myocardium. Arterioscler Thromb Vasc Biol. 2008;28:1614–20.

    PubMed  CAS  Google Scholar 

  194. Jennings RB, Sommers HM, Smyth GA, Flack HA, Linn H. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol. 1960;70:68–78.

    PubMed  CAS  Google Scholar 

  195. Bolli R, Jeroudi MO, Patel BS, Aruoma OI, Halliwell B, Lai EK, et al. Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion. Evidence that myocardial “stunning” is a manifestation of reperfusion injury. Circ Res. 1989;65:607–22.

    PubMed  CAS  Google Scholar 

  196. Zhao Y, Glesne D, Huberman E. A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proc Natl Acad Sci USA. 2003;100:2426–31.

    PubMed  CAS  Google Scholar 

  197. Ambrosio G, Weisman HF, Mannisi JA, Becker LC. Progressive impairment of regional myocardial perfusion after initial restoration of postischemic blood flow. Circulation. 1989;80:1846–61.

    PubMed  CAS  Google Scholar 

  198. Schaper J, Schaper W. Reperfusion of ischemic myocardium: ultrastructural and histochemical aspects. J Am Coll Cardiol. 1983;1:1037–46.

    PubMed  CAS  Google Scholar 

  199. Flaherty JT, Weisfeldt ML. Reperfusion injury. Free Radic Biol Med. 1988;5:409–19.

    PubMed  CAS  Google Scholar 

  200. Lucchesi BR. Myocardial ischemia, reperfusion and free radical injury. Am J Cardiol. 1990;65:14I–23.

    PubMed  CAS  Google Scholar 

  201. Ambrosio G, Tritto I. Reperfusion injury: experimental evidence and clinical implications. Am Heart J. 1999;138:S69–75.

    PubMed  CAS  Google Scholar 

  202. Napoli C, Liguori A, Chiariello M, Di Ieso N, Condorelli M, Ambrosio G. New-onset angina preceding acute myocardial infarction is associated with improved contractile recovery after thrombolysis. Eur Heart J. 1998;19:411–9.

    PubMed  CAS  Google Scholar 

  203. Jolly SR, Kane WJ, Bailie MB, Abrams GD, Lucchesi BR. Canine myocardial reperfusion injury. Its reduction by the combined administration of superoxide dismutase and catalase. Circ Res. 1984;54:277–85.

    PubMed  CAS  Google Scholar 

  204. Brooks WW, Conrad CH, Morgan JP. Reperfusion induced arrhythmias following ischaemia in intact rat heart: role of intracellular calcium. Cardiovasc Res. 1995;29:536–42.

    PubMed  CAS  Google Scholar 

  205. Reimer KA, Murry CE, Richard VJ. The role of neutrophils and free radicals in the ischemic-reperfused heart: why the confusion and controversy? J Mol Cell Cardiol. 1989;21:1225–39.

    PubMed  CAS  Google Scholar 

  206. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357:1121–35.

    PubMed  CAS  Google Scholar 

  207. Vrints CJ. Pathophysiology of the no-reflow phenomenon. Acute Card Care. 2009;11:69–76.

    PubMed  Google Scholar 

  208. Reffelmann T, Kloner RA. The no-reflow phenomenon: a basic mechanism of myocardial ischemia and reperfusion. Basic Res Cardiol. 2006;101:359–72.

    PubMed  Google Scholar 

  209. Yasumura T, Aoki N, Yanagisawa A, Maki A, Shirato C, Ishikawa K. Effects of repeated brief episodes of ischemia and reperfusion in isolated perfused rat hearts. Heart Vessels. 1999;14:120–6.

    PubMed  CAS  Google Scholar 

  210. Tiefenbacher CP, Chilian WM, Mitchell M, DeFily DV. Restoration of endothelium-dependent vasodilation after reperfusion injury by tetrahydrobiopterin. Circulation. 1996;94:1423–9.

    PubMed  CAS  Google Scholar 

  211. Hashimoto K, Pearson PJ, Schaff HV, Cartier R. Endothelial cell dysfunction after ischemic arrest and reperfusion: a possible mechanism of myocardial injury during reflow. J Thorac Cardiovasc Surg. 1991;102:688–94.

    PubMed  CAS  Google Scholar 

  212. Hein TW, Zhang C, Wang W, Chang CI, Thengchaisri N, Kuo L. Ischemia-reperfusion selectively impairs nitric oxide-mediated dilation in coronary arterioles: counteracting role of arginase. FASEB J. 2003;17:2328–30.

    PubMed  CAS  Google Scholar 

  213. Climent B, Fernandez N, Sanz E, Sanchez A, Monge L, Garcia-Villalon AL, et al. Enhanced response of pig coronary arteries to endothelin-1 after ischemia-reperfusion. Role of endothelin receptors, nitric oxide and prostanoids. Eur J Pharmacol. 2005;524:102–10.

    PubMed  CAS  Google Scholar 

  214. Hearse DJ, Humphrey SM, Chain EB. Abrupt reoxygenation of the anoxic potassium-arrested perfused rat heart: a study of myocardial enzyme release. J Mol Cell Cardiol. 1973;5:395–407.

    PubMed  CAS  Google Scholar 

  215. Zweier JL, Flaherty JT, Weisfeldt ML. Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci USA. 1987;84:1404–7.

    PubMed  CAS  Google Scholar 

  216. Zweier JL. Measurement of superoxide-derived free radicals in the reperfused heart. Evidence for a free radical mechanism of reperfusion injury. J Biol Chem. 1988;263:1353–7.

    PubMed  CAS  Google Scholar 

  217. Zweier JL, Talukder MA. The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res. 2006;70:181–90.

    PubMed  CAS  Google Scholar 

  218. Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection. Cardiovasc Res. 2004;61:372–85.

    PubMed  CAS  Google Scholar 

  219. Altschuld R. Intracellular calcium regulatory systems during ischemia and reperfusion. Myocardial ischemia: mechanisms, reperfusion, protection. Basel: Birkhauser Verlag; 1996. p. 87–97.

    Google Scholar 

  220. Lemasters JJ, Bond J, Chacon E, Harper I, Kaplan S, Ohata H, et al. The pH paradox in ischemia-reperfusion injury to cardiomyocytes. Myocardial ischemia: mechanisms, reperfusion, protection. Basel: Birkhauser Verlag; 1996.

    Google Scholar 

  221. Yellon DM, Downey JM. Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev. 2003;83:1113–51.

    PubMed  CAS  Google Scholar 

  222. Maroko PR, Kjekshus JK, Sobel BE, Watanabe T, Covell JW, Ross Jr J, et al. Factors influencing infarct size following experimental coronary artery occlusions. Circulation. 1971;43:67–82.

    PubMed  CAS  Google Scholar 

  223. Maroko PR, Libby P, Bloor CM, Sobel BE, Braunwald E. Reduction by hyaluronidase of myocardial necrosis following coronary artery occlusion. Circulation. 1972;46:430–7.

    PubMed  CAS  Google Scholar 

  224. Maroko PR, Libby P, Sobel BE, Bloor CM, Sybers HD, Shell WE, et al. Effect of glucose-insulin-potassium infusion on myocardial infarction following experimental coronary artery occlusion. Circulation. 1972;45:1160–75.

    PubMed  CAS  Google Scholar 

  225. Reimer KA, Murry CE, Yamasawa I, Hill ML, Jennings RB. Four brief periods of myocardial ischemia cause no cumulative ATP loss or necrosis. Am J Physiol. 1986;251:H1306–15.

    PubMed  CAS  Google Scholar 

  226. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–36.

    PubMed  CAS  Google Scholar 

  227. Yang X, Cohen MV, Downey JM. Mechanism of cardioprotection by early ischemic preconditioning. Cardiovasc Drugs Ther. 2010;24:225–34.

    PubMed  Google Scholar 

  228. Sumeray MS, Yellon DM. Ischaemic preconditioning reduces infarct size following global ischaemia in the murine myocardium. Basic Res Cardiol. 1998;93:384–90.

    PubMed  CAS  Google Scholar 

  229. Burns PG, Krunkenkamp IB, Calderone CA, Kirvaitis RJ, Gaudette GR, Levitsky S. Is the preconditioning response conserved in senescent myocardium? Ann Thorac Surg. 1996;61:925–9.

    PubMed  CAS  Google Scholar 

  230. Li Y, Kloner RA. Cardioprotective effects of ischaemic preconditioning are not mediated by prostanoids. Cardiovasc Res. 1992;26:226–31.

    PubMed  CAS  Google Scholar 

  231. Schott RJ, Rohmann S, Braun ER, Schaper W. Ischemic preconditioning reduces infarct size in swine myocardium. Circ Res. 1990;66:1133–42.

    PubMed  CAS  Google Scholar 

  232. Cohen MV, Liu GS, Downey JM. Preconditioning causes improved wall motion as well as smaller infarcts after transient coronary occlusion in rabbits. Circulation. 1991;84:341–9.

    PubMed  CAS  Google Scholar 

  233. Liang BT, Gross GJ. Direct preconditioning of cardiac myocytes via opioid receptors and KATP channels. Circ Res. 1999;84:1396–400.

    PubMed  CAS  Google Scholar 

  234. Kuzuya T, Hoshida S, Yamashita N, Fuji H, Oe H, Hori M, et al. Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res. 1993;72:1293–9.

    PubMed  CAS  Google Scholar 

  235. Marber MS, Latchman DS, Walker JM, Yellon DM. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation. 1993;88:1264–72.

    PubMed  CAS  Google Scholar 

  236. Ovize M, Przyklenk K, Kloner RA. Partial coronary stenosis is sufficient and complete reperfusion is mandatory for preconditioning the canine heart. Circ Res. 1992;71:1165–73.

    PubMed  CAS  Google Scholar 

  237. Bufkin BL, Shearer ST, Vinten-Johansen J, Duarte IG, Thourani VH, Nakamura M, et al. Preconditioning during simulated MIDCABG attenuates blood flow defects and neutrophil accumulation. Ann Thorac Surg. 1998;66:726–31. discussion 31–2.

    PubMed  CAS  Google Scholar 

  238. Wang NP, Bufkin BL, Nakamura M, Zhao ZQ, Wilcox JN, Hewan-Lowe KO, et al. Ischemic preconditioning reduces neutrophil accumulation and myocardial apoptosis. Ann Thorac Surg. 1999;67:1689–95.

    PubMed  CAS  Google Scholar 

  239. Nakamura M, Wang NP, Zhao ZQ, Wilcox JN, Thourani V, Guyton RA, et al. Preconditioning decreases Bax expression, PMN accumulation and apoptosis in reperfused rat heart. Cardiovasc Res. 2000;45:661–70.

    PubMed  CAS  Google Scholar 

  240. Zhao ZQ, Vinten-Johansen J. Myocardial apoptosis and ischemic preconditioning. Cardiovasc Res. 2002;55:438–55.

    PubMed  CAS  Google Scholar 

  241. Zhao ZQ, Velez DA, Wang NP, Hewan-Lowe KO, Nakamura M, Guyton RA, et al. Progressively developed myocardial apoptotic cell death during late phase of reperfusion. Apoptosis. 2001;6:279–90.

    PubMed  CAS  Google Scholar 

  242. Scarabelli T, Stephanou A, Rayment N, Pasini E, Comini L, Curello S, et al. Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury. Circulation. 2001;104:253–6.

    PubMed  CAS  Google Scholar 

  243. Ambrosio G, Zweier JL, Becker LC. Apoptosis is prevented by administration of superoxide dismutase in dogs with reperfused myocardial infarction. Basic Res Cardiol. 1998;93:94–6.

    PubMed  CAS  Google Scholar 

  244. Thourani VH, Nakamura M, Duarte IG, Bufkin BL, Zhao ZQ, Jordan JE, et al. Ischemic preconditioning attenuates postischemic coronary artery endothelial dysfunction in a model of minimally invasive direct coronary artery bypass grafting. J Thorac Cardiovasc Surg. 1999;117:383–9.

    PubMed  CAS  Google Scholar 

  245. Hare JM. Oxidative stress and apoptosis in heart failure progression. Circ Res. 2001;89:198–200.

    PubMed  CAS  Google Scholar 

  246. Tajima M, Katayose D, Bessho M, Isoyama S. Acute ischaemic preconditioning and chronic hypoxia independently increase myocardial tolerance to ischaemia. Cardiovasc Res. 1994;28:312–9.

    PubMed  CAS  Google Scholar 

  247. Ostadalova I, Ostadal B, Jarkovska D, Kolar F. Ischemic preconditioning in chronically hypoxic neonatal rat heart. Pediatr Res. 2002;52:561–7.

    PubMed  CAS  Google Scholar 

  248. Neckar J, Papousek F, Novakova O, Ost’adal B, Kolar F. Cardioprotective effects of chronic hypoxia and ischaemic preconditioning are not additive. Basic Res Cardiol. 2002;97:161–7.

    PubMed  Google Scholar 

  249. Neckar J, Szarszoi O, Herget J, Ostadal B, Kolar F. Cardioprotective effect of chronic hypoxia is blunted by concomitant hypercapnia. Physiol Res. 2003;52:171–5.

    PubMed  CAS  Google Scholar 

  250. Neckar J, Ostadal B, Kolar F. Myocardial infarct size-limiting effect of chronic hypoxia persists for five weeks of normoxic recovery. Physiol Res. 2004;53:621–8.

    PubMed  CAS  Google Scholar 

  251. Ooi H, Cadogan E, Sweeney M, Howell K, O’Regan RG, McLoughlin P. Chronic hypercapnia inhibits hypoxic pulmonary vascular remodeling. Am J Physiol Heart Circ Physiol. 2000;278:H331–8.

    PubMed  CAS  Google Scholar 

  252. Kloner RA, Shook T, Przyklenk K, Davis VG, Junio L, Matthews RV, et al. Previous angina alters in-hospital outcome in TIMI 4. A clinical correlate to preconditioning? Circulation. 1995;91:37–45.

    PubMed  CAS  Google Scholar 

  253. Anzai T, Yoshikawa T, Asakura Y, Abe S, Meguro T, Akaishi M, et al. Effect on short-term prognosis and left ventricular function of angina pectoris prior to first Q-wave anterior wall acute myocardial infarction. Am J Cardiol. 1994;74:755–9.

    PubMed  CAS  Google Scholar 

  254. Andreotti F, Pasceri V, Hackett DR, Davies GJ, Haider AW, Maseri A. Preinfarction angina as a predictor of more rapid coronary thrombolysis in patients with acute myocardial infarction. N Engl J Med. 1996;334:7–12.

    PubMed  CAS  Google Scholar 

  255. Ishihara M, Sato H, Tateishi H, Kawagoe T, Shimatani Y, Kurisu S, et al. Implications of prodromal angina pectoris in anterior wall acute myocardial infarction: acute angiographic findings and long-term prognosis. J Am Coll Cardiol. 1997;30:970–5.

    PubMed  CAS  Google Scholar 

  256. Tomai F, Crea F, Chiariello L, Gioffre PA. Ischemic preconditioning in humans: models, mediators, and clinical relevance. Circulation. 1999;100:559–63.

    PubMed  CAS  Google Scholar 

  257. Jenkins DP, Pugsley WB, Alkhulaifi AM, Kemp M, Hooper J, Yellon DM. Ischaemic preconditioning reduces troponin T release in patients undergoing coronary artery bypass surgery. Heart. 1997;77:314–8.

    PubMed  CAS  Google Scholar 

  258. Teoh LK, Grant R, Hulf JA, Pugsley WB, Yellon DM. The effect of preconditioning (ischemic and pharmacological) on myocardial necrosis following coronary artery bypass graft surgery. Cardiovasc Res. 2002;53:175–80.

    PubMed  CAS  Google Scholar 

  259. Ikonomidis JS, Tumiati LC, Weisel RD, Mickle DA, Li RK. Preconditioning human ventricular cardiomyocytes with brief periods of simulated ischaemia. Cardiovasc Res. 1994;28:1285–91.

    PubMed  CAS  Google Scholar 

  260. Ikonomidis JS, Shirai T, Weisel RD, Derylo B, Rao V, Whiteside CI, et al. Preconditioning cultured human pediatric myocytes requires adenosine and protein kinase C. Am J Physiol. 1997;272:H1220–30.

    PubMed  CAS  Google Scholar 

  261. Walker DM, Marber MS, Walker JM, Yellon DM. Preconditioning in isolated superfused rabbit papillary muscles. Am J Physiol. 1994;266:H1534–40.

    PubMed  CAS  Google Scholar 

  262. Cohen MV, Downey JM. Ischemic postconditioning: from receptor to end-effector. Antioxid Redox Signal. 2011;14:821–31.

    PubMed  CAS  Google Scholar 

  263. Murry CE, Jennings RB, Reimer KA. New insights into potential mechanisms of ischemic preconditioning. Circulation. 1991;84:442–5.

    PubMed  CAS  Google Scholar 

  264. Murry CE, Richard VJ, Reimer KA, Jennings RB. Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode. Circ Res. 1990;66:913–31.

    PubMed  CAS  Google Scholar 

  265. Liu GS, Thornton J, Van Winkle DM, Stanley AW, Olsson RA, Downey JM. Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation. 1991;84:350–6.

    PubMed  CAS  Google Scholar 

  266. Tsuchida A, Miura T, Miki T, Shimamoto K, Iimura O. Role of adenosine receptor activation in myocardial infarct size limitation by ischaemic preconditioning. Cardiovasc Res. 1992;26:456–61.

    PubMed  CAS  Google Scholar 

  267. Auchampach JA, Gross GJ. Adenosine A1 receptors, KATP channels, and ischemic preconditioning in dogs. Am J Physiol. 1993;264:H1327–36.

    PubMed  CAS  Google Scholar 

  268. Cohen MV, Yang XM, Liu GS, Heusch G, Downey JM. Acetylcholine, bradykinin, opioids, and phenylephrine, but not adenosine, trigger preconditioning by generating free radicals and opening mitochondrial K(ATP) channels. Circ Res. 2001;89:273–8.

    PubMed  CAS  Google Scholar 

  269. Costa AD, Garlid KD, West IC, Lincoln TM, Downey JM, Cohen MV, et al. Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ Res. 2005;97:329–36.

    PubMed  CAS  Google Scholar 

  270. Honda HM, Ping P. Mitochondrial permeability transition in cardiac cell injury and death. Cardiovasc Drugs Ther. 2006;20:425–32.

    PubMed  CAS  Google Scholar 

  271. Downey JM, Krieg T, Cohen MV. Mapping preconditioning’s signaling pathways: an engineering approach. Ann NY Acad Sci. 2008;1123:187–96.

    PubMed  CAS  Google Scholar 

  272. Tissier R, Cohen MV, Downey JM. Protecting the acutely ischemic myocardium beyond reperfusion therapies: are we any closer to realizing the dream of infarct size elimination? Arch Mal Coeur Vaiss. 2007;100:794–802.

    PubMed  CAS  Google Scholar 

  273. Ishihara M, Inoue I, Kawagoe T, Shimatani Y, Kurisu S, Nishioka K, et al. Diabetes mellitus prevents ischemic preconditioning in patients with a first acute anterior wall myocardial infarction. J Am Coll Cardiol. 2001;38:1007–11.

    PubMed  CAS  Google Scholar 

  274. Noda T, Minatoguchi S, Fujii K, Hori M, Ito T, Kanmatsuse K, et al. Evidence for the delayed effect in human ischemic preconditioning: prospective multicenter study for preconditioning in acute myocardial infarction. J Am Coll Cardiol. 1999;34:1966–74.

    PubMed  CAS  Google Scholar 

  275. Hausenloy DJ, Yellon DM. The second window of preconditioning (SWOP) where are we now? Cardiovasc Drugs Ther. 2010;24:235–54.

    PubMed  Google Scholar 

  276. Bolli R, Li QH, Tang XL, Guo Y, Xuan YT, Rokosh G, et al. The late phase of preconditioning and its natural clinical application–gene therapy. Heart Fail Rev. 2007;12:189–99.

    PubMed  CAS  Google Scholar 

  277. Guo Y, Jones WK, Xuan YT, Tang XL, Bao W, Wu WJ, et al. The late phase of ischemic preconditioning is abrogated by targeted disruption of the inducible NO synthase gene. Proc Natl Acad Sci USA. 1999;96:11507–12.

    PubMed  CAS  Google Scholar 

  278. Shinmura K, Tang XL, Wang Y, Xuan YT, Liu SQ, Takano H, et al. Cyclooxygenase-2 mediates the cardioprotective effects of the late phase of ischemic preconditioning in conscious rabbits. Proc Natl Acad Sci USA. 2000;97:10197–202.

    PubMed  CAS  Google Scholar 

  279. Xuan YT, Tang XL, Qiu Y, Banerjee S, Takano H, Han H, et al. Biphasic response of cardiac NO synthase isoforms to ischemic preconditioning in conscious rabbits. Am J Physiol Heart Circ Physiol. 2000;279:H2360–71.

    PubMed  CAS  Google Scholar 

  280. Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P. Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation. 1993;87:893–9.

    PubMed  CAS  Google Scholar 

  281. Saxena P, Bala A, Campbell K, Meloni B, d’Udekem Y, Konstantinov IE. Does remote ischemic preconditioning prevent delayed hippocampal neuronal death following transient global cerebral ischemia in rats? Perfusion. 2009;24:207–11.

    PubMed  Google Scholar 

  282. Wei M, Xin P, Li S, Tao J, Li Y, Li J, et al. Repeated remote ischemic postconditioning protects against adverse left ventricular remodeling and improves survival in a rat model of myocardial infarction. Circ Res. 2011;108:1220–5.

    PubMed  CAS  Google Scholar 

  283. Ovize M, Baxter GF, Di Lisa F, Ferdinandy P, Garcia-Dorado D, Hausenloy DJ, et al. Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res. 2010;87:406–23.

    PubMed  CAS  Google Scholar 

  284. Granfeldt A, Lefer DJ, Vinten-Johansen J. Protective ischaemia in patients: preconditioning and postconditioning. Cardiovasc Res. 2009;83:234–46.

    PubMed  CAS  Google Scholar 

  285. Yang XM, Proctor JB, Cui L, Krieg T, Downey JM, Cohen MV. Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol. 2004;44:1103–10.

    PubMed  Google Scholar 

  286. Darling CE, Solari PB, Smith CS, Furman MI, Przyklenk K. ‘Postconditioning’ the human heart: multiple balloon inflations during primary angioplasty may confer cardioprotection. Basic Res Cardiol. 2007;102:274–8.

    PubMed  Google Scholar 

  287. Halkos ME, Kerendi F, Corvera JS, Wang NP, Kin H, Payne CS, et al. Myocardial protection with postconditioning is not enhanced by ischemic preconditioning. The Annals of thoracic surgery. 2004;78:961–9. discussion 9.

    PubMed  Google Scholar 

  288. Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM. Postconditioning: a form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res. 2004;95:230–2.

    PubMed  CAS  Google Scholar 

  289. Skyschally A, van Caster P, Iliodromitis EK, Schulz R, Kremastinos DT, Heusch G. Ischemic postconditioning: experimental models and protocol algorithms. Basic Res Cardiol. 2009;104:469–83.

    PubMed  Google Scholar 

  290. Boengler K, Buechert A, Heinen Y, Roeskes C, Hilfiker-Kleiner D, Heusch G, et al. Cardioprotection by ischemic postconditioning is lost in aged and STAT3-deficient mice. Circ Res. 2008;102:131–5.

    PubMed  CAS  Google Scholar 

  291. Heusch G, Buchert A, Feldhaus S, Schulz R. No loss of cardioprotection by postconditioning in connexin 43-deficient mice. Basic Res Cardiol. 2006;101:354–6.

    PubMed  CAS  Google Scholar 

  292. Lim SY, Davidson SM, Hausenloy DJ, Yellon DM. Preconditioning and postconditioning: the essential role of the mitochondrial permeability transition pore. Cardiovasc Res. 2007;75:530–5.

    PubMed  CAS  Google Scholar 

  293. Tsutsumi YM, Yokoyama T, Horikawa Y, Roth DM, Patel HH. Reactive oxygen species trigger ischemic and pharmacological postconditioning: in vivo and in vitro characterization. Life sciences. 2007;81:1223–7.

    PubMed  CAS  Google Scholar 

  294. Gomez L, Paillard M, Thibault H, Derumeaux G, Ovize M. Inhibition of GSK3beta by postconditioning is required to prevent opening of the mitochondrial permeability transition pore during reperfusion. Circulation. 2008;117:2761–8.

    PubMed  CAS  Google Scholar 

  295. Bouhidel O, Pons S, Souktani R, Zini R, Berdeaux A, Ghaleh B. Myocardial ischemic postconditioning against ischemia-reperfusion is impaired in ob/ob mice. Am J Physiol Heart Circ Physiol. 2008;295:H1580–6.

    PubMed  CAS  Google Scholar 

  296. Kaljusto ML, Mori T, Mohammad Husain Rizvi S, Galagudza M, Frantzen ML, Valen G, et al. Postconditioning in rats and mice. Scand Cardiovasc J. 2006;40:334–41.

    PubMed  Google Scholar 

  297. Nishino Y, Webb IG, Davidson SM, Ahmed AI, Clark JE, Jacquet S, et al. Glycogen synthase kinase-3 inactivation is not required for ischemic preconditioning or postconditioning in the mouse. Circ Res. 2008;103:307–14.

    PubMed  CAS  Google Scholar 

  298. Przyklenk K, Maynard M, Darling CE, Whittaker P. Aging mouse hearts are refractory to infarct size reduction with post-conditioning. J Am Coll Cardiol. 2008;51:1393–8.

    PubMed  Google Scholar 

  299. Xi L, Das A, Zhao ZQ, Merino VF, Bader M, Kukreja RC. Loss of myocardial ischemic postconditioning in adenosine A1 and bradykinin B2 receptors gene knockout mice. Circulation. 2008;118:S32–7.

    PubMed  CAS  Google Scholar 

  300. Kloner RA, Rezkalla SH. Preconditioning, postconditioning and their application to clinical cardiology. Cardiovasc Res. 2006;70:297–307.

    PubMed  CAS  Google Scholar 

  301. Kloner RA, Dow J, Bhandari A. Postconditioning markedly attenuates ventricular arrhythmias after ischemia-reperfusion. J Cardiovasc Pharmacol Ther. 2006;11:55–63.

    PubMed  Google Scholar 

  302. Galagudza M, Kurapeev D, Minasian S, Valen G, Vaage J. Ischemic postconditioning: brief ischemia during reperfusion converts persistent ventricular fibrillation into regular rhythm. Eur J Cardiothorac Surg. 2004;25:1006–10.

    PubMed  Google Scholar 

  303. Dow J, Bhandari A, Kloner RA. Ischemic postconditioning’s benefit on reperfusion ventricular arrhythmias is maintained in the senescent heart. J Cardiovasc Pharmacol Ther. 2008;13:141–8.

    PubMed  Google Scholar 

  304. Na HS, Kim YI, Yoon YW, Han HC, Nahm SH, Hong SK. Ventricular premature beat-driven intermittent restoration of coronary blood flow reduces the incidence of reperfusion-induced ventricular fibrillation in a cat model of regional ischemia. Am Heart J. 1996;132:78–83.

    PubMed  CAS  Google Scholar 

  305. Sun HY, Wang NP, Kerendi F, Halkos M, Kin H, Guyton RA, et al. Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting ROS generation and intracellular Ca2+ overload. Am J Physiol Heart Circ Physiol. 2005;288:H1900–8.

    PubMed  CAS  Google Scholar 

  306. Hansen PR, Thibault H, Abdulla J. Postconditioning during primary percutaneous coronary intervention: a review and meta-analysis. Int J Cardiol. 2010;144:22–5.

    PubMed  Google Scholar 

  307. Laskey WK. Brief repetitive balloon occlusions enhance reperfusion during percutaneous coronary intervention for acute myocardial infarction: a pilot study. Catheter Cardiovasc Interv. 2005;65:361–7.

    PubMed  Google Scholar 

  308. Staat P, Rioufol G, Piot C, Cottin Y, Cung TT, L’Huillier I, et al. Postconditioning the human heart. Circulation. 2005;112:2143–8.

    PubMed  Google Scholar 

  309. Ma XJ, Zhang XH, Li CM, Luo M. Effect of postconditioning on coronary blood flow velocity and endothelial function in patients with acute myocardial infarction. Scand Cardiovasc J. 2006;40:327–33.

    PubMed  Google Scholar 

  310. Yang XC, Liu Y, Wang LF, Cui L, Wang T, Ge YG, et al. Reduction in myocardial infarct size by postconditioning in patients after percutaneous coronary intervention. J Invasive Cardiol. 2007;19:424–30.

    PubMed  Google Scholar 

  311. Thibault H, Piot C, Staat P, Bontemps L, Sportouch C, Rioufol G, et al. Long-term benefit of postconditioning. Circulation. 2008;117:1037–44.

    PubMed  CAS  Google Scholar 

  312. Laskey WK, Yoon S, Calzada N, Ricciardi MJ. Concordant improvements in coronary flow reserve and ST-segment resolution during percutaneous coronary intervention for acute myocardial infarction: a benefit of postconditioning. Catheter Cardiovasc Interv. 2008;72:212–20.

    PubMed  Google Scholar 

  313. Jang Y, Xi J, Wang H, Mueller RA, Norfleet EA, Xu Z. Postconditioning prevents reperfusion injury by activating delta-opioid receptors. Anesthesiology. 2008;108:243–50.

    PubMed  CAS  Google Scholar 

  314. Penna C, Mancardi D, Rastaldo R, Losano G, Pagliaro P. Intermittent activation of bradykinin B2 receptors and mitochondrial KATP channels trigger cardiac postconditioning through redox signaling. Cardiovasc Res. 2007;75:168–77.

    PubMed  CAS  Google Scholar 

  315. Zatta AJ, Kin H, Yoshishige D, Jiang R, Wang N, Reeves JG, et al. Evidence that cardioprotection by postconditioning involves preservation of myocardial opioid content and selective opioid receptor activation. Am J Physiol Heart Circ Physiol. 2008;294:H1444–51.

    PubMed  CAS  Google Scholar 

  316. Guo HT, Zhang RH, Zhang Y, Zhang LJ, Li J, Shi QX, Wang YM, Fan R, Bi H, Yin W, Pei JM. Endogenous k-opioid peptide mediates the cardioprotection induced by ischemic postconditioning. J Cardiovas Pharmacol. 2011;58:207–15.

    Google Scholar 

  317. Penna C, Mancardi D, Tullio F, Pagliaro P. Postconditioning and intermittent bradykinin induced cardioprotection require cyclooxygenase activation and prostacyclin release during reperfusion. Basic Res Cardiol. 2008;103:368–77.

    PubMed  Google Scholar 

  318. Hausenloy DJ, Yellon DM. Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res. 2006;70:240–53.

    PubMed  CAS  Google Scholar 

  319. Heusch G, Skyoschally A, Schulz R. The insitu pig heart with regional ischemia/reperfusion-ready for translation. J Mol Cell Cardiol. 2011;50:951–63.

    Google Scholar 

  320. Kaur S, Jaggi AS, Singh N. Molecular aspects of ischaemic postconditioning. Fundam Clin Pharmacol. 2009;23:521–36.

    PubMed  CAS  Google Scholar 

  321. Cohen MV, Yang XM, Downey JM. The pH hypothesis of postconditioning: staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis. Circulation. 2007;115:1895–903.

    PubMed  Google Scholar 

  322. Hausenloy DJ, Yellon DM. Preconditioning and postconditioning: underlying mechanisms and clinical application. Atherosclerosis. 2009;204:334–41.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tomanek, R.J. (2013). Myocardial Ischemia and Infarction. In: Coronary Vasculature. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4887-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4887-7_10

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-4886-0

  • Online ISBN: 978-1-4614-4887-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics